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Abstract— We provide a control-theoretic perspective on the
design of distributed agreement protocols. First, we explore
agreement-protocol analysis and design for a network of agents
with single-integrator dynamics and arbitrary linear observa-
tions. One key contribution of our work is the analysis of
protocols for networks with quite general observation topolo-
gies, including with multiple observations made by each agent.
Another contribution is the development of techniques for
agreement law design—i.e., for assignment of the dependence
of the agreed-upon value on the initial states of the agents.
Second, we explore agreement in a quasi-linear model with a
stochastic protocol, which we call the controlled voter model.
We motivate our study of this model, develop tests for whether
agreement is achieved, and consider design of the agreement
law. Finally, we provide some further thoughts regarding our
control-theoretic perspective on agreement, including ideas for
fault-tolerant protocol design using our approach.

I. INTRODUCTION

We explore the problem of agreement from a control-
theoretic perspective, in the context of two linear models—
one deterministic, one stochastic. While agreement and
agreement protocols are well-studied (see [1] for a thorough
development), the control-theoretic approach is relatively
new ([2] and [3] are two signi£cant contributions) and, we
believe, capable of providing fresh insight into agreement
protocol design. Our control-theoretic approach allows us
to make the following contributions:

• We show how agreement laws—functions that relate
the agents’ initial states to their £nal, agreed-upon
value—can be designed: in particular, we show how
to construct static agreement protocols (memoryless
controllers) that achieve pre-speci£ed linear agreement
laws, for our models. In this respect, our work builds
on the analysis of [2], which discusses how to check
whether a static linear agreement protocol is successful
(in the same model as our deterministic one), but
does not consider agreement law design. Agreement
protocol design using control-theoretic methods has
also been considered in [3], though the focus there is on
optimizing the convergence rate rather than designing
the agreement law.
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• We develop agreement protocols for networks in which
each agent makes multiple observations. We £nd that
the multiple observations can provide greater ¤exibil-
ity in agreement law design. We also brie¤y discuss
other issues related to agreement of linear networks,
including fault-tolerant design and use of protocols
with memory.

• We show how the control-theoretic perspective can
be used to achieve agreement when the agents have
discrete-valued opinions (states).

II. DISTRIBUTED DETERMINISTIC PROTOCOLS FOR

CONTINUOUS-VALUED AGREEMENT

In this section, we seek to identify whether or not agree-
ment can be achieved among a group of communicating
or sensing agents with single-integrator dynamics, using a
static linear agreement protocol. Agreement protocols for
single-integrator networks have also been considered in [2].
Our work differs from [2] in that we design protocols for
achieving a desired agreement law, instead of simply check-
ing whether a given protocol can achieve an agreement law
such as average consensus. Our design-based philosophy is
more similar in spirit to the approach of [3], but we focus
on agreement law design rather than optimization of the
protocol for a given agreement law.

A. Model Formulation

We consider a network of n agents, where each agent i
has a scalar state xi . We assume that each agent’s state is the
integral of a control input ui : ẋi = ui , where the control
input ui is determined by a protocol (described precisely
below) used by agent i . This single-integrator model for in-
dividual agents is representative of various physical systems
(e.g., the velocity of a vehicle in a platoon is governed by an
acceleration input according to a single-integrator model),
and so constitutes a useful context for studying agreement.
Also, our studies (as well as those of, e.g., [3] and [2])
highlight that agreement in networks of single-integrators
is quite feasible, and hence that a single-integrator model
may be a reasonable choice when an agent’s dynamic update
can be designed along with (or as part of) its protocol (e.g.,
in a computer network). For convenience, we also de£ne
a state vector xT = [

x1 . . . xn
]

and an input vector
uT = [

u1 . . . un
]
.
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Each agent i has available mi observations, which are
used by its protocol to determine its control input. The
observations made by agent i may in general be arbitrary
linear combinations of the state variables. That is, the vector
yi of observations made by agent i has the form yi = Gi x
where each Gi is an mi × n matrix. Because the matrix Gi

speci£es how agent i’s observations are in¤uenced by the
other agents in the network, we call Gi the graph matrix
for agent i . We £nd it convenient to de£ne the full graph
matrix

G =
⎡
⎢⎣

G1
...

Gn

⎤
⎥⎦ .

We also £nd it useful to stack the observation vectors in a
single vector: yT = [

yT
1 . . . yT

n

]
. In this notation, y =

Gx.
Thus, we have speci£ed the state update and observation

processes for our network of agents. We refer to the
complete model as a single-integrator network.

