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Abstract— This paper deals with performance assessment
of decentralized controllers using a minimum variance (MV)
benchmark. The available MV benchmarks do not take the
structure of the controller into account and can give overly
optimistic estimates of achievable performance, when applied
to systems under decentralized control. We propose an approx-
imate solution to this problem obtained by explicitly solving
simple linear matrix equations. As a special case of this general
result, we also present an upper bound on the achievable per-
formance for systems under multi-loop proportional-integral-
derivative control. These results are useful for assessing the
feasibility of significant performance improvement by re-
tuning of the decentralized controller and input-output pairing
selection.

I. INTRODUCTION

In the control literature, it is common to represent a
non-linear, time-varying process by a linear time invari-
ant model and design a controller based on this. In the
presence of changing operating conditions and disturbance
dynamics, the closed loop performance of the controller
designed based on this approximation may deteriorate over
time. Sustained benefits can be reaped by monitoring the
performance and taking appropriate corrective actions, in
the case of large deviations from the designed performance.

Poor controller tuning is one of the primary reasons
for performance deterioration of industrial controllers. It
is important to assess the feasibility of significant perfor-
mance improvement, before the task of controller tuning is
undertaken. This purpose is well served by the minimum
variance (MV) benchmark, where the controller objective
is defined in terms of output variance. The MV benchmark
represents the theoretical lower bound on the achievable
output variance. The output variance can be reduced by con-
troller tuning, when the actual variance differs significantly
from the MV benchmark; otherwise, different approaches
should be considered e.g. the use of feedforward controller
or additional manipulated variables.

The idea of MV control was introduced by Åström [1].
Harris [2] showed that with a priori knowledge of time
delay, MV benchmark can be estimated using routine
closed loop operating data and established it as a tool
for performance monitoring of single-input, single-output
(SISO) systems. This approach is further extended to multi-
input, multi-output (MIMO) systems by Harris et al. [3]
and Huang et al. [4]. Qin [5] and Harris et al. [6] provide
comprehensive reviews of MV based and other performance
assessment tools.
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Fig. 1. Insufficiency of available Minimum Variance based benchmarks
for performance assessment of systems under decentralized control

Though useful, the available MV benchmark shows limi-
tations, when applied to systems under (block) decentralized
or multi-loop control. The conventional approaches towards
performance assessment of such controllers include:

• Loop by loop analysis
• Use of the MV benchmark for full multivariate con-

trollers

The MV benchmark fails to take the process interactions
into account, when applied in a loop-wise fashion; whereas,
the full multivariable benchmark assumes more degrees of
freedom for performance improvement than are available in
the actual controller (see Figure 1). In either case, the bound
on the achievable output variance is loose and can be overly
optimistic. In many cases, it may lead the practicing engi-
neer to search for the non-existent decentralized controller
to match the performance of the MV benchmark. The gap
between the benchmark and achievable performance further
increases when the decentralized controller is restricted to
be of reduced complexity, e.g. proportional integral deriv-
ative (PID) controller [7], [8]. Thus, a decentralized MV
benchmark is required, which takes the controller structure
into account. These arguments are further illustrated using
the following motivating example taken from Huang and
Shah [9]:

Example 1: Consider y(t) = G(q−1)u(t) +
Gw(q−1)a(t), where q−1 is the backshift operator,
a(t) is Gaussian noise with unit variance and

G =

⎡
⎢⎢⎣

q−2

1−0.4q−1
2q−2

1−0.5q−1

q−2

1−0.1q−1
q−2

1−0.2q−1

⎤
⎥⎥⎦

Gw =

[
2

1−0.9q−1
1

1−0.3q−1

1
1−0.4q−1

2
1−0.5q−1

]
(1)

The objective is to assess the performance of a multi-loop
controller of the form kI, k = 0.17. Under closed loop con-
trol, E[tr(y(t)y(t)T ] = 23.65, where E[.] is the expectation
operator. The MV benchmark for full multivariate controller
is 14.5, but no k or a dynamic compensator could be found
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that matches this benchmark closely. As shown later, the
given controller structure inherently limits the achievable
performance and the controller 0.17I is nearly optimal for
the given controller structure.

