2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

WeCO06.1

0-7803-9098-9/05/$25.00 ©2005 AACC

Stagewise Newton, differential dynamic programming, and
neighboring optimum control for neural-network learning

Eiji Mizutani and Stuart E. Dreyfus

Abstract— The theory of optimal control is applied to multi-
stage (i.e., multiple-layered) neural-network (NN) learning for
developing efficient second-order algorithms, expressed in NN
notation. In particular, we compare differential dynamic pro-
gramming, neighboring optimum control, and stagewise New-
ton methods. Understanding their strengths and weaknesses
would prove useful in pursuit of an effective intermediate step
between the steepest descent and the Newton directions, arising
in supervised NN-learning as well as reinforcement learning
with function approximators.

I. INTRODUCTION

We consider a discrete N-stage optimal-control prob-
lem: The state of a discrete dynamic system at stage s
(s=1,...,N) is described by an mg-length state vector y*;
a transition of the system to the next state y**' (at stage s+
1) is determined by our choice of an ng-length control
vector 6° through the following relation (with a fixed initial
state y;..):

ySTi=fs+1(ys 6%), (with y! =yiu)
yz+1 :f/:+l(ys’ 98);

where f(.) denotes some nonlinear transition function.
The performance index (i.e., the objective function) to be
minimized is given by J = Zi\:l L3(y®, 6°%) + E(y"), where
L°(.) is the cost at stage s and F(.) the terminal cost.
For our convenience, we define a scalar-valued discrete
Hamiltonian function H*° below:

(D

<~ k=1,...,mst1,

Ho(y®,0°, AH1) = Lo(y*, 0°) + A1 271 (y2, 09),

2

where A® is an mg-vector Lagrange multiplier (or costate)
sequence for adjoining the equality constraints in Eq. (1) to
J, which leads to the following Lagrangian function J:

jzzi\/:—ll {Ls(ys, 0°) + )\s+1T[fs+1(ys, 0°) — ys+1]} + E(y™M).
3)
The first-order necessary conditions for obtaining an opti-
mal control 6°* (that achieves a stationary value of J) are
given by the discrete Euler-Lagrange (EL) equations below:

with the two-point boundary conditions below for these
three difference equations in Eq. (4):

(a) Initial state conditions : y' = yi (given),

(b) Adjoint boundary conditions : AN = aay—EN.

&)
This is a nonlinear two-point boundary value problem for
three unknowns: y, 6, and A. One may solve the posed
problem in a stagewise manner by exploiting its sequential
structure (e.g., sweep methods; see Section II-C) rather than
solve it as one large set of nonlinear simultaneous algebraic
equations; for more details, refer to any standard textbook
on the subject (e.g., [3]).

Another line of attack is to use dynamic program-
ming (DP) [1]; we define the optimal value func-
tion V°(y®) as the “minimum value of the performance
index, starting at state y?® at stage s (i.e., minimum cost-
to-go):” V="M SN eyt gty 4 E(yN). By Bell-
man’s principle of optimality, any point on the optimal path
can be an initial point for the remaining path; so, we obtain
the following DP recurrence relation:

V3 (y*) =mings[L*(y3 6%) + VT (y* 1) =mings Q* (y36°), (6)

where V?(.) is a function of the current state y°
alone, and the scalar-valued Q-function is defined as
Q% (y*,0°) = L*(y*,0°) + V=T (y*t1). Our objective is:
Given the initial condition yl, determine the control se-
quence {0°;s=1,---,N — 1} that attains V'. In control
engineering terminology, DP yields the optimal nonlinear
feedback control (see Chap.VIII in [1]); yet, the DP algo-
rithm becomes infeasible when m (the number of states at
each stage s) is large due to the curse of dimensionality;
i.e., the exponential growth of algorithmic complexity with
respect to ms. In the literature of neural networks, such
an infeasible DP algorithm was described by Saratchan-
dran [23] to optimize multilayer perceptrons (MLPs).