B. Protocols, Agreement Protocols, and Agreement Laws

We are interested in developing protocols, or mappings
between observations and inputs, that achieve agreement in
a single-integrator network. In this article, we shall consider
static linear protocols, as de£ned below:

De£nition 1: A single-integrator network is said to be
governed by (or to have) the static linear protocol (K , z),
where K is the block-diagonal matrix K = diag(k′

i ) and z
is an n-component vector, if each agent i’s input ui is given
by ui = k′

i yi + zi .
Notice that ki is a column vector with mi elements, so that
the protocol K is a matrix of dimension n × ∑n

i=1 mi . In
words, a single-integrator network is governed by (has) a
static linear protocol, if each agent’s input at each time is
an af£ne combination of its observations at that time.

We are concerned with understanding whether a single-
integrator network with full graph matrix G and protocol
(K , z) achieves agreement. We de£ne agreement as follows:

De£nition 2: A single-integrator network with graph ma-
trix G and protocol (K , z) is in agreement (or reaches agree-
ment), if the states of all agents in the network converge to
the same (but in general initial condition-dependent) value
for all initial conditions. We refer to the value α reached
by the agents, which is in general a function of the initial
conditions, as the agreement value. A protocol (K , z) that
achieves agreement given a full graph matrix G is said to
be an agreement protocol or valid agreement protocol.

At the most basic level, we are interested in identifying
whether or not a protocol is an agreement protocol, for a
single-integrator network with given graph matrix G. Once
we know that a protocol is an agreement protocol, we aim
to characterize the agreement value α for the protocol—in
particular, to identify the dependence of α on the initial
states of the agents. By doing so, we can design protocols

that achieve desired dependencies on the initial conditions.
To this end, we de£ne the notion of an agreement law:

De£nition 3: Consider a single-integrator network with
graph matrix G and agreement protocol (K , z). Because the
single-integrator network has linear dynamics, the agree-
ment value for this network is an af£ne function of the
agents’ initial states:

α = p′x(0) + q (1)

We refer to the pair (p, q) as the agreement law for the
network.
The notion of an agreement law captures, in a general
manner, the dependence of the agreed-upon value on the
initial conditions of the single-integrator network.

Because the idea of an agreement law is central to our
development, and because it is novel, we £nd it worthwhile
to brie¤y discuss some examples. In [2] and [3], protocols
that achieve average consensus are studied. These are
agreement protocols for which the agreement value is the
arithmetic average of the agents’ initial conditions. In our
terminology, a network that reaches average consensus is
one that has the agreement law (p = [

1
n , . . . , 1

n

]′
,

q = 0). While average consensus is indeed a reasonable
design goal for some networks, other design goals may
be desired for some networks. For instance, a network
may require that all agents converge to the initial value
of one of the agents, say Agent 1. In our terminology,
this design goal can be stated as the goal of achieving
the agreement law (p = [

1 0 . . . 0
]
’, q = 0). Yet

other design goals may be agreement on an initial-condition
independent value (agreement law (0, q) for some q), or
agreement on a particular weighted average of agents’ initial
states (agreement law (p, 0) for some p).

C. Test for Agreement and Identi£cation of Agreement Laws

In this section, we specify tests for determining whether
a particular static linear protocol is in fact an agreement
protocol, and calculate the agreement laws when these
agreement protocols are used. To specify these test, we £rst
note that the state vector of a single-integrator network with
graph matrix G and protocol (K , z) satis£es the following
differential equation:

ẋ = K Gx + z. (2)

From this closed-loop system equation, we can straightfor-
wardly identify whether or not the single-integrator network
reaches agreement, and determine the agreement law if
it does. We £nd it useful to differentiate between two
cases, in specifying conditions for agreement. In particular,
we specify conditions for agreement to a value that is
independent of the initial conditions, and then separately
specify conditions for agreement to an initial-condition
dependent value. These conditions are described in the
following theorem:
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Theorem 1: A single-integrator network with graph ma-
trix G and protocol (K , z) reaches agreement if and only
if one of the following two conditions hold:

• all the eigenvalues of K G lie in the open left half
plane (i.e., have strictly negative real parts), and
−(K G)−1z = α1 for some α. In this case, the
agreement law for the network is (0, α). We refer to
this scenario as Type 1 Agreement.