An explicit solution to the decentralized MV control
problem has great theoretical and practical value, but is
equally difficult to realize. The primary difficulty lies in
enforcing the decentralized structure on the controller, as
this yields a non-convex optimization problem [10]. Yuz
and Goodwin [11] have suggested a two-step approach
for determining an upper bound on the achievable output
variance using a decentralized controller:

• A decentralized controller is designed based on only
the diagonal elements of the system.

• The controller is redesigned to compensate for the
ignored off-diagonal elements using an approximation
of the sensitivity function.

Though the initial design based on the diagonal ele-
ments accommodates the controller structure, the controller
redesign step requires some care and numerical search.
Further, the utility of the method in its present form is
limited to step disturbances only. A similar numerical search
based method has been proposed by Ko and Edgar [8].

In this paper, we take a fundamentally different approach
to derive an approximate solution for the decentralized MV
control problem. The controller structure is posed as a
constraint on the optimization problem and a suboptimal
solution is obtained by explicitly solving the linear matrix
equations defining the stationary point. As a special case, we
present an upper bound on the achievable output variance
for systems under multi-loop PID control. The results
presented here do not require controller redesign [11] or
numerical search [8]; however the simplicity of the result
comes at the cost of sub-optimality. These results are useful
for various purposes:

1) Performance assessment of existing decentralized or
multi-loop controllers.

2) Selection of input-output pairings based on achievable
decentralized performance.

3) Providing a good initial guess for non-convex para-
meter search methods.

II. PRELIMINARIES

Consider the system shown in Figure 2, where K(q−1) =
diag(Kii(q−1)), i = 1, · · · , M . The objective is to find a
controller such that the variance of y(t) or E[tr(y(t)y(t)T ]
is minimized. We make the following simplifying assump-
tions:

1) G(q−1) and Gw(q−1) are stable, causal transfer
matrices, contain no zeros outside the unit circle and
are square having dimensions n × n.

2) a(t) is a random noise sequence with unit variance
and y(t) is stationary up to its second moment.

The assumption that G(q−1) and Gw(q−1) are square is
made for notational simplicity and can easily be relaxed for

yu

a

- D-1

Gw

K11
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K22…
.

G

Fig. 2. Closed loop system with separation of interactor matrix

generalization purposes. When Gw contains zeros outside
the unit circle, these zeros can be factored through an
all pass factor factorization without affecting the noise
spectrum [9]. Further, there is no loss of generality in
assuming that the system is affected by noise having unit
variance. When E[a(t)aT (t)] �= I, the noise model can
always be scaled to satisfy this assumption.

A. Interactor Matrices

Before proceeding with the main development, we intro-
duce the useful concept of interactor matrices.

Definition 1: For every n1×n2 proper, rational polyno-
mial transfer matrix G(q−1), there is a unique, non-singular,
n1×n1 lower triangular polynomial matrix D(q), such that
|D(q)| = qr and [12]

lim
q−1→0

D(q)G(q−1) = lim
q−1→0

G̃(q−1) = G̃(0) (2)

where G̃(0) is a full rank constant matrix [9]. The matrix
D(q) is called the interactor matrix.

For univariate systems, the MV benchmark primarily
depends on the time delay associated with G(q−1) [1].
This time delay can also be interpreted as the non-invertible
part of the transfer matrix, as its inverse is non-causal.
Similarly, the multivariate system G(q−1) can be factored
as G(q−1) = D−1(q−1)G̃(q−1) such that G̃(q−1) and
D−1(q−1) contain the invertible and non-invertible parts
of G(q−1) respectively. The interactor matrix generalizes
the time delay for univariate systems to the multivariate
case [9] and can be written as,

D(q) = D0(q)qd + D1(q)qd−1 + · · ·Dd−1(q)q

where d denotes the order of the interactor matrix.
When D(q) assumes the form D(q) = qdI, D(q) is

called a simple interactor matrix. Similarly, an interactor
matrix with the form D(q) = diag(qd1 , · · · , qdn) is called
a diagonal interactor matrix. D(q) with no special structure
is called a general interactor matrix.

The lower triangular form is only one of the possible
realizations of the interactor matrices. In general, the inter-
actor matrix can also be upper triangular or a full matrix.
One realization of the interactor matrix that is of immediate
interest to us, is when D(q) is a unitary transfer matrix.
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Definition 2: For a rational proper, transfer matrix
G(q−1) having full rank, let the D(q) satisfying (2) also
satisfies DT (q−1)D(q) = I. Then, D(q) is called a unitary
interactor matrix [13].