II. STAGEWISE SECOND-ORDER ALGORITHMS IN
OPTIMAL CONTROL

oHe oLt s et Tyent To alleviate the curse of dimensionality, one may use

(a) Adjoint equations : A° = Gos = Fgs + [Gye| A7, the (first-order) gradient algorithms: In optimal control,
] s s T T

(b) Optimality conditions : 0 = %Igg _ gtlgls agetl} At — 9] 7 Kelley and Bryson developed 'such a method based (.)n. a

general form of backpropagation (BP), known as adjoint

(c) System equations : yst1 = £5+1(ys 6%),

“4)
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equations (4-a); see [16], [6] and references therein. Here,
the state space is limited to a vicinity of a given nominal (or
initial) state trajectory; so, the posed DP problem reduces
to a subproblem, in which we may deal with the second-
order approximation of the performance index or the DP
value function [see Eq. (8)] as well as system equations.
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In modern trust-region methods [5], [17], [18], the posed
subproblem corresponds to the trust-region subproblem,
wherein we aim at finding the best compromise between
the steepest descent step and the Newton step. In optimal
control, the second-order steps can be obtained by differ-
ential dynamic programming (DDP) [13], [12], [14] and
stagewise Newton methods [22], [15], [8]. Furthermore,
when the nominal solution (trajectory) is chosen to satisfy
the first-order necessary conditions [i.e., EL-equations (4)],
the methods are related to so-called neighboring optimum
control (see [2]; Chaps. 6 & 7 [3]; Chap. 8 [4]), also
known as guidance schemes [11], [7], wherein the asso-
ciated subproblem is called Jacobi’s Accessory Minimum
Problem (AMP) for the second variation [see Eq. (21)].

A. Differential dynamic programming (DDP)

The following summary of DDP derivations and results
is based on [13]. Given a nominal “non-optimal” control
sequence 6° [that does not satisfy Eq. (4-b)], DDP seeks
an increment of control 60° for 0° =0° +350° to improve
the performance based on the second-order considerations.
To this end, DDP considers AV?®, the variation of V*°, due
to the variation of state vector dy® resulting from the control

increment 06°. The DP recurrence relation in Eq. (6) gives

AV*(8y®) = minggs [AL®(3y®,56°) + AV (5y* )]
= minggs AQ*(dy*,60%),
(7

where AV?(.) is a function of the variation of the cur-
rent state Jy° alone under the assumption that AV®(.)
is optimized with respect to 6% ---,60N~'. Apply-
ing the second-order truncated Taylor series expan-
sion to the terms: AL®(6y*®,d0%), AVT!'(sy*T!), and
syt = Afit(8y*,56°) yields the DP subproblem. Sub-
stituting them into Eq. (7) and then neglecting the terms of
order higher than two in dy°® and 660° yields:

T 71 [0y*
AV (ay?) = mind | (L) (22 ]
56° Y 9 56°

As B [sys ®)
+3 [oy=" 56" +osty,
2 [ ] BST cs ||s6°

where H is the Hamiltonian function in Eq. (2) with A°
replaced by X° %' (25 ); this partial derivative of the value
function with respect to the state plays the role of the
Lagrange multiplier (see p. 195 in [1]). Also in Eq. (8), v**1
is a scalar; (88;’:) is an m,-length column vector; (%’j) an
ns-vector; and three matrices A°, B®, and C° are given

. . s+1
below with an m.y1 x mey1 matrix Es+1 %< [%}
1
_ 62QS _ By5+1 +1 ay5+l 82H5
AL = 5| =[] m [+ [ ©
mgsXmg T
s | 0%Q0 | _ jay=tt +1 oyt 02H*®
3,./ B L}ysaos} - [ oy* E® 806° + oy =907 |’ (10)
msXng ~—— —

mMsXmMgyq Ms41XNs Mg XnNg

s [e20° 7 8y5+1T a1 [oyt
f/—[aosws}—[ 005} E o0= | T 895895 - (D

NgXnNg

In Eq. (10), the last mg-by-ns matrix can be computed by

a2H: | _ [ o°L* Ys+1[o2f5ti(y®.0°)
[ay;ja&j} - [ay;ja&j} Z )‘ [ oy; o0; }’ (12)

fori=1,...,ms; j=1,...,ns. Obvious modifications apply to
obtaining the last matrix in Eqgs. (9) and (11).

