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Abstract— The paper deals with the nonparametric iden-
tification of population models, that is models that explain
jointly the behaviour of different subjects drawn from a
population, e.g. responses of different patients to a drug.
The average response of the population and the individual
responses are modelled as continuous-time Gaussian processes
with unknown hyperparameters. The posterior expectation
and variance of both the average and individual curves
are computed by means of a Markov Chain Monte Carlo
scheme. The model and the estimation procedure are tested
on xenobiotics pharmacokinetic data.

I. INTRODUCTION

In science and technology, it is rather common to an-
alyze data coming from multiple experiments performed
on different subjects belonging to some given population.
A typical example is found in biomedical data analysis,
where different subjects are sampled and analyzed in order
to assess not only an average model but also to charac-
terize the inter-individual variability within the population.
For instance, population analysis is routinely used in the
drug development process to estimate pharmacokinetic and
pharmacodynamic models.

In the most favourable case, enough data are available
for each subject so as to be able to reliably identify an
individual model. Then, the population can be characterized
by the distribution of the individual models. In some cases,
however, the number of observations that can be collected
in each subject is limited by technical, ethical and cost
reasons. In pharmacological experiments this happens for
toxicokinetic studies or the studies carried on populations
that include “critical” subjects such as neonatal or pediatric
or intensive care unit patients. When it is not possible to
estimate each individual model separately, so-called “pop-
ulation methods” must be used. Such methods analyze all
the data jointly, yielding the average and, possibly, also the
individual models.

A first class of population methods relies on parametric
models, usually formulated as grey-box continuous-time
dynamical systems [1], [2], [3], [4], [5] (note that the
term “nonparametric” in the last two papers refers to the
estimation of the probability distributions of the parameters
of a grey-box model). In many cases the physical knowledge
may not suffice to specify a structural model. For such
a reason semi-parametric and nonparametric population
models have been proposed. The semi-parametric model [6]
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relies on regression splines so that the nontrivial problem of
deciding the number and the locations of the spline knots
arises. As an alternative, nonparametric models that describe
the individual curves as realizations of a discrete-time [7] or
continuous-time [8] stochastic process have been proposed.
Recently, a nonparametric model of this type has also been
employed to analyze gene expression time series measured
using DNA micro-arrays [9]. In [8], model identification is
performed according to an Empirical Bayes approach that,
though relatively simple, provides only point estimates of
the so-called hyperparameters and, as such, underestimates
the confidence intervals. The novelty of the present paper
is that it develops a fully Bayesian identification scheme,
which resorts to a Markov Chain Monte Carlo (MCMC)
procedure for estimating the posterior expectations and
variances. The method is tested on pharmacokinetic data
related to xenobiotics administration in human subjects.

II. THE POPULATION MODEL

Nonparametric identification of population models calls
for the estimation of an entire family of scalar real-valued
continuous-time functions starting from a set of noisy sam-
ples taken at discrete time instants. Each function represents
the behaviour of a subject belonging to the population of
interest, e.g. it could be an impulse response such as the
profile of drug concentration in plasma after administration
of a unit bolus. In the following, z7(t), j = 1,..., N, t > 0,
will denote the response curve associated with the j-th
subject, while the available measurements are

yi :zj(ti)—l—vi, k=1,..,n;, (D

where t{c > 0 denotes the k-th sampling instant (“knot”)
for the j-th curve, and the measurements errors vi are mu-
tually independent and normally distributed with E[v]] = 0,
Var[v]] = (o})?. The overall number of data will be
indicated by n = ny + ng + ... + ny. It is worth noting
that the number and location of the sampling instants ¢;,
may vary from subject to subject. It is assumed that each
individual curve can be decomposed as

() = 2(t) + 2 (1)

where Z(t) is the “typical curve” (also called average curve)
of the population and Z(¢) is the “individual shift” with



respect to the average behaviour. For ease of notation, it is
convenient to define the following vectors
—rl 1 2 2 N _NIT
Y = W1 Yny YT Vny U1 - Yny]

z:= [2(t})..2(t,,) ..2(t)).. 2N )"
z:=[Z'(t)...2" (th,) AN (). EN N )T
vi=[vf.oh viewld o) Lol T

so that (1) can be rewritten as
y=z+z+v 2)
where v ~ N(0,,), 5, := diag{(c})...(c¥.)*}.

ny

A. Continuous-time model

In the present paper a stochastic approach is adopted:
the typical curve and the individual shifts are assumed to
be realizations of continuous-time Gaussian processes.