• K G has one eigenvalue of 0 with corresponding right
eigenvector 1, the remaining eigenvalues of K G are
in the open left half plane, and z = 0. In this case,
the agreement law for the network is (w, 0) where w′
is the left eigenvector of K G corresponding to the 0
eigenvalue. (In particular, we are referring to the left
eigenvector w′ such that w′K G = 0 and w′1 = 1.
Henceforth, we refer to such a left eigenvector as a
standard left eigenvector1.) We refer to this scenario
as Type 2 Agreement.

D. Existence and Design of Agreement Laws

Now that we have developed tests for checking whether
agreement is achieved by a given protocol, we are in a
position to study the existence and design of protocols that
achieve desired agreement laws. In this section, we present
results that facilitate design of protocols to achieve such
agreement laws. The results fall into one of two categories:

• Given a single-integrator network with full graph ma-
trix G and a set of allowed agreement laws, we specify
conditions on G for the existence of a protocol that
achieves some agreement law within the set.

• Given a single-integrator network with full graph ma-
trix G and a set of desired agreement laws, we specify
conditions on G such that we can design protocols
to achieve all agreement laws within the set. That is,
we specify conditions on G for arbitrary assignability
of the agreement law within the set. As far as we
know, our study of agreement law assignment is novel
not only among control-theoretic studies but more
generally in the computer science community.

Several of the conditions that we specify are of the follow-
ing form: if G belongs to a certain class of matrices, then
existence/assignability of the agreement law is guaranteed.

Let us £rst consider Type 1 Agreement Laws—i.e., the
set of agreement laws (0, α), where α ∈ R. The following
theorem presents a condition for both existence of protocol
for achieving an agreement law in this set, and assignability
of any arbitrary agreement law in the set.

Theorem 2: Consider a single-integrator network with
graph matrix G. A protocol exists such that an agreement
law of the form (0, α), where α ∈ R, is achieved, if and
only if there is a block-diagonal matrix K (of the proper
dimensions) such that all eigenvalues of K G are in the

1Notice that the sum of the components of the agreement law is always
1.

OLHP. Furthermore, in this case, protocols can be designed
to achieve any agreement law of the form (0, α).

A condition for the existence of an agreement protocol
that is phrased explicitly in terms of the graph matrix G
can also be developed:

Theorem 3: Consider a single-integrator network with
square graph matrix G. A protocol exists such that an
agreement law of the form (0, α), where α ∈ R, is achieved,
if there is a permutation of G such that all leading principal
minors have full rank. Furthermore, in this case, protocols
can be designed to achieve any agreement law of the form
(0, α).

Next, let us consider design of protocols for Type 2
Agreement (i.e., that achieve agreement laws of the form
(p, 0). We £rst study existence of a protocol that achieves
some Type 2 Agreement Law.

Theorem 4: Assume there exists an appropriately-
dimensioned block diagonal matrix K such that K G has
a single zero eigenvalue with right eigenvector 1, and the
remaining eigenvalues of K G are negative. Then we can
design a protocol such that some agreement law of the form
(p, 0) can be achieved. In particular, the protocol (K , 0)

achieves the agreement law (w, 0), where w′ is the left
eigenvector of K G corresponding to the zero eigenvalue.

A condition that is explicit in G can also be developed:
Theorem 5: Assume that we can £nd vectors

v1 ∈ Ra(GT
1 ), . . . , vn ∈ Ra(GT

n ), such that V T =[
v1 . . . vn

]
has one zero eigenvalue with corresponding

right eigenvector 1, and that there is a permutation of V
whose leading principal minors have full rank. Then we can
design a protocol such that some agreement law of the form
(p, 0) can be achieved.

In the remainder of this section, we describe conditions
on G that guarantee existence of an agreement law within
a particular quadrant, as well as conditions on G that
guarantee that every agreement law within a quadrant can be
achieved using some protocol. (We use the term quadrant
of a Type 2 agreement law (p, 0) to refer to the sign
pattern of the entries in p. For instance, if all entries in
p are positive, we refer to agreement law as lying in the
£rst or positive quadrant.) For convenience, we assume that
each agents makes only a single observation (i.e., that G is
square) in these studies. The generalization to non-square
G can be achieved in much the same way as for Theorem
5.