Now, from Eq. (8), an ns-vector control increment, called
the DDP step, at stage s is obtained as

5050 =13 — K, dy®, with { up=-¢ [8135}
DDPiC BS

(13)

Here, the resulting control can be interpreted as two distinct
control actions:

« open-loop feedforward control u. [that m1n1m1zes H?
with respect to 8° while holding y* (and X ) fixed] to
satisfy the optimality condition in Eq. (4-b); plus

« linear state feedback control with an mg¢-by-mg Kjpp,
a stage/time-varying feedback gain matrix [with varia-
tions of y (and thus A) assumed to deviate the control
from u3.] to obtain a further improved control.

Substituting the obtained control increment 60, in Eq. (13)
into Eq. (8) and comparing to the truncated Taylor expan-
sion of AV*(5y*)= (g‘}{;")T(SyS-s— Loy Essy® +v° yields:

B [—32“/5 } = A5 —B°C B = A° - B°K,, (14)

oy s oy s

S def (oVs\ _ (oHS _ -1 (9HS
2 () = () -mre (3F)

mgX1 T (15)
s s+1|"~s41
= (‘gsL/S>+ ngf} A +Bug,
v =t - 4 (2 ) o™ (). (16)

Boundary conditions at terminal stage N are given by:

NV |eE . EN _|_2*E | _ x| oN =0
\ ; (’;yN ) \ , ayNayN (’;yN ) .

my X1 mpy Xmy
a7

The scalar quantity v!' gives a predicted reduction of the
approximate performance index (or local quadratic model)
resulting from the DDP-step in Eq.(13). In trust-region
methods [5], [17], [18], the ratio of the predicted reduction
to the actual one is used to control a trust-region radius.

B. Neighboring optimum control (NOC)

The following summary of NOC derivations and results
is based on [7] (see also Sec. 3.8 in [10]). NOC consid-
ers perturbations on the optimal state trajectory, starting
with a nominal (initially “optimal”) control sequence 6°*
(as @° ); NOC seeks the optimal control increment 66°

for ° = 0° + §0°" to improve the performance given a

next now

state increment dy°. NOC is derivable from Eq. (6): The
optimality condition, Eq. (4-b), indicates

O oL Oys+1 T s Sdef ovE
0=99" — (695>+ [595} AsHl (A = [6},3}), (18)
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which corresponds to Eq.(3.4), p. 367 in [7]. Since the
optimal control 8°* may change due to perturbations in y?®,
the objective is to get an ns—bi—ms neighboring optimum

‘?90;: } , the rate of change in

feedback gain matrix K° def

optimal control 0°* associated with a perturbation in the
nominal value of y*®, for the following linear feedback
guidance rule on the state deviation from nominal optimum
state [compare the control in Eq. (13)]:

b0 = [B\oy" = 0" = Koy (19)

Take partial derivatives of Eq. (18) with respect to y?,
obtaining

0— o (BQ&)T_ eerT i(aQé)T_"_ BQQS
T oys\960°) ~ loys] 06°\06° dys06°
—_—_———— N ———

Mg XNg mgXNg NnsXNg

MmsXng
[:H T
:[a ‘} C® + B° ,
Ays] ~~ ~—
N——nsXns MmgXng
msXng

which yields the desired guidance scheme in Eq. (19)
with K*=C* 'B*". To obtain recursions for A°
on the nominal optimum path, take partial derivatives
of V¥=Q*=L*+V**! with respect to y* and use Eq. (18),

which yields BP-formula (4-a). To get recursions for
%ﬁ, differentiate BP-formula (4-a) with respect to y*:

T T
= AT E?gj 50" (g;g:)
= AS — KSTBsT — AS — ]35(:571B5T7
which corresponds to Eq.(3.8), p. 368 in [7]; see also
Eq. (14). The posed guidance control scheme could be
employed for re-training an optimized NN model when a
small change occurs in input data (or training data).

Dy=dy> (20)

C. Sweep methods for NOC with discrete Riccati equations
What follows in this and the next subsections is largely
attributable to ref. [4]. A discrete version of the AMP

subproblem for neighboring optimum control is given by
o2H=t!

