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Abstract— A closed-loop stable interconnection of two linear
time-invariant finite-dimensional systems (one the plant, the
other the controller) is considered. We analyze the preservation
of the stability in the closed-loop interconnection whenever the
input and output signals of the controller are multiplied by
time-variant gains, one the reciprocal of the other, and in
addition the function that represents those gains belongs to
a specific class of functions. An important consequence of
that analysis (and the main motivation in considering the
aforementioned seemingly artificial robust stability setting)
is the new characterization for output static stabilizing con-
trollers we present in this communication. Moreover, a new
technical tool is also presented: The Principal Function of the
Closed-Loop Stable Interconnection. This function provides
with information relative to the property of being static, of a
stabilizing controller.

Index Terms— Linear systems theory, stability of linear
systems, output static stabilization, output static feedback,
robust stability.

I. INTRODUCTION

The analysis of the preservation of the stability in a
(stable) closed-loop interconnection of two linear time-
invariant finite-dimensional systems (one the plant, the
other the controller) is considered in this article. The
preservation of the stability is analyzed when the input
signal of the controller is multiplied by a time-variant gain,
and the output signal of the controller is multiplied by
another gain which is the reciprocal of the previous one. In
such analysis, the function representing the aforementioned
gains are assumed to belong to a given specific family of
functions.
The main motivation for such analysis, which is also of
independent interest in linear systems theory, is to obtain a
new characterization for output static stabilizing controllers
in terms of the above described robust stability setting.
The study presented in this article is intended to report
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an important part (which is self-contained and complete
by itself) of a more complete study that (already appears
in [11], and that) due to space limitation considerations
will be fully included in a future publication.
The new aforementioned characterization is intended to
be a first step in the process of developing of a new
approach or formulation to address the important problem
of output static stabilization. For a linear time-invariant
finite-dimensional system, this problem is the one of
finding out (efficiently) computable conditions for the
existence of a feedback matrix that renders the closed-
loop system stable; and also the problem of (efficiently)
synthesizing feedback matrices having such a property.
The problem of output static stabilization have been
extensively studied by several researchers (see e.g., [1],
[7], [8], [9], [10] and [12] and references therein) for the
last, roughly, three decades. The importance of such a
problem has been recognized by the control community:
it is a basic problem at the heart of linear systems theory,
and moreover it is (to our knowledge [2], [3], [4]) still open.

The stability analysis presented here will be in a general
input-output framework (see e.g., [5], [14]) where signals
belong to Lpe(0,+∞) , and where p is any natural number
(1 ≤ p < +∞ ) or +∞ (and, as usual, e is used to mean
extended Lp space).
In the present discussion we will consider the plant,
SP : Lpe(0,+∞) −→ Lpe(0,+∞) to be a linear
time-invariant finite-dimensional system and it will be
represented here by a strictly proper (real rational) transfer
function GP (s) or by any realization (CP , AP , BP ) ,
stabilizable and detectable, of GP .
The controller, SK : Lpe(0,+∞) −→ Lpe(0,+∞)
will be considered to be a linear time-invariant finite-
dimensional system and it will be represented by a
(proper real rational) transfer function GK(s) or by
any realization (CK , AK , BK ,DK) , stabilizable and
detectable, of GK .
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It will be assumed here that the following closed-loop
interconnection is Lp stable (see e.g., [5], [14]):

y1 = SP e1 , e1 = u1 − y2 (1)

y2 = SKe2 , e2 = u2 + y1

Define the following family of functions, parameterized by
η : 0 < η ≤ 1 ;
F(η)

def
= {θ ∈ L∞(0,+∞) : η ≤ θ(t) ≤ η−1 a.e.} .

We can explain now, the robust stability problem under
consideration. In the present discussion we will address the
issue of existence of
η , 0 < η ≤ 1 , and θ ∈ F(η) having the property that the
following closed-loop interconnection,

y1 = SP e1 , e1 = u1 − y2 (2)

y2 = θ−1SKθe2 , e2 = u2 + y1

is not Lp stable.

