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Abstract— In this paper, a new learning law for one-
dimensional topology preserving neural networks is presented
in which the output weights of the neural network converge
to a set that produces a predefined winning neuron coordinate
probability distribution, when the probability density function
of the input signal is unknown and not necessarily uniform.
The learning algorithm also produces an orientation preserv-
ing homeomorphic function from the known neural coordinate
domain to the unknown input signal space, which maps a
predefined neural coordinate probability density function into
the unknown probability density function of the input signal.
The convergence properties of the proposed learning algorithm
are analyzed using the ODE approach and verified by a
simulation study.

I. INTRODUCTION

Identification of homeomorphic functions is a frequently
encountered problem in many signal processing, pattern
recognition, self-organizing and computational topology ap-
plications. The existence of a homeomorphism u : XR →
UR implies the topological equivalence between the domain
XR and co-domain UR. For example, [1] developed a
nonlinear constrained optimization algorithm that enables
to track large nonlinear deformations while preserving the
topology for medical images. A coordinate chart on a
manifold also utilizes a homeomorphic function from an
open subset of the manifold to the local coordinates [2].
Homeomorphic manifold learning is also useful in many
other computer vision applications such as image contour
trackers and pattern recognition schemes [3].

Spatial discretizations of homeomorphisms are often
called topology preserving feature maps [4], [5]. In his
classical paper, Kohonen [4] introduced a class of self-
organizing adaptive systems that are capable of forming
one- or two-dimensional feature maps of the input signal
domain. Kohonen formulated an adaptive learning law that
allows a set of N real vectors ÛZ = {û1, û2, . . . , ûN},
where ûi ∈ R

n is the vector associated with the ith node
of a neural network, to form an ordered image of a random
input variable u ∈ UR ⊂ R

n, which has a stationary
probability density function fU (u). The network is trained
from a sequence of samples of the input variable u(t). The
ordered image formed after convergence is commonly de-
noted as a topology preserving feature map, as it preserves
some notion of the proximity of the input signal features.
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Kohonen also noted the importance that the probability
distribution of the winning neuron, which is induced by the
neural network’s feature map, should be equiprobable, i.e.,
all neurons in the network should have an equal chance
of becoming the winner. Kohonen’s algorithm is closely
related to vector quantization in information theory [6].

The convergence properties of Kohonen’s self-organizing
algorithm have been investigated by several researchers [4],
[7], [8], [9], [10]. For the one-dimensional case, Kohonen
himself [4] presented a proof of the ordering properties of
his algorithm and showed that it converges when the input
signal probability distribution, fU (u), is uniform. Ritter and
Schulten [7] derived a Fokker-Planck equation to describe
the learning process in the vicinity of equilibrium maps and
investigated the stability of an equilibrium map for the case
of a uniformly distributed input. The convergence of one-
dimensional Kohonen algorithms was investigated in [9],
[10] when the input signal was not uniform, and an a.s.
convergence was proven when the input distribution admits
a log-concave density.

In this paper, a new one-dimensional topology-preserving
neural network is presented, whose output weights converge
to a set that produces a predefined feature map probability
distribution, when the probability density function (pdf)
of the input signal is unknown but globally Lipschitz
continuous. Moreover, the learning algorithm will produce
the required orientation preserving homeomorphic function
from a known domain to the unknown support of the input
signal’s pdf, which maps a predefined pdf into the unknown
pdf of the input signal. A related algorithm, which used a
conscience mechanism to achieve the equiprobability of the
feature map was presented in [11], [12].

Several benefits result from our new approach. First,
our new mathematical formulation of the optimal codebook
vector enables us to control the feature map’s probability
distribution according to an arbitrarily assigned target prob-
ability. The feature map’s probability does not necessarily
have to be equiprobable [4] (unconditional information-
theoretic entropy maximization). Second, the network is
able to deal with non-uniform input distributions requiring
only a mild global Lipschitz continuity condition and with-
out employing a conscience mechanism in the learning law.
Third, the orientation of the topology preserving map can be
controlled, i.e., we can specify that the topology preserving
map either be orientation preserving, orientation reversing
map or simply a topology preserving map. Finally, the
network produces a smooth homeomorphism û(x), which
spatially discretizes to the topology preserving map.
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II. PROBLEM STATEMENT

A. An optimal quantizer with a target feature map proba-
bility distribution

Suppose that we can collect time samples of the sta-
tionary random sequence u : Z+ → UR, where UR =
[umin, umax] ⊂ R is a finite interval and u is randomly
distributed in UR with a probability density function (pdf)
fU : UR → R+. The support of fU (u) is assumed to be
connected and finite. u(t) denotes a sample of the random
sequence u at time index t.