2H "t 7 ryys
_ 9y*oyT  oy-ob"
min AJ~ 23V 5y 50T |
563 92 Hs+1 92 Hs+1 R
80°0ys  080°00° 96
T 2
+ 5oy [8},%514 sy™,
21
subject to
s+1 541
sy*t = [Bgys} Sy + [8595} 56°, dy' =0y =0. (22)

From Eq. (4), the associated discrete EL-equations (with
multiplier A*) become

[02H°] [o2H®] [oy+]"
SA® 0Y°oy°]  oy=00°] | 9¥* | sy*
o | =| [e2m2] [o2m:] [oy+]" s |,
00° 5y 3| 007567 | 90° |
5y5+1 §AS+1
xS+ T s+1
B B o
y 80
(23)

which is a two-point boundary value problem for dy?, A%,
and §0°. To solve this, use a sweep method with a linear
homogeneous relation between the costate and state vectors:

ox° = E*dy° (24)

(with an mg-by-ms matrix ES).

To obtain a recurrence relation, use Eq. (22) to write

SATHL = Estlgystl — g+l [agy*l] Sy* + ["520“} 505}, and

then substitute it in Eq. (23), yielding

[02H ] [02H]
PN PY=9y°|  |oy=00°
0 [o2H®] [02H?]
00°0ys|  |00°06°
bys+1'T .
e oy* | Bt ( |:8ystl:| Fysjl} ) oy 7
Py +1" o o6 56°
U
which can be written in the compact form below:
{5)&’] {AS Bs } dy*
= T,
0 B‘S C 505
(25)

56° =—C*"'B*" §y* = —K*5y*,
< 1 T
SAT= {AS —-B*C* 'B* }6yS:[AS — B*K*|5y*.

Here, 60° is the guidance control in Eq. (19), and
A°, B and C° are defined in Egs. (9), (10), and (11),
respectively, but A° for Eq. (12) is updated by BP-
formula (4-a) [rather than Eq. (15)], as described in Sec. II-
B. Comparing the last equation in Eq.(25) with Eq. (24)
yields the same recurrence relation as Eqs. (14) and (20):
E°=A°—B°C* 'B*", which is called the discrete Riccati
equation in this context (e.g., see Chap. 8 in [4]). The
Riccati matrix E°® is the “Schur complement matrix of
block C? in matrix QST o | associated with the dy* vari-
able,” resulting from block Gaussian elimination (i.e., block
Cholesky in this context due to symmetry; see Section III).

D. Discrete-time stagewise Newton Methods

In the literature, the earliest reference of discrete-time
stagewise Newton method is often cited as Pantoja 1984 [21]
or 1988 [22], but we have recently recognized that an LQ-
subproblem approach developed by Dreyfus 1966 [§] is a
discrete-time stagewise Newton method. A different (but
equivalent) LQ-subproblem approach was also described by
Dunn & Bertsekas later in [9] independently; see [20].

Stagewise Newton begins with a given nominal “non-
optimal” path, as DDP does in Section II-A. The linear
homogeneous relation between the costate and state vectors
in Eq. (24) is replaced by the inhomogeneous one:

oA° =E°dy° +h* (26)

(with an ms-by-ms matrix E®)

because the optimality condition, Eq. (4-b), is not satisfied;
hence, the left-hand-side zero vector 0 in Eq. (23) is

replaced by 6 (247). Stagewise Newton takes the next two
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actions simultaneously to deal with non-zero § ( 885) :

):0 for a

« feedforward control to make (aH )+6 (
nominal “optimum” path, and
« linear state feedback control [as the neighboring opti-
mum guidance control in Eq. (19)].
Hence, the stagewise Newton step is 4663 = uz — K°0y”,
where the open-loop feedforward control uy is given with
a gradient vector g°= (32°) = —§(217) (see Chap. 8 in [4]) as

06s 063

T
ul = —Cs_l{—a%’;:l} hstl_Cs gs
27)

= o g eraxen) o ),

One gets a recurrence relation of h®, following the same
procedures for Eq. (25): Write Eq. (26) as

5A5+1 — Es+16ys+1+hs+l

— s+1 Bf s 8f5+1 s s+1

= e { g oy Pl oo} o
where Eq. (22) is used, and then substitute it in Eq. (23),
where § ( 895) =— (%%) used on the left-hand side:

T
s _ Jloy*tt oyt ~s s pett sqs—L0H®
h? = {[ays} - [695 c* "B? h*tl —BoCe 00°

s T
- [@gyﬁ } het! 4 Bous, (28)

In summary, this version of stagewise Newton (see
pages 325-326 in [4]) employs Eq. (28) for h® as well
as ES=As—B°C® 'B®  =A*—B°K®, and the boundary
conditions are h™¥ =0 plus Eq. (17). Notice here that A® is
sequenced backward by BP-formula (4-a) separately from
h®, which is backpropagated by Eq. (28).