It is obvious to see that in case SK is an output
static stabilizing controller for SP then, ∀ η ∈ (0, 1] , and
∀ θ ∈ F(η) , the associated closed-loop interconnection (2)
will remain stable. Now, an important question is the
following one: Is the converse of the above assertion,
true? That is, if SK is a (stabilizing) controller with the
property that, ∀ η ∈ (0, 1] , and ∀ θ ∈ F(η) , the associated
closed-loop interconnection (2) remain stable, does the
above property imply that SK is a static (stabilizing)
controller?
In section 3 we prove that, in the case in which the plant SP

is a single-input single-output system, the above converse
statement holds. For the general case in which the plant SP

is a general multi-input multi-output system, we announce
that, a weaker but also positive result (from the point of
view of the output static stabilization problem) is valid
regarding that converse; but such treatment is not included
in the present article. (A complete, in detail, proof of such
an assertion can be found in [11] and, as aforementioned,
due to space limitations it will be included in a future
publication.) Section 2 is devoted to prove some technical
lemmas needed for the proof of the aforementioned result.
Also in that section, the main technical instrument used
in this work is introduced: The Principal Function of the
Closed-Loop Stable Interconnection (1). Summary and
concluding remarks are presented in section 4.

The notation used through the paper is standard. Just to
clarify; for a matrix A ∈ Cn×n , we denote by ρ{A } its
spectral radius.

II. THE PRINCIPAL FUNCTION OF THE CLOSED-LOOP

STABLE INTERCONNECTION

Lets define the following matrix value functions,

A(η)
def
=

(
A1 −η−1BP CK

ηBKCP AK

)
, 0 < η ≤ 1 ;

where A1 = (AP − BP DKCP ) .

We also define φ11 , φ12 , φ21 , φ22 in the following
manner:(

φ11(t) φ12(t)
φ21(t) φ22(t)

)
def
= etA(1) , t ∈ R+ ;

where the above matrix partition matches that of A(1) .

Remark 1: Since the above closed-loop interconnection
is (Lp ) stable and the realizations of GP , and GK are
stabilizable and detectable then, it follows (see e.g., [14],
[6]) that the matrix A(1) is Hurwitz. It is also illuminating
to observe that the following property is valid:
charA(1)(λ) = det(λI − A(1)) = det(λI − A(η)) =
charA(η)(λ) , 0 < η ≤ 1 .

The following result can be easily verify to hold.
Fact 1: The following identities hold:

etA(η) =

(
φ11(t) η−1φ12(t)
ηφ21(t) φ22(t)

)
, t ∈ R+ , 0 < η ≤ 1 ;

with φ11(t) = E(tA1, tAK ,−tBP CK , tBKCP ) ,
φ22(t) = E(tAK , tA1, tBKCP ,−tBP CK) ,
φ12(t) = F (tA1, tAK ,−tBP CK , tBKCP ) ,
φ21(t) = F (tAK , tA1, tBKCP ,−tBP CK) ,

where E(tA1, tAK ,−tBP CK , tBKCP ) =
L−1{(sI − A1)

−1[I + BP CK(sI − AK)−1BKCP (sI −
A1)

−1]−1}(t) , and

F (tA1, tAK ,−tBP CK , tBKCP ) =
−L−1{(sI −A1)

−1[I + BP CK(sI −AK)−1BKCP (sI −
A1)

−1]−1BP CK(sI − AK)−1}(t) .
We introduce in the next definition one of the main

technical instruments of the theory developed in the present
work.

Definition 1: Given the ( Lp ) stable closed-loop inter-
connection described by (1), we will associate, to such an
interconnection, the following function:
I(1)(· , ·)

def
= ρ{φ21(·)φ12(·) } : R+ ×R+ −→ R+ .

The function I(1) will be named, principal function of the
closed-loop stable interconnection (1). (When understood
from context, the name of function of the closed-loop
interconnection may also be used.)

The next two lemmas show that the above function is
in fact well defined. In addition, some simple properties of
that function are also included.