Assumption 1: The Gaussian stochastic processes Z(t)
and #7(t), j = 1,..., N, are independent of each other and
of the noise samples v.

a
Regarding the statistics of the signals, it is natural to
assume that the individual shifts with respect to the av-

erage behaviour have zero mean, i.e. E[Z/(t)] = 0,Vt,Vj.
Moreover, by properly normalizing the data, it can be
assumed without loss of generality that E[Z(¢)] = 0 as

well. In the following R(t,7) := Cov[z(t),2(7)] and
R(t,7) := Cov[#(t), (7)], V4, will denote the autoco-
variance functions of the typical curve and the individual
shifts, respectively.

In a stochastic approach the signal model reflects the
available a-priori knowledge. For instance, if it is only
known that a signal is “smooth”, the following integrated
Wiener process can be used.

Assumption 2:

A:{g H B:[(l)], C=[1 0]

where Z(0) ~ N (0,A?X,), and w(t) is a scalar
continuous-time white Gaussian noise, independent of Z(0)
and v, with E[w(t)w(r)] = \25(t — 7).

a
The matrix X, is assumed to be known, whereas the
parameter A2 acts as a tuning knob: smaller values cor-
respond to smoother signals. Since it is often difficult
to specify a proper value for A? on the basis of prior
knowledge alone, A\? is regarded as a “hyperparameter” that
has to be estimated from the data. As is well known, the
autocovariance R(t,7) has the following expression:

R(t,7) = ;\Q’V(t, T)

S(tr) = CX(t)eA -0CT t<7
T CACDX(r)OT  t> 71

where X (t) = Var[z(t)]/\? is the solution of the differ-
ential Lyapunov equation

X (t) = AX(t) + X(t)A” + BB”
X(0) = Xo.

It turns out that, for a given value 7 = 7, the function
~(t,7) is a piecewise cubic polynomial and is continuous
with all its derivatives everywhere but in ¢ = 7, where
it is continuous up to its second derivative. It would be
tempting to use the integrated Wiener model to describe
also the individual shifts 27(¢). However, as explained
elsewhere [8], it is more convenient to model the individual
shifts as stochastic processes whose variance does not grow
unbounded as ¢ goes to infinity.
Assumption 3: For j =1,....N,

& (t) = Ad(t) + B (t)
#(t) = Ci(t)

1 a1 1 = 0 ~
A_[ },B_[l],c—[l 0]
where a1 < 0, a3 < 0,Z(0) ~ N (O7 XQX()), and w (t) is a
scalar continuous-time white Gaussian noise (independent
of #(0), v, w(t) and w'(t), i # j) with E[w(t)w(r)] =
A25(t— 7).

O
The autocovariance function of 27(t) is obtained as
R(t,7) = A?3(t,7), where 7(t,7) is computed in an
analogous way as 7(t, 7). Assuming that Xg is known, the
s~tatistics~ of Z(t) depends on the three parameters aj, as,
A2. For \? the same considerations as for A2 hold. The two
poles a; and ay provide a few more degrees of freedom for
shaping the spectrum of Z7(t). When the number of data
per subject is scarce, it may be difficult to reliably estimate
a; and ag, in which case their values are fixed according
to the available prior knowledge.

B. Sampled model

In this section, a sampled reformulation of the
continuous-time model is introduced that will prove useful
in the following. More precisely, (2) is rewritten as

y=®W+D,W+v 3)

where ® and D, are such that \’®®7 = Var(z),
3MD,DI = Varfz, W ~ N(0,\2,) and W ~
N(0,)°L,). It is easy to see that:

g5 () e Al )
Varl|z]| = A
,V(t‘?Z‘LVN7t%) te ﬁ(t‘?Z‘LVN7t’r]LVN)
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Var[z) = blockdiag{R*, ..., RN}
A . A
R/ := \? : .

fy(tjw,tj) y(tg”,tg“)

In the following, the values of the poles, a; and a9, (entering
the definition of the matrix D,) as well as the noise
variance, X, are supposed to be known, so that only two
hyperparameters have to be estimated from the data: A2 and
A2,

III. MCMC ESTIMATION OF THE SAMPLED
MODEL

Consider a generic identification problem in which y
denotes the observed data and 6 the unknown parameters
of the model. Bayesian inference requires the computation
of the posterior distribution p(f|y). Given p(f|y), a point
estimate of 6 is

Ebly] = / op (0ly) db

In our problem, this expression does not admit an analytical
solution and its numerical evaluation is tackled by means
of an MCMC approach.