We are especially interested in identifying G for which all
agreement laws within a quadrant can be achieved, because
these are graph matrices for which essentially arbitrary
agreement law design is possible2. That is, for such graph
matrices we can decide on a desired dependence of the
agreement value on the initial states of the agents (at least

2When we study whether "every" agreement law within a quadrant can
be achieved, we implicitly consider only agreement laws (p, 0) such that
p′1 = 1. In other words, since the sum of the entries in p is 1 for any
achievable agreement law, we implicitly assume that this constraint is met
for any desired agreement law.
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within a quadrant), and £nd a protocol that achieves this
agreement law. Thus, we begin with this case.

We £nd it most enlightening to relate arbitrary assign-
ment of the agreement law within a quadrant to the notion
of D-semistability (e.g., [6]), so we begin with a de£nition
of D-semistability.

De£nition 4: The matrix A is said to be D-semistable if
the eigenvalues of the matrix D A are in the closed left half
plane and the eigenvalues of D A on the jω-axis are simple,
for all positive diagonal D. 3

We shall show that arbitrary assignment of the agree-
ment law is possible when the graph matrix (or another
matrix that is closely related with the graph matrix) is
D-semistable. The advantage of characterizing arbitrary
assignment using D-semistability is that many common
classes of matrices are known to be D-semistable, so that
we are immediately able to identify classes of matrices for
which arbitrary assignment is possible. The relationship be-
tween D-semistability and arbitrary assignment is described
in the following theorem:

Theorem 6: Consider a single-integrator network in
which each agent makes a single observation. We can
develop a protocol to achieve any agreement law4 of Type
II (i.e., of form (p, 0)) within some quadrant if and only if
the following three conditions hold:

• The matrix ZG is D-semistable, where Z =
diag(−sign(gii )).

• The right eigenvector of G corresponding to the single
eigenvalue at the origin is the vector 1. Also, the
corresponding left eigenvector of G has strictly non-
zero entries.

• ZG has no eigenvalues on the jω axis other than the
single eigenvalue at the origin.

In this case, the quadrant in which any agreement law can
be achieved is the one with sign pattern given by w′Z,
where w′ is the left eigenvector of G corresponding to the
zero eigenvalue.

Although the conditions required for arbitrary assignment
of the agreement law in a quadrant seem unwieldy, they
can straightforwardly be checked because they are phrased
directly in terms of the graph matrix G. In particular, the
following steps can be followed to identify whether the
conditions for arbitrary agreement are met:

1) D-semistability of ZG can be veri£ed by determining
that ZG belongs to one of several well-known classes
of matrices. These classes of matrices are discussed
in some detail below.

2) The remaining conditions can be checked through
eigenanalysis of ZG.

3Our notion of D-semistability differs from the linear algebra notion,
in that we constrain eigenvalues on the jω axis to be simple. We believe
that this de£nition for D-semistability is germane in our context because
internal stability of linear systems requires that imaginary axis eigenvalues
are simple. We shall clarify classes of matrices that are D-semistable by
our de£nition later in the article.

4As always, we implicitly consider only agreement laws whose compo-
nents sum to one, since only these are possible.

The procedure above highlights that D-semistability of
the graph matrix must be determined to check whether
arbitrary assignment is possible. Unfortunately, there is
no systematic procedure for checking D-semistability of a
matrix. Luckily, however, there are several broad classes of
matrices whose members are known to be D-semistable and
also can be easily identi£ed. We list several such classes
of matrices, brie¤y describing techniques for determining
whether a matrix is a member of each class as needed.
We also illustrate the relationships between these classes
of matrices in Figure II-D. We omit the justi£cations that
matrices in these classes are D-semistable; the reader is
referred to [6] for these details.

D-Semistable
Matrices

Diagonally Semistable
Matrices

Irreducible
H-Matrices

Irreducible
M-Matrices

Connected
Laplacian Matrices

Fig. 1. A Venn diagram of some classes of D-stable matrices is shown.

(1) Matrices that are diagonally semistable are also D-
semistable. The matrix A is said to be diagonally semistable
if there exists a positive diagonal matrix D such that
AT D + D A is positive semi-de£nite. Optimization machin-
ery has been used to develop a test for whether a matrix is
diagonally semistable (see [5]).

(2) If −A is an irreducible H -matrix with nonnegative
diagonal entries, then A is diagonally semistable, and hence
D-semistable. H -matrices are a fairly straightforward gen-
eralization of the class of M matrices (see below).

(3) If −A is an irreducible M-matrix with nonnegative
diagonal entries, then −A is an irreducible H matrix
with nonnegative diagonal entries, and so is diagonally
semistable and hence D-semistable. Recall that an M-
matrix is one with non-negative principal minors and non-
positive off-diagonal entries.