We now introduce a fictitious random sequence x : Z+ →
XR ⊂ R, where XR = [xmin, xmax] is a known finite
interval and assume that u is a homeomorphic function of
x, i.e., there exists a continuous map u : XR → UR, which
has a continuous inverse, such that the time samples of the
input signal, u(t), are given by u(t) = u(x(t)). Moreover,
the probability density function of x, fX : XR → R+, is
given by

fX(x) =
∣∣∂u
∂x

∣∣ fU (u(x)) for all x ∈ XR. (1)

Notice that the homeomorphism

u : XR → UR,

which will be subsequently referred to as the reference
or target map, induces the pdf fX(x) from the unknown
pdf fU (u) via Eq. (1), and is uniquely specified up to
its orientation (e.g., it is either orientation preserving or
orientation reversing), if both pdfs are specified.

Let us define a set of N output levels of a scalar quantizer,
which are labeled by the set of ordered indexes XZ. Without
loss of generality, we assume that XZ = {1, · · · , N} and
that XR = [1/2, N + 1/2], so that XZ ⊂ XR. We also
define the quantizer codebook [6] as the set of N output
levels

UZ = {uγ ∈ R | γ ∈ XZ} , (2)

and a codebook vector

ū = [u1 · · · uN ]T ∈ R
N , (3)

where uγ is the quantizer output level with the index γ and
the quantizer’s feature map [4] f(u, ū) : UR × R

N → XZ

f(u, ū) = arg

{
min
γ∈XZ

|u − uγ |

}
. (4)

Notice that f(u(t), ū) returns the coordinate of the output
level that most closely approximates the current sample
u(t).

The quantizer takes as its input the time sequence u(t)
and produces as its output a time sequence of winning
coordinates w : Z+ → XZ, given by

w(t) = w(u(t)) = f(u(t), ū), (5)

and a time sequence of estimates of u(t) given by uw :
Z+ → R. Notice that the sequence w(t) is a random
sequence with a discrete probability distribution that is

induced by the pdf fU (u) and the feature map f(u, ū). The
feature map probability distribution vector is defined by

p = [p1, · · · pN ]T ∈ R
N
+ , (6)

where pγ = Pr[f(u, ū) = γ] ≥ 0 is the probability
associated with the quantizer coordinate γ and

∑N
γ=1 pγ =

1. Moreover, pγ provides a measure of how frequently the
γ coordinate in the quantizer is being used.

In many cases it is desired that all quantizer coordinates
be used with the same level of frequency, i.e., pγ = 1/N .
This is often referred to as the feature map f(u) in Eq. (5)
being equiprobable [4]. However, in some cases we may not
desire equiprobability and instead prefer that some specific
coordinates be used more frequently than others.

We now define the desired probability distribution of the
winning coordinate w(t) in Eq. (5) by

po = [po
1, · · · p

o
N ]T ∈ R

N
+ ,

N∑
γ=1

po
γ = 1, (7)

and assume that this can be achieved by a codebook with
size N . po will also be referred to as the target feature map
probability distribution. po must be produced by a quantizer
that has an optimal codebook

U
o
Z

=
{
uo

γ = u(γ) | γ ∈ XZ

}
, (8)

and an optimal codebook vector

uo = [uo
1 · · · uo

N ]T = [u(1) · · · u(N)]T ∈ R
N , (9)

where u : XR → UR is a homeomorphism. We will also
impose an additional constraint that the optimal codebook
vector uo in Eq. (8) satisfies

po
γ =

∫ u
o
γ
+u

o

γ+1

2

u
o

γ−1
+uo

γ

2

fU (u)du ∀ γ ∈ XZ (10)