A. MCMC estimation

Monte Carlo integration evaluates E[f|y]| by drawing
samples {6;,i = 1,...,h} from the posterior distribution
(“full conditional distribution”) so that

It is not necessary that the samples are drawn independently
from p(fly), but it suffices that they explore the whole
support of p(fly) in the correct proportions. One way
of doing this is through a Markov chain having p(f]y)
as its stationary distribution. This result can be obtained
resorting to a well known family of algorithms named
Metropolis-Hastings algorithms [10]. In particular, letting
0 = [X\2 X2|T, the Gibbs sampler will be applied to the
estimation of the population model previously described.

D‘I>—‘

Efly] =~

B. Hyperparameters priors

The very first step consists of assigning a prior distribu-
tion to all the random variables involved in the model. A
slightly informative prior is to be preferred for parameters
that are affected by a large uncertainty. For the hyperparam-
eters A2 and A2, a computationally advantageous choice,
which simplifies the subsequent calculation of the so-called
full conditional distributions, is to model the prior of 1/ A2
and 1 /5\2 as a Gamma distribution with large (possibly
infinite) variance:

1 1\ &
p(ﬁ) =T (91,92) (ﬁ) ex?

1 1\*" o
() T ()

where g; are the parameters that characterize the Gamma
distribution.

C. Full conditional distributions

The full conditional is the probability distribution of a
variable conditioned on all the other variables in the model.
It turns out that the full conditional for 1/A? is T'(g1, §2)
with arguments g; = g1+n/2 and g, = go+W’ W /2. As for
the full conditional of 1/)\?, it is (g3, da), g3 = g3 +n/2,
Gs = ga + WTW/2. The full conditional distributions of
w and w are proved to be multivariate Gaussian functions
characterized by the following statistics:

Var [w]] = (/\ 2L, + @7 (Var [ + 2,)” @)71
Elw|]
Var [w]] = (X—an +D! (Var[z] + 2,) " Da) -
Bl =

D. The algorithm

In order to initialize the Gibbs sampler, the following
steps are performed.

= Var[w]]|®" (Var [z + =,) "

Var [w|]DT (Var(z] +=,) 'y

« Initialization of the parameters of the prior distribu-
tions for A2 and 2. Letting g1, g2, g3 and g4 be all
equal to zero (implying that both the prior mean and
variance are infinite) yields a non-informative prior.

o Initialization of the unobserved variables (i.e. W,
W.,1/X2, 1/A2) to values obtained by sampling the cor-
responding prior distribution or fixed either according
to some a-priori knowledge or arbitrarily. In the present
case, to speed up convergence, A% and A2 are initialized
with the so-called Empirical Bayes estimate, see [8],
although an arbitrary initialization would work as well.

Subsequently, the following procedure has to be repeated
iteratively so as to collect a sufficient amount of samples of
both hyperparameters. During each iteration, the full con-
ditional distributions are updated according to the values of
the samples drawn during the preceding step. The structure
of the general 7 4 1-th iteration is described below.

o Compute of Var[w|-] and E[W|]

o Sample W, from the updated full conditional distri-

bution of W

o Update of g; and go

o Sample \? -1 from the updated full conditional distri-

bution of \?
o Compute of Var[w|-] and E[W|]
o Sample W, from the updated full conditional distri-
bution of w

o Update of g3 and g4

e Sample ;\f 1 from the updated full conditional distri-
bution of \2
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After having extracted all samples, the initial “burn-in”
part of the chain is discarded. The remaining h samples
A2, X%Li =1,...,h, are used to compute ergodic averages
A2,c, A2, that approximate the posterior expectations of
the hyperparameters.

IV. ESTIMATION OF THE CONTINUOUS-TIME
SIGNALS

The MCMC algorithm described in the previous section
hinges on the sampled model (3) and as such can estimate
the typical and individual curves only in correspondence of
the sampling knots. In this section, the posterior distribution
of A2 and A? is exploited to obtain the posterior expectation
and the posterior variance of the typical and individual
curves at any time point.