Lemma 1: Consider the ( Lp ) stable closed-loop in-
terconnection described by (1). The associated function
ρ{φ21(·)φ12(·) } : R+ ×R+ −→ R+ satisfies the follow-
ing properties:

• It is independent on the specific realizations of GP

and GK (i.e., it only depends on SP and SK ).
• ρ{φ21(t2)φ12(0) } = ρ{φ21(0)φ12(t1) } = 0 ,

t1, t2 ∈ R+ .
• limt→+∞ ρ{φ21(t2)φ12(t) } =

limt→+∞ ρ{φ21(t)φ12(t1) } = 0 , t1, t2 ∈ R+.
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Proof: Let (CP , AP , BP ) and (CK , AK , BK ,DK)
be stabilizable and detectable realizations of GP and GK

respectively.
The first property follows from the following facts.
First, the above function does not change when similarity
transformations are applied to the above realizations.
It follows from Fact 1 that when:
(CP , AP , BP ) −→ (CP T1, T

−1
1 AP T1, T

−1
1 BP ) , and

(CK , AK , BK , DK) −→
(CKT2, T

−1
2 AKT2, T

−1
2 BK ,DK) ,

then,
φ12(t1) −→ T−1

1 φ12(t1)T2 , and
φ21(t2) −→ T−1

2 φ21(t2)T1 , which implies that,
φ21(t2)φ12(t1) −→ T−1

2 φ21(t2)φ12(t1)T2 .
Second, the function under consideration does not change
whenever the above realization of GK is substituted by
the following one:

(
(
CK Ca

)
,

(
AK Ab

0 Aa

)
,

(
BK

0

)
,DK) .

This follows from Fact 1 by noticing that when the above
substitution is performed, then
φ12(t1) −→

(
φ12(t1) φx(t1)

)
, and

φ21(t2) −→

(
φ21(t2)

0

)
.

Third, the function under consideration does not change
whenever the above realization of GK is substituted by
the following one:

(
(
CK 0

)
,

(
AK 0
Ab Aa

)
,

(
BK

Ba

)
,DK) .

This follows from Fact 1 by noticing that when the above
substitution is performed, then
φ12(t1) −→

(
φ12(t1) 0

)
, and

φ21(t2) −→

(
φ21(t2)
φy(t2)

)
.

Finally, it is also easy to see that substitution of the above
realization of GP by,

(
(
CP Ca

)
,

(
AP Ab

0 Aa

)
,

(
BP

0

)
) , or by

(
(
CP 0

)
,

(
AP 0
Ab Aa

)
,

(
BP

Ba

)
) ,

will not modify the above defined function.

The second and third properties follow by noticing that
φ12(0) = 0 , φ21(0) = 0 , and since the closed-loop
interconnection is stable and the realizations of GP , GK

are stabilizable and detectable then it follows that A(1) is
Hurwitz. Therefore, limt→+∞ etA(1) = 0 .

Lemma 2: Consider the ( Lp ) stable closed-loop inter-
connection described by (1). If SP = 0 , or if SK is a static
system, then it follows that:
I(1)(t2, t1) = 0 , ∀ t1, t2 ∈ R+ .

Proof: It is convenient to define,
G1(s) = CP (sI − A1)

−1BP , and
G2(s) = CK(sI − AK)−1BK .
Since, G1(s) = GP (s)[I + DKGP (s)]−1 , then GP = 0
implies G1 = 0 . Therefore, it follows from Fact 1 that,

either if SP = 0 , or if SK is a static system (i.e., G2 = 0 )
the following holds:
L{φ12}(s) = −(sI − A1)

−1BP CK(sI − AK)−1 , and
L{φ21}(s) = (sI − AK)−1BKCP (sI − A1)

−1 .