The unitary interactor matrix is non-unique, but two
unitary interactor matrices are related by transformation
through a unitary matrix [9]. The unitary interactor matrix
is useful for deriving the MV control law, which is inde-
pendent of the order in which outputs are stacked in the
output vector or the importance of individual outputs [9].

B. Problem Formulation

We formulate the optimization problem next that can
be solved to obtain the solution to the decentralized MV
control problem. In the remaining discussion, the arguments
q−1 and t are dropped for ease of representation. Let the
system shown in Figure 2 be expressed as

y = D−1G̃u + Gwa

or D1y = q−dG̃u + Ḡwa (3)

where D1 = q−dD, Ḡw = D1Gw and d is the order or
number of non-zero impulse response matrices of D. Using
Diophantine’s identity,

Ḡw = F̄ + q−dR̄

For regulatory control, u = −Ky and

D1y = −q−dG̃Ky + (F̄ + q−dR̄)a (4)

By rearranging (3),

a = Ḡ−1
w (D1y − q−dG̃u) (5)

Using (5) and simple algebraic manipulations, (4) can be
simplified as,

D1y = F̄a + q−d(R̄G−1
w − F̄Ḡ−1

w G̃K)y (6)

Since E[tr(y(t)y(t)T )] = E[tr(D1y(t)y(t)T DT
1 )] [9,

Lemma 4.3.1] and F̄ is controller invariant, the second term
in (6) can be set to zero to obtain the full multivariable MV
control law. When the controller has structural constraints,
this may not be possible since K has fewer degrees of
freedom than the full multivariable controller.

To simplify notation in the remaining discussion, we
define

A = R̄G−1
w , B = F̄Ḡ−1

w G̃, L = A − BK (7)

Then using (6) and (7),

y = (D1 − q−dL)−1F̄a

= (I − q−dDT
1 L)−1DT

1 F̄a

When the spectral radius of DT
1 L(ejω) is less than 1 for

all ω = [0 , 2π] or the closed loop system is stable, the
series expansion of (I − q−dDT

1 L)−1 is convergent. Thus,

y =

( ∞∑
i=0

(q−dDT
1 L)i

)
DT

1 F̄a (8)

As a(t) is a random noise sequence, E[a(t)aT (t+ τ)] =
0 for all τ �= 0 and D1 is a unitary transfer matrix,

E[tr(yyT )] = ‖DT
1 F̄‖2

2 + ‖DT
1 LDT

1 F̄‖2
2 + · · ·

= ‖F̄‖2
2 + ‖LDT

1 F̄‖2
2 + · · · (9)

The higher order terms in (9) are non-linear in K. Since
‖F̄‖2

2 is controller invariant, an approximate solution to the
decentralized MV control problem is obtained by ignoring
the higher order terms in (9) and finding the stationary point
of ‖LDT

1 F̄‖2
2 with respect to the block diagonal K. The

resulting equations using this approach require an iterative
procedure to be solved and in order to avoid this difficulty,
we use the following result:

Lemma 1: Let X,Y be stable transfer matrices. Then,

‖XY‖2
2 ≤ ‖X‖2

2‖Y‖2
∞

The proof of Lemma 1 is simple and is omitted for the
sake of brevity. Using (9) and Lemma 1,

E[tr(yyT )] ≤ ‖F‖2
2 + ‖L‖2

2‖F̄‖2
∞ + · · · (10)

With this simplification, the decentralized controller that
provides an overestimate of the achievable output variance
is obtained by solving the following optimization problem

min
K

‖L‖2
2

subject to (1nn − J) ◦ K = 0 (11)

where 1nn is a matrix of ones and ◦ is the Hadamard
product. J is a matrix representing the controller structure
and is defined as

Jij =

{
1 if Kij �= 0
0 if Kij = 0

(12)

The equality constraint in the optimization problem (11)
accommodates the controller structure by ensuring that the
off-block diagonal terms of the controller are zero.