= Pr[f(u, uo) = γ] ∀ γ ∈ XZ,

where the po
γ’s form the prescribed target feature map

probability distribution given in Eq. (7), uo
w(u) ≡ uf(u,uo),

uo
0 ≡ 2umin − uo

1, and uo
N+1 ≡ 2umax − uo

N .
Remark II-A.1: For a given codebook vector, the quan-

tizer achieves minimum variance distortion [6] by the near-
est neighbor winning rule in Eq. (5). In general, the centroid
condition [6] is not satisfied by our optimal codebook vector
because of the constraint on the feature map probability
distribution in Eq. (10). By requiring the codebook vector
to satisfy Eq. (9), we guarantee that the feature map
f(u, uo) in Eq. (5) is topology preserving [4]. Requiring
the codebook vector to simultaneously satisfy Eqs. (9) and
(10) with po

γ = 1/N for all γ ∈ XZ guarantees that f(u, uo)
is a topology preserving and equiprobable feature map.
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B. Self-organizing neural networks that converge to optimal
quantizers

Consider the problem of obtaining an optimal quantizer,
as described in section II-A, except that now we assume
that the pdf fU : UR → R+ of the random input sequence
u : Z+ → UR is unknown (including the support UR of
fU (u)). Given a prescribed target feature map probability
distribution po in Eq. (7), we want to determine the optimal
quantizer codebook vector uo described by Eqs. (9)-(10) in
an iterative manner, by sampling the random sequence u(t).

Define a neural network whose output weight vector is
given by

û(t) = [û1(t) · · · ûN (t)]T ∈ R
N , (11)

where ûγ : Z+ → R is the weight associated with the
coordinate γ ∈ XZ. û(t) can be thought of as the estimate
at time t of the optimal codebook vector uo in Eq. (9). The
neural network feature map f(·, ·) : UR × R

N → XZ is
given by Eq. (4), only that the codebook vector ū in Eq.
(3) is replaced by the time varying vector weight û(t). We
also define the neural network winning coordinate

w(t) = w(u(t)) = arg

{
min
γ∈XZ

|u(t) − ûγ(t)|

}
.

Notice that w(t) is the coordinate of the output level that
most closely approximates the current sample u(t).

w(t) is a random sequence with a non-stationary discrete
feature map probability distribution that is given by

pγ =

∫
UR

δγ,w(u)fU (u)du, ∀γ ∈ XZ (12)

where

δγ,w(u) =

{
1 if γ = w(u)
0 if γ �= w(u)

(13)

and the codebook vector û(t) is kept constant in the
expectation in Eq. (12).

In the remaining part of this paper we will describe an
adaptive learning law for the neural network weight vector
û(t) that achieves limt→∞ û(t) → uo, where uo is the
optimal quantizer codebook vector satisfying Eqs. (9)-(10).

III. INTEGRALLY DISTRIBUTED NEURAL NETWORKS

In this section we describe a learning law for estimating
the optimal codebook vector uo in Eq. (9) indirectly, using
an integrally distributed neural network. This network also
generates a function û(·, ·) : XR × Z+ → R, which
is smooth in x and converges to a homeomorphism that
satisfies limt→∞ û(γ, t) = uo

γ for all γ ∈ XZ.
Assume that the homeomorphism u(x) in Eq. (8) can be

obtained by solving an integral equation of the first kind
with a known smooth scalar symmetric Hilbert-Schmidt
kernel K(·, ·) : XR × X

e
R
→ R+ that has a finite support,

and an unknown influence function c(·) : XR → R that
satisfies

u(x) =

∫
Xe

R

K(x, λ)c(λ)dλ, (14)

where x ∈ XR and λ ∈ X
e
R

, with XR ⊂ X
e
R

, so that Eq.
(14) is well defined at the boundaries of XR. In all of the
simulations shown in this paper we use a truncated Gaussian
with a finite support

K(x, λ) =

{
1

σ
√

2π
e−

1

2σ2 (x−λ)2 if |x − λ| ≤ σ

0 if |x − λ| > σ
, (15)

where σ > 3σ > 0.
Furthermore, we assume that u(x) can be obtained using

a kernel that is contained by a finite number of basis

u(x) =
∑

ν∈Xe

Z

K(x, ν) co
ν , (16)

where

X
e
Z

= {−(m − 1),−(m − 2), · · · , N + m} (17)

for some integer 0 < m << N . The elements of the vector

co = [co
−(m−1), . . . , c

o
N+m]T ∈ R

N+2m

are unknown optimal influence coefficients that satisfy uo
γ =

u(γ) for all γ ∈ XZ, and are estimated using an integrally
distributed neural network, which will be subsequently
described.

The purpose of the distributed neural network is to
estimate the optimal influence coefficients co

ν in Eq. (16),
through a self-organizing learning process.