A slightly different version of stagewise Newton [8], [21],
[22], [9] defines a sensitivity vector ¢° = (3 ) h® + X%,
where V*° is a non-optimal value function (of course, h®*=0
on the optimal path); then, stagewise Newton uses ¢°™* in
Eq. (27) and ¢* (and ¢**!) in place of X (and XSH) in
Eq. (15) as well as BP-formula (4-a) for A° in Eq. (12);
hence, Eq. (28) is not needed. Starting with the boundary
condition in Eq. (17) plus ¢ =A™ at terminal stage N, se-
quence the discrete Riccati equation backward (to propagate
second derivatives) together with BP-formula (4-a) down
to the first stage 1. Then, the posed two-point boundary
problem reduces to an initial value problem. In the next
section, we apply this algorithm with ¢ to NN-learning.

The foregoing discussions lead to a conclusion that the
DDP step 403, in Eq. (13) is not the Newton step 4603
above (e.g., see [22]); that is, observe the following three
facts in the DDP procedure: First, X7 itself is updated &
backpropagated by Eq. (15) (wzthout using BP-formula (4-
a); see p.95 in [13]; p.189 in [12]) and employed all the
way for computing (227), A®, B®, and C°. Second, g° is
never computed exactly [g° # (22°)]. Third, K3, in Eq. (13)
and K°® above differ because Eq. (12) for matrices of
second derivatives makes a difference. Also, for this reason,
Eq.(3.118) on p.70 in [10] yields the DDP step, although it
is called the Newton-Raphson method.

III. APPLICATION TO MULTILAYER PERCEPTRON
(MLP) LEARNING

The aforementioned optimal-control algorithms are ap-
plicable to an N-stage multilayer perceptron (MLP) with
N —2 hidden layers and P, nodes at stage s (s=1,---,N;
the first input layer is stage 1). Here, an n,-length decision
vector 0° (s=1,---,N—1) corresponds to an ng-vector
of the parameters [ns_(l—i—P) s+1 including thresholds]
between layers s and s+1, and an mg-length state vector y*®
at stage s to an mg-vector of node outputs at layer s, where
ms =P, in on-line learning and ms= PsD in batch learning
when D training data involved. Using two-hidden-layer
MLP-learning (N =4), we compare two methods: stagewise
Newton and standard Newton with Cholesky factorization.
Both seek the same Newton step 06, (subscript N de-
notes Newton) by solving differently the Newton formula:
H 66x=—g, where both the gradient vector g and the
Hessian matrix H are stagewise-partitioned, as shown below

= SN = KR & R 603 g3
H=| 23 22 m2t |, 06k=|602|, g=|g2|. (29)
HY H2?2 HY 59& gl

A. Discrete-time stagewise Newton step

First, we show the step obtainable from the stagewise
Newton method 665 = uj, — K*sy*® below by three passes:
(1) forward to get node outputs; (2) backward to get
matrices A°, B, C°, and K° with Eq. (27) (using ¢°) to
get uy; and (3) forward with Eq. (22) to get dy° and §65:

50} = —C1” l[gzl}cz; (¢* =h° + %)
662 = —C?~ 1[33’ }c3 K26y?; (30)
3 _ 3! MTAL_ 353
063 = —C* | D¢t - Koy,
where we have
2
oy? = | 27 o6l
(3D

3 _ oy 2
dy° = [W} 565 + |:6y2:| 5y3
¢t =2t
After a little algebra, the stagewise Newton step obtained
here can be rewritten in terms of the original Hessian blocks
and the gradient vector in Eq. (29), as shown next:
59]}] — ,[I’_\IlJ _HL2E22 et ]*1 ’g\l;

562 = —H227'g2 — H22 'H12" 56, 32)