Lets assume now that G2 = 0 , then
φ12(t1)φ21(t2) = − 1

4π2

∫ +∞

−∞
(jωI − A1)

−1BP CK(jωI −

AK)−1ejωt1dω∫ +∞

−∞
(jνI − AK)−1BKCP (jνI − A1)

−1ejνt2dν =

− 1
4π2

∫ +∞

−∞

∫ +∞

−∞
(jωI − A1)

−1BP

CK(jωI − AK)−1(jνI − AK)−1BKCP (jνI − A1)
−1

ejωt1ejνt2dωdν = 0 , t1, t2 ∈ R+ .
Where the above equalities hold, by invoking Fubini’s
theorem (and recalling that by assumption (see Remark 1)
A(1) is Hurwitz), and due to the fact that by assumption
G2 = 0 , which means that all the Markov parameters of
G2 are zero; that is,
CKAi

KBK = 0 , i ∈ Z+ .
Therefore, since we can express (sI −AK)−1 in the form
(sI − AK)−1 =

∑(nK−1)
i=0 gi(s)A

i
K ,

(where gi(s) , i = 0, . . . , (nK − 1) , are strictly proper real
rational functions), it follows that
CK(jωI − AK)−1(jνI − AK)−1BK = 0 ,

∀ (ω, ν) ∈ R+ ×R+.

Finally, it is easy to see, using the same reasoning as
before, that whenever GP = 0 , then
φ21(t2)φ12(t1) = 0 , t1, t2 ∈ R+ .

The following technical lemma presents a sufficient con-
dition for the destabilization of the closed-loop interconnec-
tion. Later, it will be proved that for some special case that
condition is also necessary.

Lemma 3: If the (Lp ) stable closed-loop interconnection
described by (1) is such that the following property is
satisfied:

(Cds) ∃ t1 > 0 , t2 > 0 : I(1)(t2, t1) �= 0 ;

then, ∃ η : 0 < η ≤ 1 , and ∃ θ ∈ F(η) with θ a periodic
function of period Tθ = (t1+t2) for which the closed-loop
interconnection described by (2) is not Lp stable.

Proof: It will be proved that
∃ η : 0 < η ≤ 1 , and ∃ θ ∈ F(η) such that for the
corresponding closed-loop interconnection described by (2)

∃

(
u1

u2

)
∈ Lp (for every p ) for which the corresponding

output

(
y1

y2

)
�∈ Lp (for all p ).

First, since by assumption the condition (Cds) is
satisfied, then invoking Lemma 2 it follows that SP �= 0
and SK is not static. That implies the existence of minimal
realizations (CP , AP , BP ) , and (CK , AK , BK , DK) , of
GP and GK respectively. In the sequel in the present
proof, minimal realizations of GP and GK will be
used ( in order to construct a destabilizing input signal
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(
u1

u2

)
∈ Lp ).

We will use the following description of the closed-loop
interconnection (under consideration) as a tool for the
construction of a destabilizing input signal:

˙(
x1(t)
x2(t)

)
=

(
A1 −θ−1(t)BP CK

θ(t)BKCP AK

)(
x1(t)
x2(t)

)
+(

BP 0
0 θ(t)BK

)(
u1(t)
u2(t)

)
,(

y1(t)
y2(t)

)
=

(
CP 0
0 θ−1(t)CK

)(
x1(t)
x2(t)

)
,(

x1(0)
x2(0)

)
=

(
0
0

)
, t ∈ R+ ; (3)

where θ ∈ F(η) , for some η ∈ (0 , 1] .

It follows from Fact 1 that,

et2A(η−1)et1A(η) =

(
α11 α12

α21 α22

)
,

where α11 = φ11(t2)φ11(t1) + η2φ12(t2)φ21(t1) ,
α12 = η−1φ11(t2)φ12(t1) + ηφ12(t2)φ22(t1) ,
α21 = η−1φ21(t2)φ11(t1) + ηφ22(t2)φ21(t1) ,
α22 = η−2φ21(t2)φ12(t1) + φ22(t2)φ22(t1) .