(4) If −A is an irreducible Laplacian matrix, then −A
is an irreducible M matrix, and hence D-semistable. When
−A is an irreducible Laplacian matrix, all the other condi-
tions of Theorem 6 also hold. Hence, arbitrary assignment
of the agreement law to a quadrant (in particular, the all-
positive quadrant) is possible.

We conclude this section with a test for whether some
agreement law within a speci£ed quadrant can be achieved
using a valid agreement protocol:
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Theorem 7: Consider a single integrator network with
square graph matrix G, and say that we wish to see
whether some agreement law with the same sign pattern
as a particular n-component vector v can be achieved.
Assume that G has a zero eigenvalue, with corresponding
right eigenvector 1 and left eigenvector w′. (We assume that
the entries of w′ are non-zero; agreement within a quadrant
is impossible if they are not.) Also, de£ne a diagonal matrix
Z = diag(

sign(w1)
sign(v1)

). Then we can £nd some agreement
protocol such that the agreement law has the same sign
pattern as v if there is a permutation of ZG for which all
leading principal minors of order less than n are positive.

We note that Theorem 7 and Theorem 5 are closely
related. In particular, if the premise for Theorem 5—that
there is a permutation of G such that the £rst n −1 leading
principal minors have full rank—is satis£ed then we can
necessarily £nd a diagonal matrix Z with entries of ±1
on the diagonal, such that the £rst n − 1 leading principal
minors of ZG are positive. Thus, we verify that there is a
quadrant in which we can place the agreement law, as we
would expect.

III. CONTROLLED VOTER MODEL FOR

DISCRETE-VALUED AGREEMENT

In this second part, we discuss the design of agreement
protocols in the context of a quasi-linear discrete-time,
discrete-state stochastic model, which we call the controlled
voter model. Our motivations for studying agreement in
a discrete-state and stochastic model are threefold: £rst,
agreement among agents with discrete-valued states is re-
quired in several contexts, such as among jurors deciding on
a defendant’s guilt or several parallel process comparing the
binary output of a computation. Second, protocols that are
based on copying or choosing among several decisions—
such as the one to be developed for our model—are easy
to implement in some applications, since they often re-
quire minimal computation. Third, when agreement among
agents with discrete-valued states is required, probabilistic
decision-making often is necessary to reach agreement in an
equitable manner, and hence stochastic models for protocols
are relevant.

The controlled voter model provides a realistic context
for studying agreement, yet is suf£ciently structured to
permit signi£cant analysis of state dynamics and design of
agreement laws. Essentially, the model is tractable because
expected value of the state of the closed-loop system (the
system when the protocol is applied) satis£es a linear
recursion. Thus, we can re-phrase the problem of agreement
as a linear control problem.

A. Model Formulation and Connection to Literature

A controlled voter model comprises a network of n
agents, each with a scalar state variable xi ∈ {0, 1} that
is updated in discrete time. The state update of each agent

is governed by a stochastic protocol: in particular, the state
of agent i at time-k + 1 is given by

xi [k + 1] = 1, w.p. ui [k]
xi [k + 1] = 0, w.p. 1 − ui [k],

where the mean input ui [k] ∈ [0, 1] is computed by the
protocol from agent i’s concurrent observations5. Notice
that we de£ne the protocol to include both the computation
of ui [k] from the observations, and the stochastic deter-
mination of the next-state xi [k + 1] based on ui [k]. That
is, the protocol uses the observations to set the probability
that the next state will be 1, and then realizes the next
state based on this probability. (This is in contrast to the
single-integrator network, in which we view the relationship
between the input and state as part of the intrinsic dynamics
of the model rather than the protocol.) For convenience, we
de£ne a state vector xT = [

x1 . . . xn
]

and a mean
input vector uT = [

u1 . . . un
]
.

Each agent i makes mi observations. Each observation is
a weighted average of the concurrent state variables. That
is, the observations made by agent i are given by yi = Gi x,
where the mi × n graph matrix Gi is a row-stochastic
matrix—i.e., one in which the elements in each row are
non-negative and sum to 1. Notice that observations in our
formulation can include states variables of single agents
and weighted averages of multiple agents’ states (e.g., of
neighboring agents in a graph). Because we have enforced
that Gi is row-stochastic, the entries in each vector yi are
necessarily in the interval [0, 1] for any state vector. For
convenience, we again de£ne a full observation vector

yT = [
yT

1 . . . yT
n

]
and a full graph matrix G =

⎡
⎢⎣

G1
...