A. The posterior expectation

The following results provide the point estimates for the
typical curve and the individual ones.
Proposition 1: Let

1
E_Z (N A7), “)
c(A202) = [} C%...ciw.c{\]...cgN]T =
Varly \Af,AE] i=1,...h, (5
Then,
2(t) = ER(ly] =) Y At 15)e, (6)

j=1k=1
Proof: By the total probability theorem, the posterior

expectation is

Hly] = / / B0y, 32, X202, K2y )dA? di2

and, using the samples drawn by the MCMC algorithm, it
can be approximated as

B [2(t)ly, 32,2

Al =Y ——

i=1

According to a well known formula for jointly Gaussian
random variables,

E[z(t)ly, A7, A]] = E[2(0)|A\7, A1+
+ Cov[2(1), y| A7, XV arly|X2, X7 (y — Ely|A7, X))

Under the given assumptions, E[2(t)|]A\2,\?] = 0O,
Ely|32, 2] = 0, VX2, VA2, while

Cov[ (1), yIA%, Az} Cm;[ (t),Z + 7+ v|\2, A?} =
=Cov [z(t),zp\i] =\ [ ( ) (t’thﬂ

Varly|A2, 2] =

Then, recalling the definition of c(\? A2 ), we have that

(2 ?

Var[z|\7] + Var[i\j\f] + 3,

N nj

lez (L) (2,3 @)
=1 j=1k=1

from which the thesis follows.

d

The computationally intensive step of the algorithm is
(5), where the number of operations required to calculate
Varly|A2, 2]~y scales as the cube of the number n of
data. However, as shown in [11], Var[y] can be inverted in
O(n) operations, via Kalman filtering techniques, if y is a
vector obtained by sampling a process whose spectrum is
rational. Analogous ideas can be used to efficiently evaluate
the inverses needed in the MCMC simulation (Section III).
Proposition 2:

F(t)=E[Z(t)ly] ~2(t)+ Y _A(t, 1),
k=1
where .
A= YRR ®

and ¢, (A2, A\?) have been defined in Proposition 1.

Proof: All the considerations made about the estima-
tion of the typical curve apply also to the estimation of the
individual curves, with the only difference that 5(¢,7) is
replaced by (¢, 7).

B. Population Regularization network

It is noteworthy that both Z(¢) and 27(t) are obtained as
linear combinations of autocovariance functions ¥(¢,7) and
4(t,7), centered in the sampling knots 7 = ¢;. This struc-
ture arises whenever Bayes estimation is used to reconstruct
Gaussian processes [12], [13]. In particular, Poggio and
Girosi (1990) coined the term Regularization Network (RN)
to characterize estimators obtained via Gaussian processes
estimation or Tychonov regularization (rather interestingly,
the same final results are obtained by applying Bayesian
estimation or reproducing kernel theory [14]). Also the
estimators of Propositions 1 and 2 can be regarded as a
kind of RN (see Fig. 1) in which there are two kinds of
neurons. A first set of n neurons receive ¢ as input and have
J(t,t) as activation functions. Their outputs are linearly
combined through the weights 6'7 to obtain Z(¢) as output.
The individual shifts Z7 (t) are estlmated by a second set of
n neurons having ¥(t,¢]) as activation functions and c] as
weights.

The weights c7 and c7 are computed as ergodic averages,
see (4), (8), of the coefﬁc1ents Ao 7 (A2, ~f) which are ob-
tained through the solution of a system of linear equations,
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Fig. 1. Regularization Network (RN) with 2n neurons.

see (5), whose order is equal to the number of sampling
knots. This is a major difference with respect to other
networks such as MLP ones in which the weights are to
be tuned via iterative methods. Recalling that the autoco-
variances ¥(t, ]) are piecewise cubic polynomials, another
important consequence of the regularization structure of the
estimator is that the estimate Z(t) of the typical curve is a
cubic spline.