563 = —H33 g3 — 133 HLY 501 — H33 H2 562,

where hatted terms are given by:
§2 :gQ _H2,3H3,3*1 3’
l=~2

3_Hl,2H2,2 g2,
1,3773,3 1gy1,3T
—-H "H H ,

~1 1 1,3373,37 ¢
g =g —H "H”

ﬁ1,1:H1,1
- — 1 T
HY?2—H!2_HH>Y 'H23T
2,2 _ 1y2,2 2,3v73,3 py2,37
H*?2=H?*2_H?3H>® H?? ,
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because C', C?, and C? in Eq. (30) can be expressed as
3 =33,
CQ:ﬁz,z:H2,2_H2,3H3,3*1H2,3T,
01:ﬁ1,17ﬁ1,2ﬁ2,2*1f_\11,2f

Clearly, when the off-diagonal Hessian blocks H*? (s # t)

are all ignored, then 50,3’ in Eq. (32) reduces to the open-

loop feedforward control —H®® 'g® alone with no state
feedback guidance control.

B. Standard Newton step by block Cholesky factorization

Next, we show the standard Newton method: We
first need to form explicitly H and g both in such a
stagewise-partitioned format as shown in Eq. (29), where
for H, we need to form three off-diagonal blocks and
only the lower half of three diagonal blocks; totally, six
blocks H*!(1 < s < t < 3). Each block H** includes Hes-
sian elements with respect to pairs of one parameter at
stage s and another at stage t (see [19]). We then perform
block-Cholesky factorization on it; that is, H = LL”, where
L denotes the lower-triangular Cholesky factor below:

U
L= x U7 :
Y z U?
After that, the Newton step 0y can be obtained by solving

the two triangular systems: Lp=—g and p = L7 66y. This
algorithm can be summarized below:

Algorithm: A standard Newton method with block-Cholesky
factorization.
(0) Compute g and H in Eq. (29) (e.g., see [19]) to form
the Newton formula;

(1) Perform Cholesky on the first diagonal block:
H3? = UTU;3;

(2) Solve a triangular system (no need to invert Ugs):
X — H2’3U371;

(3) Solve a triangular system (without inverting Usj):
Y =H"U; Y

(4) Compute a Schur complement matrix V. (using X)
by: Vi, =H?»? - XX7;
(5) Perform Cholesky on Vo = U7 Us;
(6) Solve a triangular system (without inverting U,):
Z=[H"?-YX"|U;;
(7) Compute a Schur complement matrix V; (using Y
and Z) by: v; =H" - YYT - 27227 ;
(8) Perform Cholesky on V; = UT Uy;
(9) Solve a lower-triangular system Lp=—g by forward
substitution;
(10) Solve an upper-triangular system L7 §0y=p by back
substitution.

The desired full Newton step d0y [see Eq. (29)] is given
below as the solution to the two triangular systems:
6% = Uy 'py;
363 = Uy " (p2 — 2766}) ;
56% = U3 (ps — X766 — YT60}) ;

(33)

where we have
p1=-U;" [gh? - YU Tg?t — 2U; 7823
pz = -U;" (2% - XU; Tg??) = —U,; "%
ps = —UyTght.

It is easy to verify that this resulting Newton step is equiv-
alent to the stagewise Newton step in Eq. (30) [i.e., (32)],
but obtained differently. Stagewise Newton computes ex-
actly the first diagonal block H*?3 at Stage 3 [see H in
Eq. (29)]. At later subsequent stages, however, it calculates
no Hessian blocks explicitly; instead, it computes C*, which
is identical to the Schur complement matrix V,, because,
in this example, we have

Vo = H22-XXT=H22- (H23U;!)(H20U; )"
_ H2,2_H2,3H3,3—1H2,3T:C2
Vi = HUl-YYT-zzT-H-H!}2V,! 52" =C.

Note that the overall cost to get §@, with the posed block
Cholesky that factors an ns-by-ns block H®® per stage
is essentially the same as that with standard Cholesky
that factors one large n-by-n H [17]; hence, O(N?) due
to linear-equation solving in the parameter (i.e., decision)
space alone. By contrast, stagewise Newton computes the
Schur complement matrices C° in the parameter space, but
propagates the second-order information through the state
space; therefore, it works in O(N) to get the same Newton
step 6y without forming the Newton formula explicitly.