Now,

η2ρ{ et2A(η−1)et1A(η) } = ρ{ η2et2A(η−1)et1A(η) } =

ρ{

(
0 0
0 φ21(t2)φ12(t1)

)
+ ηM(η) } ;

(where M(η) is a polynomial in η )

therefore, it follows from the continuity of the function
ρ{·} that,

limη→0+ η2ρ{ et2A(η−1)et1A(η) } =

ρ{

(
0 0
0 φ21(t2)φ12(t1)

)
} =

ρ{φ21(t2)φ12(t1) } = I(1)(t2, t1) > 0 .

That proves that for any η ( 0 < η ≤ 1) small enough,
ρ{ et2A(η−1)et1A(η) } ∼ η−2I(1)(t2, t1) ;
or in other words we have proved that for any
η (0 < η ≤ 1) small enough the periodic function defined
by:

θη(t) =

{
η , 0 ≤ t < t1
η−1 , t1 ≤ t < T

,

θη(t + T ) = θη(t) (T = t1 + t2) ,

will convey to the satisfaction of
ρ{ΦA(θη)(T, 0) } = ρ{ et2A(η−1)et1A(η) } > 1 (since,
ΦA(θη)(T, 0) = et2A(η−1)et1A(η) ) which in turn
will imply, as we prove next, that the closed-loop
interconnection described by (2) is not Lp stable.

Chosen then, a small enough η such that |λmax| =
ρ{ et2A(η−1)et1A(η) } > 1 (where λmax is an eigenvalue
of et2A(η−1)et1A(η) , satisfying the above identity), and
chosen the above defined periodic function θη ∈ F(η) ,
it follows that the state-space description (3) of the
closed-loop interconnection is controllable and observable
during each semi-period (in which the function θη

remains constant). That is a direct consequence of the
fact that (CP , AP , BP ) , and (CK , AK , BK ,DK) are both
controllable and observable.

Then, it follows that there exists a bounded function

(
u1

u2

)

having support only in [0 , T ] (=⇒

(
u1

u2

)
∈ Lp )

such that it steer the state of (3) from zero to(
x1(T )
x2(T )

)
= ξ1 : ‖ξ1‖ = 1 , and ξ1 ∈ Λreal(λmax) ,

where Λreal(λmax) , is a given real eigen-subspace (of
et2A(η−1)et1A(η) ) associated to λmax in the following
manner:
let w �= 0 be an eigenvector corresponding to λmax , then
Λreal(λmax) = R(

(
�{w} �{w}

)
) .

Therefore, for such an input signal it is satisfied that,

(
x1(kT )
x2(kT )

)
= |λmax|

k−1ξk : ‖ξk‖ ≥ γΛ , and

ξk ∈ Λreal(λmax) , k = 1, . . .
(where γΛ satisfies, 0 < γΛ ≤ 1 ).

Now, since the state-space system (3) is observable on
[kT , kT + t1] , k = 1, . . . , it follows that,

∥∥∥∥
(

y1

y2

)∥∥∥∥
Lp(kT , kT+t1)

≥ |λmax|
k−1γΛγp ;

where, γp
def
=

min⎛
⎝x1(T )

x2(T )

⎞
⎠∈{ξ :‖ξ‖=1, ξ∈Λreal(λmax)}

∥∥∥∥
(

y1

y2

)∥∥∥∥
Lp(T,T+t1)

=⇒ γp > 0 .

Which implies that

(
y1

y2

)
�∈ Lp , and the proof is

complete.

Remark 2: It is important to mention that, as follows
from the last result, whenever the destabilizing condition
(Cds) is satisfied (or in other words, whenever the function
of the closed-loop interconnection I(1) is not identically
zero), then a destabilizing function θ ∈ F(η) (for some
η ∈ (0 , 1]) can always be chosen to be periodic and
piecewise constant as the one used in the proof of Lemma 3:

θη(t) =

{
η , 0 ≤ t < t1
η−1 , t1 ≤ t < T

, θη(t + T ) = θη(t)

(T = t1 + t2, t1 > 0, t2 > 0 ).
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III. A CHARACTERIZATION FOR OUTPUT STATIC

STABILIZING CONTROLLERS

We present now the following result, which is valid for
a closed-loop interconnection of single-input single-output
(SISO) systems.