We now define the integrally distributed neural network,
which consists of N +2m neurons. Neurons in the network
are indexed using the coefficient set X

e
Z

in Eq. (17).
Neurons ν ∈ X

e
Z
\ XZ are edge neurons. Each neuron

ν ∈ X
e
Z

has an associate influence coefficient estimate
ĉν(t) ∈ R, which is an estimate of the optimal influence
coefficient estimate co

ν in Eq. (16).
The outputs of the network are:

1) The function û(·, ·) : XR × Z+ → R generated by

û(x, t) =
∑

ν∈Xe

Z

K(x, ν) ĉν(t) . (18)

2) The output weight vector û(t) defined in Eq. (11),
whose elements ûγ(t)’s are generated by:

ûγ(t) = û(γ, t), ∀ γ ∈ XZ. (19)

3) The winning neuron coordinate 1

w(t) = arg{min
γ∈XZ

|u(t) − ûγ(t)|}. (20)

In addition, the network recursively computes, for each
non-edge neuron γ ∈ XZ, an estimate of the probability pγ

in Eq. (12) of that neuron becoming a winning neuron. The
set of these probability estimates, {p̂γ(t)|γ ∈ XZ}, will be
referred to as the network’s feature map probability distri-
bution estimate. Notice that edge neurons cannot become

1We will overload the notation w(·) by simultaneously defining: w(t) :
Z+ → XZ, w(u) : UR → XZ and w(x) : XR → XZ, noticing that
w(t) = w(u(t)) = w(u(x(t))). The functions will be distinguished from
each other by the arguments used.
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winning neurons and hence only have influence coefficient
estimates.

The feature map probability distribution estimate is com-
puted as follows:

p̂γ(t + 1) = p̂γ(t) + αp(t)(−p̂γ(t) + δγ,w(t)) ∀γ ∈ XZ,

p̂γ(0) ≥ 0 ∀γ ∈ XZ,

N∑
γ=1

p̂γ(0) = 1, (21)

where w(t) is the winning neuron coordinate given by Eq.
(20), δγ,w(t) is a Kronecker delta, as defined in Eq. (13),
and αp(t) is the standard stochastic approximation adaptive
gain, which has the following properties

αp(t) > 0,

∞∑
t=1

αp(t) = ∞,

∞∑
t=1

α2
p(t) < ∞. (22)

It is easy to show that, under the initial condition in Eq.
(21), the update law for p̂γ guarantees that, for all t > 0

p̂γ(t) ≥ 0 ∀γ ∈ XZ,

N∑
γ=1

p̂γ(t) = 1,

Moreover, it can also be shown that, under the assumption
that pγ in Eq. (12) becomes stationary, limt→∞ p̂γ(t) =
pγ . Notice that pγ becomes stationary if the influence
coefficient estimates ĉγ’s become stationary.

To make our equations more compact, we define the
neural network influence coefficient estimate vector and
feature map probability estimate vector by

ĉ(t) = [ĉ−(m−1)(t), . . . , ĉN+m(t)]T ∈ R
N+2m (23)

p̂(t) = [p̂1(t), . . . , p̂N (t)]T ∈ R
N . (24)

Notice that Eq. (19) can now be written as

û(t) = K ĉ(t),

where K ∈ R
N×R

N+2m is the kernel matrix, with element
Ki,j = K(i, j−m), which must be rank N . This integrally
distributed formulation of û was initially proposed in [13],
in the context of repetitive and learning control algorithms
for robot manipulators.

For the function û(x, t) in Eq. (18) to converge to an
orientation preserving homeomorphism, it is necessary that

lim
t→∞

û′(x, t) = lim
t→∞

∂

∂x
û(x, t) > 0

(Negative for orientation reversing).
We now define the vector of partial derivatives of the

function û(x, t) evaluated at the coordinates γ ∈ XZ by

û′(t) =
[

û′(1, t) · · · û′(N, t)
]T

= K ′ĉ(t), (25)

where K ′ ∈ R
N × R

N+2m is the matrix of partial deriva-
tives of the kernel function, whose (i, j) element is given
by K ′

i,j = ∂K(x, λ)/∂x|x=i,λ=j−m. We also define the
column vectors kγ ∈ R

N+2m and k′
γ ∈ R

N+2m which will
respectively be the transpose of the γ-th rows of K and K ′:

KT = [k1, · · · , kN ], K ′T = [k′
1, · · · , k′

N ]. (26)

Therefore, for γ ∈ XZ,

ûγ(t) = kT
γ ĉ(t) and

∂û(x, t)

∂x

∣∣∣
x=γ

= û′
γ(t) = k′T

γ ĉ(t).