Gn

⎤
⎥⎦.

Our protocol calculates each agent’s mean input ui from
its observation vector yi . We assume that this mapping is
static and linear: the mean input ui is determined as

ui = k′
i yi . (3)

We further enforce that the entries in k′
i are non-negative

and sum to 1, so that ui is a weighted average of the entries
in yi . This further constraint ensures that each input ui is in
the interval [0, 1] at each time-step, as required. We note,
further, that all ui equal 0 at a given time if all agents’ states
at that time are zero, and that all ui equal one if all agents’
concurrent states are unity. For convenience, we codify the
protocol using the block-diagonal matrix K = diag(k′

i ).
Notice that ki is a column vector with mi elements, so
that the protocol matrix K is a matrix of dimension n ×∑n

i=1 mi . The protocol matrix relates the observation vector
to the mean input vector, as u = K y. A controlled voter
model is speci£ed completely by its graph matrix G and
protocol matrix K , and hence we identify a particular model
with its graph G and protocol K .

5We use the term mean input since the expected value of the "actual
input" (which is the next-state) is ui [k].
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Our controlled voter model is a natural extension (in
discrete time) of the voter model (equivalently, invasion
process), originally introduced in [7] and [8] and studied in
further detail in [9] and [10]. The stochastic realization of
the next-state from the mean input in these models is iden-
tical to ours; they are different in that the mean inputs are
prescpeci£ed linear combinations of state variables, rather
than being speci£ed as an observation operation followed
by a decentralized control operation. Thus, although the
closed-loop dynamics of the voter model and controlled
voter model are identical, the voter model is viewed as
representing a £xed process (that may or may not reach
agreement) while the controlled voter model is a tool for
designing protocols for agreement. It is our belief that
the protocol-design perspective on the voter model is a
valuable one. While the voter model may be too simplistic
to represent many pre-existing systems, we are free to
design protocols as we see £t, and the voter model turns
out to be a good choice because of its tractability and
performance.

B. De£nition of Agreement

The notion of agreement in the controlled voter model is
essentially the same as for the single-integrator network: a
model is in agreement if the states of all the agents asymp-
totically reach the same value. In the case of a controlled
voter model that reaches agreement, this asymptotic value
is either zero or one. The asymptotic value reached by the
agents is in general stochastic—convergence to either all
zeros and all ones is possible on any given trial. Thus,
in contrast to the determinstic model, the agents’ initial
states do not exactly specify the value that is agreed upon
by the agents; instead, these initial conditions specify the
probability that agreement to the zero state or the unity state
is achieved. With this difference in mind, we de£ne the
notion of an agreement value and agreement law in terms
of the probabilities of reaching either asymptotic state. It is
also worth mentioning that the notion of convergence to the
same value is now a probabilistic notion (e.g., convergence
in probability or convergence with probability 1, see [11]
for instance). We formalize these notions in the following
de£nitions.

De£nition 5: A controlled voter model with graph G and
protocol K is in agreement, if the states of all agents in the
model converge to the same value (i.e., become identical)
with probability 1, for all initial conditions. We refer to the
probability α that the agents reach the unity state (which,
as our subsequent analysis shows, is a function of the initial
conditions) as the agreement probability. A protocol K that
achieves agreement for a given graph G is said to be an
agreement protocol.

De£nition 6: Consider a single-integrator network with
graph matrix G and agreement protocol K . As shown
in a following section, the agreement probability for this
network turns out to be a linear function of the agents’

initial states:
α = p′x[0]. (4)

We refer to p as the agreement law for the network.
Sections III-D and III-E describe analysis of agreement

protocols and design of protocols to achieve speci£c agree-
ment laws, respectively. As with the deterministic model,
the ageement law achieved by a given protocol, and the
possibility for designing protocols, are strongly dependent
on the structure of the graph matrix G.

C. Summary of Graph-Theoretic Concepts

Our study of protocol analysis and design for the con-
trolled voter model turns out to be deeply related to some
graph-theoretic concepts for matrices with non-negative
entries. In particular, let us consider a square matrix n × n
matrix A with non-negative entries. The pictorial graph of
A, denoted �(A), comprises n nodes or vertices. A directed
edge (arrow) is drawn from vertex i to vertex j , if and only
if Ai j is non-zero. The vertices and edges together constitute
the graph. (Notice that we use the term pictorial graph
rather than graph to distinguish from the graph matrix.)