C. The posterior variance

In order to compute the posterior variance of zZ(¢) recall

that
Var [2(t)ly] = E [2(0)°ly] - E[E@®)ly]* O
Note that F[z(t)|y] is known from (6). Moreover,

E
/ / [ ety 32, 3202 Ry s -
= [[ By Amp02, epyana ~

L B[]y, A N

o h
=1

where

E[z(t)°[y, A7, X]] = Var[z(t)ly, A, AT+
+ E[2(t)]y, A A7)

The conditional expectation E[Z(t)|y, A2, A?]2 can be com-

puted according to Proposition 1, while

Var[z(t)ly, A7, Af] = Var([z(t)|\F]+
— Cov[z(t), y|\][Varly|AZ, \7] 7! Cov[z(t), y|A7]"
1(t)]y].

Analogous considerations hold for Var|z

d

Although this is more demanding from a computational
point of view, the 5% and 95% percentiles of the posterior
distributions of Z(¢) and Z(t) could be calculated in a similar
way. Indeed, by the total probability theorem, the posterior
distribution of Z(¢) can be approximated as the average
of h gaussian distributions whose mean and variance are
E[Z(t)|y, A2, 2] and Var[z(t)|y, A2, \2], respectively.

(% K2

V. EXAMPLE: ANALYSIS OF
PHARMACOKINETIC DATA

The proposed population model was tested on a data set
related to xenobiotics administration in 27 human subjects
[7]. In the experiment, 8§ samples were collected in each

xenobiotics concentration

25

Fig. 2. Xenobiotics concentration data after a bolus in 27 human subjects:
average curve (bold) and individual curves.

subject at {0.5, 1, 1.5, 2, 4, 8, 12, 24} hours after a bolus
administration. The data have a 10% coefficient of variation.
To illustrate the population variability, the 27 experimental
concentration curves are reported in Fig. 2, together with
the average curve which, given the number of subjects, is
a reasonable estimate of the typical curve z(t). Starting
from these experimental data, different sampling schemes
can be simulated by choosing proper subsets of the data. In
particular, we adopted an example of a sparse and not well-
designed sampling protocol: subject #2 is sampled at time
points at {tg, t7,ts}, #4 at {to, ts,ts}, #5 at {t1,t2}, #7 at
{t7}, #9 at {tG}, #10 at {t5}, #18 at {tg,t5}, #19 is fully
sampled, #24 at {t4,ts} and #26 at {¢;,t3} (25 samples in
total).

The drug concentration is deterministically equal to zero at
=0, so that Xo = 0, XO = 0. Since the observed responses
are not stationary but tend to be smoother towards the end of
the experiment, the times were transformed logarithmically
by defining a new time axis t"¢* := In(¢t + 1). The
analysis was carried out assuming that a; = ay = —2
(corresponding to an autocovariance Cov[27(0), 27 ()] of
the shift process that is practically equal to zero for 7 > 20
hours), and estimating A* and A* via MCMC with number
of runs h=1500 (A%, = 3553.3 , A2, = 16897). In Fig.
3, the estimated typical curve with its +1.96+/Var[Z(t)|y]
intervals is reported together with the data. In spite of the
limited number of samples available to the algorithm (only
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Fig. 3. Estimated typical curve (bold) with its 1.96 SD intervals.

25), the estimate of the typical curve is close to the popula-
tion average curve showed in Fig. 2 that was based on the
overall data set (216 observations). In Fig. 4, the estimate
of the individual curve of subject #19 is shown together
with its £1.96/Var[z'°(t)|y] intervals. It is interesting to
note the typical narrowing of the intervals in correspondence
with the measured data. The other individual curves (not
shown) are estimated with reasonable accuracy (taking into
account the very limited number of data) but, as expected,
the associated intervals are wider.

120 T T
—— Typical curve
O Data
® Data of the individual curve
= Individual curve
100 — - Confidence intervals 4
o
80 il
s o
s
- o
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Fig. 4.  Estimated individual curve (subject #19) with its 1.96 SD

intervals. The estimated typical curve is also reported (dashed).

VI. CONCLUSIONS

An MCMC scheme that performs the estimation of a
population of curves has been developed and tested on
real pharmacokinetic data. To improve the computational
efficiency, Monte Carlo sampling of the curves is performed

only at the sampling instants and the intersample posterior
expectation and variance of the curves are subsequently
reconstructed on the basis of the posterior distribution
of the hyperparameters. It has been proven that, if the
average curve is an integrated Wiener process with unknown
variance, its estimate is a cubic spline whose knots coincide
with the instants at which the individual curves are sampled.
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