A. Influence coefficient learning algorithm

The influence coefficient estimate ĉ(t) defined in Eq.
(23) is updated recursively at each sampling time t,
after the winning neuron coordinate w(t) in Eq. (20) is
determined.

The update law has two terms:

ĉ(t + 1) = ĉ(t) + α(t)[−δc̄1(t) − δĉ2(t)], (27)

where α(t) > 0 is another stochastic approximation gain.
Let β3 be the ratio between αp(t) and α(t):

β3 = αp(t)/α(t). (28)

The two terms δc̄1(t) and δĉ1(t) in Eq (27) will now be
defined.

Feature map probability distribution tracking law: The
structure of this term depends on whether the weight of
winning neuron, ûw(t)(t), is an extremum value of ÛZ(t) or
not. Define the two neuron coordinates with the extremum
values of the set ÛZ(t) respectively by

∂x = arg

{
max
γ∈XZ

ûγ

}
and ∂x = arg

{
min
γ∈XZ

ûγ

}
.

• If w(t) is not an extremum neuron coordinate, i.e.,
w(t) ∈ XZ\{∂x, ∂x}:

δc̄1(t) = β1

Qw(t)

po
w(t)

k′
w(t) sign(ûw(t)), (29)

where β1 > 0, k′
w(t) is the transpose of the winning neuron

coordinate row of the matrix of kernel partial derivatives,
as defined in Eq. (26), and sign(·) and Qw(t) are defined
by

sign(y) =

⎧⎨⎩
1 if y > 0
0 if y = 0
−1 if y < 0

,

Qw(t) = 1 + φ(p̂w(t) − po
w(t)), (30)

where φ > 0. po
w(t) > 0 and p̂w(t) ≥ 0 are the target

and estimated values of the feature map probability at the
current winning neuron coordinate, respectively given by
Eqs. (7) and (21).

• If w(t) is an extremum neuron coordinate, i.e., w(t) ∈
{∂x, ∂x}, then

δc̄1(t) = β1

Qw(t)

po
w(t)

δĉX
1 (t), (31)

δĉX
1 (t) =

[
kw(t) + kC(w(t))

2

]
sign

[
ûC(w(t)) − ûw(t)

]
,
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where C(w(t)) is the neuron coordinate with the closest
value to ûw(t)(t), i.e.,

C(w(t)) = arg

{
min

γ∈XZ\w(t)
|ûw(t)(t) − ûγ(t)|

}
.

Orientation preserving update law:

δĉ2(t) = β2 k
′

w(t)

(∣∣û′

w(t)

∣∣ − û
′

w(t)

) [
sign(û′

w(t)(t)) − 1
]

po
w(t)

,

(32)

where β2 > 0, û′
w(t) = û′(w(t), t) is defined in Eq (25),

and po
w(t) > 0 is the target feature map probability at the

current winning neuron coordinate, as defined in Eq. (7). A
slight modification of the learning law δĉ2(t) in Eq. (32)
will result in an orientation reversing update law.

To analyze the convergence properties of the learning
algorithm given by Eqs. (21)-(32), we use Ljung’s
Ordinary Differential Equation (ODE) approach [14].
We only consider the convergence analysis for unknown
uniform input pdfs due to page limitations. For the case
of nonuniform input pdfs, their global Lipschitz continuity
condition is exploited in the convergence analysis. We now
introduce our main result.

Theorem III-A.1: Given a compatible set of prescribed
feature map target probability distribution defined by Eq.
(7), and a measurable input stationary random sequence
u(t) ∈ UR ⊂ R with an unknown uniform pdf fU (u),
the output weight vector û(t) of an integrally distributed
neural network converges to an optimal codebook vector
uo satisfying Eqs. (9)-(10).