Several concepts regarding the structure of the pictorial
graph are of importance. In the interest of space, we omit
de£nitions of these concepts and refer the reader to [12] for
details.

D. Analysis of Protocols

In this section, we consider controlled voter models with
given graph G and protocol K , and 1) determine whether
the model reaches agreement and, if so, 2) characterize the
agreement law for the model. Thus, as with the single-
integrator network, we develop conditions that can be
used to check whether or not agreement is achieved, and
to determine the agreement law achieved by a particular
protocol. Because the graph matrix and protocol matrix for
the controlled voter model are rather strictly constrained
(each matrix is row-stochastic), it turns out that agreement
is achieved for almost all G and K : unlike the deterministic
model, there is no possibility for strictly unstable closed-
loop dynamics, and achievement of agreement is instead
solely contigent on whether a single status value can
dominate the dynamics. Like the single-integrator network,
we £nd that the agreement law for the controlled voter
model can be determined through eigenanalysis of K G.
Our analysis of agreement in the controlled voter model
is formalized in two theorems below:

Theorem 8: A controlled voter model with graph G and
protocol K reaches agreement, if and only if the pictorial
graph �((K G)′) has a single autonomous class and that
autonomous class is ergodic.

The next theorem characterizes the agreement law for
a controlled voter model with graph G and agreement
protocol K . For convenience, we only consider the case
that K G comprises a single ergodic class, although the
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theorem readily generalizes to the necessary and suf£cient
case considered in Theorem 8.

Theorem 9: Consider a controlled voter model with
graph G and protocol K , for which �((K G)′) comprises a
single ergodic class. Notice that, from Theorem 8, K is an
agreement protocol. The agreement law for this controlled
voter model is p, where p′ is the left eigenvector of K G
corresponding to its unity eigenvalue.

E. Design of Agreement Laws

Just as in our deterministic model, design of the agree-
ment law is feasible in the controlled voter model. That
is, we can characterize the set of agreement laws that can
be achieved by some protocol, for a given graph matrix.
The ease with which agreement laws can be designed is a
compelling feature of our formulation, since it allows us to
design agreement protocols that weight each agent’s initial
state differently.

The design of agreement laws for the controlled voter
model is simpler than for the single-integrator network:
because stability is guaranteed for any protocol, the set
of allowed agreement laws can be characterized solely by
determining how the protocol K impacts the left eigenvector
of K G corresponding to the unity eigenvalue6. Our charac-
terization of the set of achievable agreement laws is phrased
in terms of left eigenvectors of certain submatrices of G.
We begin our development by de£ning appropriate notations
for these submatrices and eigenvectors:

De£nition 7: We shall consider n × n submatrices of G
comprising single rows from each agent’s graph matrix
G(i). In particular, let us consider a matrix whose j th
row is row i j ∈ 1, . . . , m j of G( j). We refer to this
matrix as the reduced full graph matrix with observation
list i = {i1, . . . , in}, and use the notation Ĝ i for the matrix.
We also de£ne the protocol K i for observation list i to be
the protocol for which each block-diagonal matrix (vector)
k j is an indicator vector with unity entry at entry i j . We
note that Ĝ i = KiG. If Ĝ i is ergodic, it has a single
unity eigenvalue. In such cases, we use the notation p̂′

i
for the corresponding left eigenvector. Finally, we note that
there are m = ∏n

i=1 mi reduced full graph matrices (and
corresponding unity eigenvectors).

We are now ready to present our main theorem concern-
ing agreement law design:

Theorem 10: Consider a controlled voter model with
graph matrix G, and assume that all reduced full graph
matrices for this controlled voter model are ergodic. Then
an agreement law p can be achieved using some protocol
K , if and only if p can be written in the form∑

i

αîpi, (5)

where the m coef£cients αi are positive and sum to one.
That is, an agreement law can be achieved if and only if it

6To be precise, we further need to check that K G is ergodic, but we
envision that ergodicity will be achieved naturally in many applications.

is a convex combination of the left eigenvectors of the full
graph matrices corresponding to the unity eigenvalue.

A few further notes about application of the stochastic
protocol design are worthwhile:

• To determine whether a given agreement law p can be
achieved, one must check whether p lies in the convex
hull de£ned by the vectors pi. Methods for checking
are well-known (see, e.g., [13]). These methods also
serve to identify the coef£cients α i that relate p to the
pi .