III. DECENTRALIZED MV BENCHMARK

In this section, an explicit solution to the optimization
problem given by (11) is provided. For these purposes, we
present the following result,

Lemma 2: Let Y = XT MX − NT X, where X is a
block diagonal matrix. Then, the stationary point of tr(Y)
with respect to X is found by solving

J ◦ [
(M + MT )

]
X = J ◦ N (13)

where J represents the block diagonal structure of X and
is defined similar to (12).

Proof: With X = diag(X11, · · ·XMM ),

tr(Y) =
M∑
i=1

tr(XT
iiMiiXii) − tr(Nii)

The stationary point of tr(Y) with respect to Xii is found
by solving [14]

∂[tr(Y)]
∂Xii

=
(
Mii + MT

ii

)
Xii − Nii = 0

The result follows by considering the last expression for
all i, i = 1, · · · ,M together.
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A. Simple interactor matrix

If the system has a simple interactor matrix, i.e. D =
q−dI, then A = RG−1

w , B = FG−1
w G̃, where Gw =

F + q−dR. Using Parseval’s equality,

‖L‖2
2 =

∞∑
i=0

tr(LT
i Li) (14)

where L = A − BK as before and Li is the ith impulse
response matrix of L defined as

Li = Ai −
i∑

j=0

i−j∑
k=0

BjKk (15)

Then, the decentralized MV control law is obtained by
finding the stationary point of ‖L‖2

2 with respect to Kk,
k = 1, 2 . . .∞ subject to the structural constraint on the
controller. For numerical reasons, however, it is necessary to
approximate A,B and K by finite impulse response models
having order N . Using Lemma 2, the stationary point is
found by solving,

∂‖L‖2
2

∂Kk
= J ◦

[
N−k∑
i=0

BT
i Li+k

]
= 0 (16)

To simplify notation in the further treatment, we define
the following linear operator,

Definition 3: Let X,Y be defined such that dim(X) =
dim(Yij) for all i, j. Then, the block-wise Kronecker-
Hadamard product is defined as,

X � Y =

⎡
⎢⎣

X ◦ Y11 X ◦ Y12 · · ·
X ◦ Y21 X ◦ Y22 · · ·

...
...

...

⎤
⎥⎦

A rearrangement of (16) gives,[
J � (

BT
HBH

)]
KC = J � (

BT
HAC

)
(17)

where AC and KC contain the impulse response matrices
of A and K respectively, and BH is a lower block triangular
Hankel matrix. The AC , KC and BH are defined as

KC =
[

KT
0 KT

1 KT
2 · · ·KT

N

]T

AC =
[

AT
0 AT

1 AT
2 · · ·KT

N

]T

BH =

⎡
⎢⎢⎢⎣

B0 0 0 · · · 0
B1 B0 0 · · · 0

...
...

. . .
. . .

...
BN BN−1 · · · · · · B0

⎤
⎥⎥⎥⎦ (18)

When
[
J � (

BT
HBH

)]
is invertible, the suboptimal de-

centralized MV controller is given as,

KC =
[
J � (

BT
HBH

)]−1 [
J � (

BT
HAC

)]
(19)

Remark 1: Since J always has full rank, rank deficiency
of BT

HBH makes
[
J � (

BT
HBH

)]
singular. This happens

when some of Bi’s are singular. For a system with simple
interactor matrix, B = FG−1

w G̃ has no infinite zeros and
thus Bi is nonsingular for all i.
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Fig. 3. Comparison of ηmv (o) and ηmvd (+) for Example 2. The
controller structure limits the achievable output performance.

The earlier developments in this section are summarized
by the following result:

Proposition 1: Consider the system (3) with a simple
interactor matrix. Define A = RG−1

w , B = FG−1
w G̃. Then,

a suboptimal solution to finding a decentralized controller
that minimizes E[tr(yyT )] is given by (19).

Let ymvd be the output of the closed loop system
under the optimal decentralized MV control law. Then, a
decentralized performance index is defined as

ηmvd =
E[tr(ymvdyT

mvd)]
E[tr(yyT )]

(20)

The full multivariable performance index ηmv is defined
similarly, where ηmv ≤ ηmvd. Ideally, 0 ≤ ηmvd ≤ 1,
but when evaluated based on the suboptimal decentralized
controller given by (19), ηmvd may exceed 1. In any
case, a value of ηmvd close to zero always indicates poor
performance.