Sketch of Proof: Let’s define the lower bounded func-
tional

V (ĉ, p̂) = V1(ĉ) + V2(ĉ) + V
obv(p̂)

V1(ĉ) = β1

∫
XR

φ

2
(pw(x) − po

w(x))
2

po
w(x)fU (uo

w(x))
fX(x)dx

+ β1

∫
XR

pw(x)

po
w(x)fU (uo

w(x))
fX(x)dx

V2(ĉ) =
β2

2

∫
XR

(∣∣û′

w(x)

∣∣ − û′

w(x)

)2

po
w(x)

fX(x)dx

V
obv(p̂) =

β1

2

∫
XR

φp̃2
w(x)

po
w(x)fU (uo

w(x))
fX(x)dx,

(33)

where the winning coordinate w(x) is given by Eq. (20). po
γ

is the predefined feature map target probability distribution,
as defined in Eq. (7). β1 > 0, β2 > 0 and φ > 0 are
the relative weighting gains. p̃w is the wth entry of the
probability estimation error vector defined by the formula
p̃ = p − p̂.

Remark III-A.2: V1(ĉ) achieves its minimum if and only
if p = po for the case of uniform input pdfs. V2(ĉ) will
be zero if and only if the function û(x) in Eq. (18) is
orientation preserving. V obv(p̂) will be zero if and only if
p̂ = p.

Applying the ODE approach to Eqs. (20), (21), (27)-(32)
we obtain

˙̂c(τ) = −∆c̄1(τ) − ∆ĉ2(τ)

= −∆ĉ1(τ) − ∆ĉ2(τ) + ∆c̃1(τ)

∆c̄1(τ) =

∫
XR

δc̄1(x, τ)fX(x)dx

∆ĉ2(τ) =

∫
XR

δĉ2(x, τ)fX(x)dx,

(34)

where the influence coefficient ĉ(τ) and p̂(τ) are kept
constant in the expectation. ∆c̃1(τ) ≡ ∆ĉ1(τ) − ∆c̄1(τ),
while ∆ĉ1(τ) is defined by

∆ĉ1(τ) =

∫
XR

δĉ1(x, τ)fX(x)dx,

where δĉ1(x, τ) is defined by the same formula as δc̄1(x, τ),
which is defined in Eqs.(29)-(31), except for having p̂w(t)

replaced by pw(t). Differentiating each of the terms in Eq.
(33) with respect to time τ , and noticing that ∂w(x)/∂ĉ = 0
by Lemma A.1 in [12], we can show that

V̇1(ĉ) =

(
∂V1(ĉ)

∂ĉ

)T

˙̂c(τ) = ∆ĉ
T
1 (τ) ˙̂c(τ)

V̇2(ĉ) =

(
∂V2(ĉ)

∂ĉ

)T

˙̂c(τ) = ∆ĉ
T
2 (τ) ˙̂c(τ) (35)

V̇
obv(p̂) = −∆c̃

T
1 (τ)(∆ĉ1(τ) + ∆ĉ2(τ)) − p̃

T (τ)Mp̃(τ).

The lengthy derivation of Eq. (35) will be omitted in this
paper due to the page limitations. From Eq. (34) and (35),

V̇ (ĉ, p̂) = −|∆ĉ1(τ) + ∆ĉ2(τ)|2 − p̃
T (τ)Mp̃(τ) ≤ 0, (36)

where M ∈ R
N×N 
 0 for some β3 and φ. Integrating

Eq. (36) with respect to time, for all T ≥ 0,

V (ĉ, p̂)(T ) − V (ĉ, p̂)(0) =

∫ T

0

V̇ (ĉ, p̂)(τ)dτ ≤ 0. (37)

This implies that V (ĉ, p̂)(T ) ≤ V (ĉ, p̂)(0), and V1(ĉ) and
V2(ĉ) are bounded. Eq. (37) implies that V (ĉ, p̂) ∈ L∞,
p̃(τ) ∈ L2 and (∆ĉ1(τ)+∆ĉ2(τ)) ∈ L2. Notice that p̃(τ) ∈
L∞ and ∆ĉ1 ∈ L∞. Utilizing Schwartz’s inequality we
obtain from Eq. (33) and Eq. (34)

|∆ĉ2(τ)| ≤ 2
√

2β2

{∫
XR

k′T
w(x)k

′
w(x)dx

}1/2

V
1/2
2 (ĉ)(τ).

(38)

Thus, ∆ĉ2 ∈ L∞ since V2(ĉ) ∈ L∞, and

˙̂c = −(∆ĉ1(τ) + ∆ĉ2(τ)) + ∆c̃1(τ) ∈ L2 ∩ L∞. (39)

From Eq. (35), we obtain

∂∆ĉ1

∂τ
=

(
∂2V1(ĉ)

∂ĉ2

)T

˙̂c(τ),
∂∆ĉ2

∂τ
=

(
∂2V2(ĉ)

∂ĉ2

)T

˙̂c(τ).