Theorem 1: Consider the ( Lp ) stable closed-loop inter-
connection described by (1). Assume that SP is a SISO
system and moreover that SP �= 0 .
Under the above conditions, if SK is not static then,
∃ η : 0 < η ≤ 1 , and ∃ θ ∈ F(η) , with θ a
periodic function, for which the closed-loop interconnection
described by (2) is not Lp stable.

Proof: Define,
G1(s) = CP (sI − A1)

−1BP , and
G2(s) = CK(sI − AK)−1BK .

From Fact 1 it follows that:
L{φ12}(s) =
− (sI − A1)

−1BP [I + G2(s)G1(s)]
−1CK(sI − AK)−1 ,

and L{φ21}(s) =
(sI − AK)−1BK [I + G1(s)G2(s)]

−1CP (sI − A1)
−1 .

Then,
trace{L{φ21}(s)L{φ12}(s) } =

− [1 + G1(s)G2(s)]
−2CP (sI − A1)

−2BP

CK(sI − AK)−2BK .

Since by assumption SK is not static, i.e. G2 �= 0 ,
then it follows that G̃2(s) = CK(sI − AK)−2BK �≡ 0 .
The above last implication follows from the fact that
the Markov parameters of G2 , M

(i)
G2

, and the Markov

parameters of G̃2 , M
(i)

G̃2

, are related in the following
manner:

M
(i)

G̃2

=

{
0 , i = 0

iM
(i−1)
G2

, i = 1, 2, . . .
,

which implies that, G2 = 0 ⇐⇒ G̃2 = 0 .

Also recall that,
G1(s) = CP (sI − A1)

−1BP = GP (s)[I + DKGP (s)]−1 .
Since by assumption GP �= 0 , then G1 �= 0 , which
implies that
G̃1(s) = CP (sI − A1)

−2BP �≡ 0 .

As a consequence of all that, it follows that
trace{L{φ21}(s)L{φ12}(s) } �≡ 0.
The above result implies that the function,∫ t

0
trace{φ21(t − τ)φ12(τ) } dτ , t ∈ R+ ,

is not identically zero.
Therefore,
∃ t1 > 0, t2 > 0 : trace{φ21(t2)φ12(t1) } �= 0 ;
=⇒ ∃ t1 > 0, t2 > 0 :
I(1)(t2, t1) = ρ{φ21(t2)φ12(t1) } �= 0 .

Now, invoking Lemma 3 the result follows.

After the above result we can make the following straight-
forward but important statements (in the next corollaries)
regarding the problem under consideration. It was shown
that, the principal function of the closed-loop stable in-
terconnection provides with information, relative to the
property of being static, of a stabilizing controller.

Corollary 1: Consider the ( Lp ) stable closed-loop inter-
connection described by (1) under the additional assump-
tions that SP is a SISO system and moreover SP �= 0 .
Then, the function I(1) being not identically zero, is a
necessary and sufficient condition for the existence of η ∈
(0, 1] and a function θ ∈ F(η) with the property that
the associated closed-loop interconnection (2) is not ( Lp )
stable.

The next important result presents a new characterization
for (SISO) output static stabilizing controllers. The output
static stabilizing controllers are the unique output stabilizing
controllers with the property of preserving the stability of
the closed-loop interconnection with respect to the class
of operations (under consideration) performed on the con-
troller.

Corollary 2: Consider the ( Lp ) stable closed-loop inter-
connection described by (1) under the additional assump-
tions that SP is a SISO system and moreover SP �= 0 .
Then, SK is a static ( Lp ) stabilizing controller
if and only if,
∀ η ∈ (0, 1] , and ∀ θ ∈ F(η) , the associated closed-loop
interconnection (2) remains ( Lp ) stable.

As previously mentioned, an extension of the above
characterization, valid for general MIMO systems (can be
found in [11], however it) will not be included in the present
article but in a future publication. It may be important,
however, to clarify here that Theorem 1 does not apply for
cases in which the plant, SP , is a general MIMO system,
as the following example shows.