In certain special cases, the decentralized controller given
by (19) is optimal. For example, when J = 1nn, (19)
reduces to KC = B−1

H AC . It is straightforward to verify
that in this case, KC corresponds to the optimal full
multivariable MV control law of Huang and Shah [9].
Similarly, when Gw = I or the system is affected by white
noise, F = I and R = 0. Then A = 0, which implies that
KC = 0, which is optimal.

Remark 2: When F commutes with K, use of Lemma 1
to simplify (9) to (10) is not required. In this case, better
estimates of ηmvd are obtained by redefining A = RG−1

w F,
B = FG−1

w G̃F and using Proposition 1 as before.
Example 2: We revisit Example 1. The variation of ηmv

and ηmvd with k is shown in Figure 3. For k = 0.17,
ηmvd ≈ 0.82, which is large compared to ηmv ≈ 0.6. This
justifies our earlier remark that the controller structure puts
an inherent limitation on the achievable performance for
this system and no significant performance improvement is
possible by controller re-tuning.

For decentralized control, it is essential to choose the
input-output pairings before the actual controller can be
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designed. For pairing selection based on achievable perfor-
mance, Chen and McAvoy [15] simplified the resulting non-
convex optimization problem by approximating the dynamic
controller with a proportional controller. When the output
performance is of primary interest, Proposition 1 can also be
used for input-output pairing selection. For the system (1),
the upper bound on achievable output performance for
pairing on the diagonal and off-diagonal elements is 18.99
and 16.02 respectively. Based on this criterion, the latter
alternative may be preferred.

B. General interactor matrix

When the system has a general interactor matrix, B
is non-invertible due to presence of infinite zeros (see
Remark 1) and some modifications are required. Let DB

be the unitary interaction matrix of B and B̃ = DBB.
Then

‖L‖2
2 = ‖A − D−1

B B̃K‖2
2

= ‖DBA − B̃K‖2
2 = ‖Ã − B̃K‖2

2

The suboptimal decentralized controller is obtained by
following the same steps as before:

KC =
[
J �

(
B̃T

HB̃H

)]−1 [
J �

(
B̃T

HÃC

)]
(21)

where ÃC , B̃H are defined similar to (18). The earlier de-
velopments in this section are summarized by the following
result:

Proposition 2: Consider the system (3) with a general in-
teractor matrix. Define Ã = DBR̄G−1

w , B̃ = DBF̄Ḡ−1
w G̃,

where DB is the unitary interactor matrix of F̄Ḡ−1
w G̃.

Then, a suboptimal solution to finding a decentralized
controller that minimizes E[tr(yyT )] is given by (21).

In the previous example, controller structure posed sig-
nificant limitations on the achievable performance. This is
not always the case, as shown below:

Example 3: Consider the following system adapted from
Huang and Shah [9],

G =

⎡
⎢⎢⎣

q−1

1−0.4q−1
K12q−2

1−0.1q−1

0.3q−1

1−0.1q−1
q−2

1−0.8q−1

⎤
⎥⎥⎦

Gw =

[
1

1−0.5q−1
−0.6

1−0.5q−1

0.5
1−0.5q−1

1
1−0.5q−1

]

where K12 controls the extent of interaction among the
variables. The objective is to compare the performance of
the following controller for different values of K12.

K =

[
0.5−0.2q−1

1−0.5q−1 0

0 0.25−0.2q−1

(1−0.5q−1)(1+0.5q−1)

]

The ηmvd, ηmv for various K12 are shown in Figure 4.
For each value of K12, there exists a decentralized con-
troller that closely matches the performance of the optimal
full multivariable controller. Hence, the controller structure

0 1 2 3 4 5 6 7 8 9 10
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

K
12

η m
vd

,η
m

v

Fig. 4. Comparison of ηmv (o) and ηmvd (+) for Example 3. The
controller structure poses no serious limitations.

poses no serious limitation on the achievable performance
for this system. For a system with large interactions,
when the individual loops of the decentralized controller
are designed independently, the closed loop performance
can deviate significantly from the design performance [16,
Ch.10]. This example illustrates that large interactions,
however, do not necessarily limit the achievable perfor-
mance of decentralized controllers as compared to the full
multivariable controllers.