(40)

Since ˙̂c,
(

∂2V1(ĉ)
∂ĉ2

)
and

(
∂2V2(ĉ)

∂ĉ2

)
can be shown to be

bounded, by differentiating ˙̂c(τ) in Eq. (34) with respect

1347



to time, we can conclude that ¨̂c(τ) ∈ L∞ and V̈ (τ) ∈
L∞. Thus, V̇ (τ) is uniformly continuous in time τ and
by Barbalat’s lemma [15], limτ→∞ V̇ (τ) = 0, which
implies that limτ→∞ p̃(τ) = limτ→∞(p − p̂(τ)) = 0, and
limτ→∞ −|∆ĉ1(τ) + ∆ĉ2(τ)|2 = 0. By the structure of
δĉ1(τ) and δĉ2(τ) in Eqs.(29)-(31) and Eq. (32) respec-
tively, |∆ĉ1(τ) + ∆ĉ2(τ)| = 0 guarantees that ∆ĉ1(τ) = 0
and ∆ĉ2(τ) = 0 simultaneously. For some φ, it can be
shown that ∆ĉ1(τ) = 0 along with ∆ĉ2(τ) = 0 implies that
the discrete feature map probability pγ in Eq. (12) is equal
to the target feature map probability po

γ in Eq. (7) for all
γ ∈ XZ, i.e., p = po. ∆ĉ2(τ) = 0 along with ∆ĉ1(τ) = 0
implies that ûγ is monotonically non-decreasing and û(x)
is orientation preserving. A simple modification of V2(ĉ)
would provide an orientation reversing map control. The
map û(x) having a co-domain restricted to the range space
of û(x), û(x) : XR → R(û(XR)) is continuous (and
smooth) by construction in Eq. (18) and it is orientation
preserving when V2(ĉ) = 0. Then there exists a û−1(x)
that is also continuous, which proves that û(x) is a home-
omorphism. Thus, Theorem III-A.1 follows. ♦.

IV. SIMULATION RESULTS

In this section, simulation results for the two different
nonuniform input pdfs, and two different (uniform and
nonuniform) target probability distributions, are presented.
We compare the performance of the integrally distributed
learning algorithm presented in this paper against the well-
known Kohonen self-organizing learning algorithm [4] to
achieve an equiprobable target probability po. In the simu-
lations, the integrally distributed neural network had a total
of N = 38 output weights and N + 2m = 42 neurons (i.e.,
4 neurons were edged neurons, as defined in Eq. (17)). A
value of σ = 1.5 was used in the kernel given by Eq. (15).
The Kohonen neural network had a total of 38 neurons and
output weights. A kernel given by Eq. (15) with σ = 2 was
used in this learning law to update the output weights of
neighboring neurons to the winning neuron [4]. The initial
conditions of the output weights ûγ(0)’s in both algorithms
were set to the same values. For the integrally distributed
learning algorithm, the Kullback-Leibler (KL) measure of
cross-entropy [16] was used to evaluate the convergence
of the feature map probability estimate p̂ to a given target
probability po. The KL measure between p̂ and po is given
by the formula

D(p̂, po) =
N∑

γ=1

p̂γ ln
p̂γ

po
γ

, (41)

where D(p̂, po) ≥ 0, and D(p̂, po) vanishes if and only if
p̂ = po.

A. Gaussian input distribution

Fig. 1 shows the output weights ûγ’s for the two algo-
rithms after 20,000 iterations, for a Gaussian input proba-
bility density function u ∼ N [0, 32] and an equiprobability
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Fig. 1. Results for a random input signal with a Gaussian distribution u ∼
N (0, σ2), where σ = 3 (20,000 iterations) for the uniform target proba-
bility po. Analytically calculated ideal output weights (diamonds[♦]), the
Kohonen’s law (circles[◦]), and the integrally distributed law (pluses[+]).