Example 1: Consider the stable closed-loop
interconnection (1) where,

GP (s) =
(

1
(s+q1)

0
)

, GK(s) =

(
0
1

(s+q2)

)
,

q1 > 0 , q2 > 0 .
Notice that, since CP = 1 , AP = −q1 , BP =

(
1 0

)
,

and CK =

(
0
1

)
, AK = −q2 , BK = 1 ,

are realizations for GP and GK respectively, then the
closed-loop interconnection (2) can be described by

˙(
x1(t)
x2(t)

)
=

(
−q1 0
θ(t) −q2

)(
x1(t)
x2(t)

)
+(

BP 0
0 θ(t)

)(
u1(t)
u2(t)

)
,(

y1(t)
y2(t)

)
=

(
1 0
0 θ−1(t)CK

)(
x1(t)
x2(t)

)
,(

x1(0)
x2(0)

)
=

(
0
0

)
, t ∈ R+ .

Since for any given θ ∈ F(η) , (for any given η ∈
(0 , 1] ) the above time-dependent matrix A(θ) , is the A-
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matrix of an unforced time-variant linear system which is
exponentially stable, then this implies (see, e.g. [14]) that,
∀ η ∈ (0 , 1] and ∀ θ ∈ F(η) , the closed-loop interconnec-
tion (2) is always Lp stable.

IV. SUMMARY AND CONCLUDING REMARKS

A new class of stability robustness in a (stable) closed-
loop interconnection of two linear time-invariant finite-
dimensional systems (one the plant, the other the controller)
was considered. We have analyzed the problem of preser-
vation of the stability of the closed-loop system whenever
a special class of operations is performed on the controller.
It was proved, in this communication, that in case the
plant is a SISO system, the unique class of stabilizing
controllers with the property that the stability of the closed-
loop system remains invariant, for all possible operations
(under consideration) on the controller, is the class of static
stabilizing controllers.
In case the closed-loop interconnection is not robust (in the
sense considered in this work), the results presented here
also provides with important qualitative information (Re-
mark 2) regarding the nature of the destabilizing functions.
It was also introduced, in this article, The Principal Function
of the Closed-Loop Stable Interconnection (1). This novel
function was proved to provide with information relative
with the property of being static, of the stabilizing con-
troller. It was proved here that, if SK stabilizes a SISO
system SP �= 0 then, SK is static ⇐⇒ I(1) ≡ 0 ⇐⇒
∀η ∈ (0 , 1] and ∀θ ∈ F(η) the closed-loop interconnec-
tion (2) is stable.

Notice that the following straightforward continuity result
just follows from the definition of I(1) .

Fact 2: Consider the (Lp ) stable closed-loop
interconnection described by (1) where the controller,
SK , is assumed to be a static system.
Let {SKn

} be a sequence of controllers having state-space
representation (CKn

, AKn
, BKn

,DKn
) with the property

that there exists a stabilizable and detectable state-space
representation for SK , (CK , AK , BK ,DK) , for which the
following is satisfied:
limn→+∞ AKn

= AK , limn→+∞ BKn
= BK ,

limn→+∞ CKn
= CK , limn→+∞ DKn

= DK
1.

Then, the following equality holds,

limn→+∞ I
(1)
(SKn ,SP )(t2, t1) =

I
(1)
(SK ,SP )(t2, t1) = 0 , ∀t1, t2 ∈ R+ .

Research is presently being conducted to evaluate if a
notion of ‘close to static’, on the set of the stabilizing
controllers of a plant, can be devised based on the principal
function of the closed-loop stable interconnection.
It is also subject of current research, the development of a

1We remark that under these conditions,
limn→+∞ dgraph(GKn

, GK) = 0 , where dgraph is
the graph metric in M(R(s)) (see, e.g. [13]).

methodology, based on the theory presented in this work,
for the synthesis of stabilizing static controllers.
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