IV. ACHIEVABLE PID PERFORMANCE

The suboptimal decentralized controller is expressed in
terms of its impulse response matrices. By restricting the
order of the controller or setting Kk = 0 for all k > p,
controllers with reduced complexity can be obtained. In this
section, this approach is used to find an overestimate on
achievable output variance using multi-loop PID controllers,
which are expressed as,

KPID =
1
∆

2∑
i=0

Ciq
−i =

1
∆

C

where ∆ = 1 − q−1 and C has the same block diagonal
structure as the controller K. By considering 1/∆ as a
part of G̃ and minimizing ‖L‖2

2 with respect to C, an
overestimate of the achievable PID performance can be
derived. Then Propositions 1 and 2 can be used by limiting
the column dimensions of AC,BH to 3n, where n is the
dimension of the system G. To ensure that the assumption
of stability of G is satisfied, the integrator can be moved
just inside the unit circle without affecting the result sig-
nificantly. In general, controllers with reduced complexity
having order p can be obtained by limiting the column
dimensions of AC and BH to pn.

Example 4: Consider the following system taken from
Ko and Edgar [7],

y =
q−6

1 − 0.8q−1
u

+
1 − 0.2q−1

(1 − 0.3q−1)(1 + 0.4q−1)(1 − 0.5q−1)
a
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Clearly the results presented earlier also hold for SISO
systems. Based on these results, the achievable output
variances under MV and PI control are 1.11 showing that
the controller structure poses no limitations. However, when
the disturbance model contains an additional integrator, the
achievable output variances under MV and PI control are
11.95 and 17.86 respectively. The achievable performances
differ by more than 50% revealing the effect of controller
structure on achievable performance. Note that for both
these cases, the achievable PI performance is close to the
results obtained by Ko and Edgar [7], who used numerical
search.

V. DISCUSSION

The results presented in this paper require that the sys-
tem’s model be fully known. This can be very demanding
for online performance monitoring of industrial systems,
especially in presence of changing operating conditions. We
point out that even when the system’s model is available, the
exact solution to the general decentralized control problem
is unknown. Sourlas and Manousiothakis [10] suggested
that the optimal decentralized controller can possibly have
infinite order. Under some minor assumptions, Blondel
and Tsitsiklis [17] showed that the problem of system
stabilization using fixed order decentralized controller is
NP-hard. Thus, the estimation of exact or reasonably ap-
proximate decentralized MV benchmark, directly from data,
is extremely difficult and possibly impossible.

The requirement of knowledge of the system’s model
can be partially relaxed by estimating Gw using regular
operating data, as suggested by Ko and Edgar [7], [8].
Example 3 shows that the controller structure does not
always limit the achievable performance. The identification
of G should only be undertaken if large differences are
seen between the actual output variance and MV bench-
mark for full multivariable controllers. Recently, Agrawal
and Lakshminarayan [18] showed that by identifying the
complementary sensitivity function from step test data,
the MV benchmark for SISO systems under PID control
can be calculated approximately using numerical search.
The applicability of this promising approach to multi-loop
control will be evaluated in future.

An apparent limitation of this work is that the suboptimal
controller is expressed in terms of its impulse response
matrices, whose determination is computationally inexpen-
sive. Starting from a low value, the controller order can be
gradually increased until convergence, but convergence can
be extremely slow in some cases. This difficulty is overcome
by recognizing that

[
J � (

BT
HBH

)]
is a sparse Toeplitz

matrix and using available computationally efficient meth-
ods (e.g., Brent et al. [19]) for its inversion.

The decentralized MV control law is based on an approxi-
mation of the closed loop expression and thus stability is not
guaranteed. A possible approach to overcome this limitation
is to reduce the gain of the decentralized controller until

stability is achieved, however, such an approach increases
the sub-optimality of the results.

VI. CONCLUSIONS

For performance assessment purposes, ignoring the con-
troller structure can lead to incorrect conclusions regard-
ing significant performance improvement through controller
tuning. In this paper, we presented an approximate solution
to the decentralized minimum variance control problem,
which provides an overestimate of the achievable output
variance without numerical search. The proposed method
can easily handle the case of multi-loop PID controllers.
The primary limitation of the proposed method is that
complete knowledge of the system’s model is required and
some recommendations are provided to partially overcome
this limitation.
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