target feature map distribution po = 1/N . It is clear from
Fig. 1 that the integrally distributed network converges to
the analytically calculated ideal output weights, while those
in Kohonen’s algorithm converge to an affine approxima-
tion. Fig. 2(a) depicts the estimated feature map probability
p̂γ of the algorithm proposed, as computed in Eq. (21),
which shows p ≈ p̂ converges to the equiprobability of po.
Fig. 2(b) shows the Root Mean Square (RMS) error for
the neuron output weights by comparing the analytically
calculated ideal output weights with the output weights
ûγ’s produced by each algorithm. This plot shows that
the proposed algorithm has better steady-state performance
than Kohonen’s law. Fig. 2(b) also shows that the proposed
algorithm has a faster convergence rate than the Kohonen’s
law. The final RMS error value for the Gaussian input
pdf after 20,000 iterations are shown in Table. I. Fig. 2(c)
shows the Kullback-Leibler’s measure shown in Eq. (41)
between p̂ and po v.s. iteration time, showing that p̂ → po

as t → ∞. The output weights ûγ and the estimated
homeomorphic map û(x) with the winner determination
borders are illustrated in Fig. 3 for the same Gaussian input
along with the equiprobable target feature map distribution.

B. Nonuniform target feature map probability po

We now choose a truncated Gaussian-like nonuniform
target feature map probability distribution po, as depicted in
Fig. 5(a), for the same Gaussian input distribution N [0, 32].
Fig. 4 shows the converged output weights ûγ’s after 20,000
iterations. Fig. 5 depicts (a) the values of p̂ as compared to
po after 20,000 iterations, (b) the RMS error between the
ideal output weights and the converged output weights from
the integrally distributed law, and (c) the convergence rate of
p̂ to po, as illustrated by the KL measure. As shown in Fig.
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Fig. 2. A Gaussian input distribution: (a) The discrete feature map
probability estimate {p̂γ} (solid bars), and the uniform target feature map
probability distribution

{
po

γ

}
(balls). (b) The RMS error between uo

γ ’s and
ûγ ’s of the integrally distributed law (solid line) and the Kohonen’s law
(dotted line). (c) The Kullback-Leibler’s measure of cross-entropy between
p̂ and po v.s. iteration time.
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Fig. 3. A Gaussian input distribution: the homeomorphic map û(x) (solid
line), the output weights ûγ (circles) and winner determination boarders
(dotted lines) in UR and XR after 20,000 iterations.

5, the feature map probability estimate p̂ converges to the
nonuniform target probability distribution po successfully.
The final RMS error value from Fig. 5(b) for the new
algorithm is shown in Table I.

C. Cubic input distribution

In order to evaluate the performance of the proposed
algorithm along with the Kohonen’s law under a harsh input
pdf condition, we consider a cubic distribution u = 20v3,
where v is uniformly distributed v ∼ U [0, 1], as shown in
Fig. 6. Fig. 6 shows that this input pdf has a large Lipschitz
constant. Fig. 7 demonstrates that the proposed algorithm’s
output weights ûγ’s converge to the ideal output weights
distribution, while the output weights ûγ’s produced by the
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Fig. 4. Results for a random input signal with a Gaussian input distribution
for the Gaussian-like nonuniform target probability po (20,000 iterations).
Analytically calculated ideal output weights (diamonds[♦]). The output
weights of the integrally distributed law (pluses[+]).

TABLE I

ROOT MEAN SQUARE (RMS) ERROR OF THE OUTPUT WEIGHTS.

Input distribution: Gaussian Gaussian Cubic
Target probability po: uniform nonuniform uniform
Number of iterations: 20,000 20,000 20,000

Integrally distributed law 0.4630 0.6792 0.5630
Kohonen’s algorithm 1.8990 n/a 8.9086

Kohonen’s law fail to do so, after 20,000 iterations. Fig. 8
shows (a) the converged values of p̂ in Eq. (21) as compared
to po, (b) the evolution of the RMS error between uo

γ and
ûγ for both algorithms, and (c) the convergence rate of p̂
to po for the proposed algorithm, as illustrated by the KL
measure. The final RMS error values after 20,000 iterations
for both algorithms for the cubic input pdf are shown in
Table I.

V. CONCLUSIONS

A new one-dimensional integrally distributed neural net-
work was presented. The adaptive network converges to a
set that produces a predefined target probability po for un-
known and possibly nonuniform random input signals under
mild conditions. The network also produces the orientation
preserving homeomorphism that maps a predefined pdf into
the unknown pdf of the input signal. The convergence
properties of the learning algorithm was analyzed by using
the ODE approach [14]. Solid simulation results verified the
convergence of our new algorithm.
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