• We have identi£ed the set of achievable agreement
laws, but have not yet shown how to choose a protocol
to achieve a particular agreement law in this set. In fact,
the procedure for choosing the protocol is implicitly
contained in our suf£ciency proof above. In particular,
given a desired agreement law p, we need to £rst
compute q′ = (

∑
i αîp′

i Ki), where the αi are found
as described in the £rst item in this list. Next, we
need to choose K so that q′ = (

∑
i αip′

i)K . This can
be done easily, by normalizing7 the components of q
corresponding to £nd ki .

Example 1: We consider a controlled voter model with
three agents. The £rst and third agents each make two
observations, while the second agent only makes a single
observations. The full graph matrix for this example is the
following:

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9 0.1 0
0.6 0.3 0.1

− − − − − − − − −−
0.2 0.5 0.3

− − − − − − − − −−
0 0.2 0.8

0.4 0.3 0.3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

We apply Theorem 10 to identify the agreement laws that
we can achieve using some protocol. The agreement laws
that can be achieved are illustrated in Figure III-E. We only
show the £rst two components p1 and p2 of the agreement
law on the plot, since the third component is determined
explicitly from the £rst two. Using the procedure described
above, we can £nd the protocol matrix required to achieve
any desired agreement law in this set if we wish.

IV. FURTHER DIRECTIONS

We have developed agreement protocols for two applica-
ble dynamic models, focusing in particular on exposing the
role of the communication network structure on protocol
development. We believe our studies provide a compelling
framework for understanding agreement in several dynamic
systems. However, some further analyses can signi£cantly
expand the applicability of our framework. Here, we brie¤y
list several directions of analysis that we are currently
pursuing, along with some initial results.

7to a unity sum
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Fig. 2. The agreement laws that can be achieved using some protocol are
illustrated for an example controlled voter model with three agents. We
only show the £rst two components p1 and p2 of the agreement law on
the plot, since the third component is determined explicitly from the £rst
two.

a) Fault Tolerance: Fault tolerance is often a require-
ment for an agreement protocol, especially in distributed
computing applications (see, e.g., [1]). In these applications,
protocols must be tolerant of random loss of communica-
tion, as well as purposeful miscommunications. Loss-of-
communication faults may also be prevalent in autonomous
vehicle applications (e.g., [14]) and other applications that
involve transmission through a noisy environment.

We believe that our framework permits study of fault
tolerance, because we allow for agents that make multiple
observations, and because we explicitly consider design
of agreement protocols. Thus, we can hope to design
agreement protocols that are robust to common faults. For
instance, for the single-integrator network, we can aim to
develop a protocol that is robust to a single fault among
a set of observations. Another common fault in a single-
integrator network may be complete failure of an agent
(i.e., loss of control of the agent as well as exclusion of
observation of it by the other agents). In such a situation,
our protocol should seek to achieve agreement among the
remaining agents despite the lost observations. We expect
that the ability to design such a fault-tolerant protocol is
deeply connected to the notion of D-semistability, since D-
semistable systems are robust to many changes in the graph
matrix.

In a similar manner, we can construct a stochastic agree-
ment protocol in order to minimize dependence on com-
munications that are faulty or on potential agent failures.
Further, by assuming a stochastic model for faults, we can
characterize the expected dynamics of our network once a
protocol is applied.

b) More Complicated Network Dynamics: Another
direction that we are currently pursuing is the development
of agreement protocols for networks with more complex in-
trinsic dynamics. In particular, agents with double-integrator
dynamics (rather than single-integrator dynamics) are com-

mon in mechanical systems, and so are of interest to us.
For instance, if we are interested in achieving agreement
among the positions (rather than velocities) of autonomous
vehicles in a network, double-integrator dynamics must be
considered since typically the accelerations of the vehicles
are controlled. The techniques used to design agreement
protocols in this article can readily be adapted for double-
integrator networks, by meshing them with the analysis
techniques discussed in [4]. We expect to discuss agreement
in double-integrator networks in a subsequent article.

We have just begun to study agreement for networks
in which agents’ dynamics are intrinsically interconnected.
Power networks and air traf£c networks are examples of
systems in which agents’ dynamics are dependent on each
other. We believe that agreement in such networks can be
analyzed by applying the decentralized control analysis of
[15], as we have done for integrator networks in [4]. We
are also interested in considering interdependent dynamics
in the controlled voter model, by meshing uncontrollable
interactions (i.e., standard voter model updates) with con-
trollable dynamics.
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