IV. DISCUSSION

Optimal-control problems can be viewed as NN-learning
problems involving only a single training datum (D=1);
yet, the associated Hessian H can be “full-rank” because

o the number of decision variables at each stage is not

larger than that of states;

« stage costs generate extra residuals (on top of the usual

terminal residuals).
In MLP-learning, those two situations correspond to the two
“uncommon” cases below:
e using weight-sharing and weight-pruning combined;
o presenting desired outputs at hidden nodes (i.e.,
hidden-node teaching; see [16]).
To alleviate rank-deficiency of H, one can

« add some (positive) diagonal matrix to C*® per stage in

stagewise Newton or DDP;

e prepare a training data set (yielding multiple terminal

residual sets).
The first idea is related to the Levenberg-Marquardt method
in nonlinear least squares sense [5], [17], [18], and the
second is ubiquitous in supervised MLP-learning. If on-line
second-order learning is adopted, then one must use the
first idea for MLP-learning: In the nonlinear least squares,
for instance, if we omit matrices of second derivatives
[e.g., Eq. (12)], then the method reduces to a so-called
incremental Gauss-Newton method [or stagewise version
of natural gradient learning (under certain assumptions)];
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here, the posed on-line stagewise implementation could be
done by updating Cholesky factor of approximate H (e.g.,
with a MATLAB command cholupdate) on each datum.
Batch-mode MLP-learning (with D data) conceptually
corresponds to optimal-control problems, in which a posed
MLP model is copied and concatenated D times; so, there
are totally m,=PsD states at each stage s, while the
number of decision parameters remains the same as ng
per stage because all the D MLPs (i.e., D copies of our
MLP model) share the same parameter set (i.e., weight-
sharing). In this setting, all the D data go through all those
juxtaposed D MLPs (MLP d; d = 1,---, D) simultaneously,
as if a single state vector (including all the D data)
goes to one large system. Therefore, stagewise Newton
must deal with very large matrices (e.g., an mg-by-mg
A°®) since ms=P;D can be arbitrarily large and N <« D
holds typically in MLP-learning; hence, stagewise Newton
progresses in O(D?). This situation can be illustrated with
a classification benchmark called the letter recognition
problem (available at the UCI machine learning repository),
which involves 16 inputs (features), 26 outputs (alphabets),
and 16,000 training data (i.e., D=16,000). This problem
can be attacked with a 16-70-50-26 MLP [18]; that is,
P = 16, Py :70, Ps :507 P4:26, TL1=1,190; n2=3,550; and
n3=1,326. Hence, ms = P, D become very large. In addition,
the node outputs of any single MLP d (for datum d) have
nothing to do with those of the other MLPs ¢ (# d)
because there is no connection between adjacent MLPs.
Consequently, in MLP batch-learning, stagewise Newton
may not work more efficiently than standard Newton that
forms and then solves the Newton formula in O(D), where
stagewise second-order BP [19] processes one datum after
another to obtain H; hence, ms = P, regardless of D.

V. CONCLUSION

We have described a class of second-order optimal con-
trol methods for NN-learning, and applied stagewise New-
ton to MLP-learning. The following results are highlighted:
(1) The Newton step consists of open-loop feedforward

control plus state feedback guidance control;

(2) No use of off-diagonal Hessian blocks results in open-
loop feedforward control alone;

(3) Differentiating BP-formula (4-a) with respect to the
state yields a discrete Riccati equation;

(4) Stagewise implementation leads to on-line second-
order learning (or approximate Newton methods);

(5) In batch-learning, stagewise Newton may not be more
efficient than standard Newton (with stagewise second-
order BP [19]).

The posed second-order optimal-control methods can be

applied to temporal-difference reinforcement learning [24]

with differentiable NN function approximators. In any con-

text, we recommend trust-region frameworks [5], [17],

[18] to pursue a good compromise between the steepest

descent step (by Kelley-Bryson gradient method [16]) and

a second-order step (e.g., by stagewise Newton). Further

analysis available in control engineering could prove useful
in developing more elaborate NN-learning algorithms.
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