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Abstract— In this paper we propose a new algorithm for
the design of a lead generation library for the purpose of
drug discovery. The algorithm is based on a modification
of the deterministic annealing algorithm used for clustering
and locational optimization problems. The algorithm addresses
two key criteria namely, diversity and representativeness of
compounds in the obtained library. Thus the time-intensive
process of finding a lead compound for drug discovery can be
accelerated using this technique of library design.

I. INTRODUCTION

Combinatorial libraries consist of extremely large col-
lections of chemical compounds, which when tested on
target or test cells (say cancer cells) identify required
properties, such as structural or bioaffinity properties of
potential drugs for new treatments. Recent advances in high
throughput screening such as micro/nanoarrays [4] have
enabled the large scale investigation of compounds for drug
discovery. These advances have made it possible to explore
interactions between individual molecules - this specificity
with which the interactions can be studied promises dis-
covery of drugs with similar level of specificity. However
with the current technology, it is impossible to test the
various interactions between all the potential bio-molecules
as the combinatorial nature of the problem leads to an
unmanageable number of pairs to be tested.

To address this problem, tools from combinatorial opti-
mization have been employed to design libraries consist-
ing of subsets of representative compounds which can be
synthesized and subsequently tested for relevant properties,
such as structural activity, bioaffinity, aqueous solubility
etc. In order to increase the overall efficiency of the drug
discovery process, these libraries should be designed such
that they are representative of all the potential compounds
and at the same time contain a manageable number of
compounds for testing.

More specifically, the selection problem in drug discov-
ery, that is the process of selecting a representative subset
of chemical compounds that also covers the possible range
of solutions, is a form of resource allocation problem often
referred to as a locational optimization problem. Locational
optimization algorithms arise in a number of contexts
in control; for example, motion coordination algorithms,
coverage control [12] and mobile sensing networks [3].
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These problems share the fundamental goals of aiming to
determine an optimal partition of the underlying domain in
which they are defined (e.g., a library of compounds for
drug discovery, an unknown area of interest for coverage
control), and an optimal assignment of values, or elements,
from a finite set to each cell in the partition space.

These problems are typically computationally complex
and time intensive. For example, choosing 30 representative
compounds from an array of 1000 compounds will result in
approximately 3 × 1025 possibilities. Another factor which
adds to the complexity of such problems is their inherent
non-convex nature. Thus we require an efficient selection
algorithm that does not get stuck in the local minima.

Although all the aforementioned locational optimization
problems share similar basic optimization goals, there are
a number of features and criteria which are specific to
each problem and thus distinguish one from the other.
These differentiating characteristics include different dis-
tance metrics in the definition of coverage, the number
and types of constraints on the resources in the problem
formulation, the necessity of computing global versus local
optima, the possibility of elements and resources that exhibit
dynamical behavior, and the size and scale of the feasible
domain. For example, in the drug discovery problem, there
are scenarios where we have capacity constraints on the
experimental resources, thus leading to a multi-capacity
constraint problem similar to one which arises in the optimal
strategic positioning of UAVs [12]. Motion control problems
are satisfactorily solved by local optimization solutions, i.e.,
distributed coordination algorithms utilizing only nearest-
neighbor information are more relevant and are preferred to
global coordination schemes, whereas in the drug discovery
scenario we are primarily interested in global solutions.

In this paper, we propose algorithms based on the concept
of deterministic annealing (DA) to cater to the specific
constraints and demands of combinatorial chemistry. The
main distinctive feature of the DA algorithm is that it aims
at avoiding local minima. At the same time, it is faster
than the simulated annealing algorithm [1], [7]. Taking into
account the huge size of combinatorial libraries, it becomes
necessary to consider the scaling issues involved with the
DA algorithm. We are currently in the process of studying
numerical issues of the DA algorithm for large libraries.

This paper is organized as follows. In Section II, we
provide background information on some of the specifics
of combinatorial library design, and state the main problem
we consider. The underlying approach we employ for the
solution of the selection problem, i.e. the DA algorithm, is
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described in Section III. We then discuss modifications we
have made to the DA algorithms for our specific focus in
Section IV. In Section V we present a number of simulated
data set results. Finally we conclude the paper by recapping
the important results and discussing some ongoing research
for addressing the scaling issues of the DA algorithm.

II. LIBRARY DESIGN
Library design refers to the process of screening and then

selecting a subset of compounds from a vast given array
of similar or distinct compounds for the purpose of drug
discovery [6]. The main aim of library design is to reduce
the number of compounds for testing without compromising
on the diversity of the library. Optimal design of libraries
(containing diverse compounds) facilitates the process of
drug discovery by replacing the testing of all compounds
by a much smaller set of representative compounds.

Based on the current state of development in the drug
discovery process, library design can be broadly classified
into two main categories, namely lead generation and lead
optimization. The main purpose of these libraries and their
design criteria are discussed below.

A. Lead Generation Library

The development of a lead generation library usually
involves the design and synthesis of a large number of
chemical compounds. It is required that these compounds
are varied and hence diverse from each other. The library
containing these diverse compounds is then tested against
a host of different biological agents. The main objective
in designing such libraries is to obtain structurally diverse
compounds so as to cover the chemical space efficiently.
Keeping these requirements in mind, ‘diversity’ is generally
used as the principal screening criterion for designing lead
generation libraries. This criterion does not necessarily give
intended results, and may encourage library design that
contains compounds so diverse, i.e. singletons, which are
not ‘representative’ of any group other than themselves.
Hence the criterion of ‘representativeness’ should also be
considered along with ‘diversity’. This issue is addressed
in this paper by modifying the deterministic annealing
algorithm in such a way as to allow us to measure the extent
of representativeness of the prospective leads.

B. Lead Optimization Library

Lead optimization libraries are usually designed at a later
stage of the drug discovery process when it is required to
select a subset of compounds that are ‘similar’ to a given
lead compound(s). This results in a array of compounds
which are structurally and chemically ‘similar’ to the lead.
This criterion of similarity is generally used for designing
targeted or focussed libraries, which mostly focus on a
single therapeutic target. Thus the design of lead generation
library precedes that of the lead optimization library.

This paper deals with the problem of designing a library
of compounds for the purpose of lead generation. The
most common method used to obtain such a library is to

maximize the diversity of the overall library. It is based on
the strategy that the more diverse the set of compounds, the
better the chance to obtain a lead compound with desired
characteristics. As was noted earlier, such a design strategy
suffers from an inherent problem which occurs due to the
fact that using diversity as the only criterion may result in a
set of compounds which are ‘exceptions’ or singletons. Fig.
1 shows such a scenario. The X’s denote the compounds
chosen according to the maximum diversity principle. As
can be seen from the figure, the cluster in the middle is not
adequately represented in the final selection. This algorithm
focusses more on distant compounds, which may be viewed
as exceptions. An algorithm using such a criterion gives
equal importance to the middle cluster and the exception
compounds.
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Fig. 1. A scenario depciting the inherent problems with the ‘diversity’
only criterion for lead generation library design

From a drug discovery point of view, it is desirable
for the lead generation library to contain more compounds
from the middle cluster (so as to adequately represent all
the compounds) or at least know how representative they
are in order to be able to make decisions on how much
experimental resources to devote to these lead compounds.
To address this problem, we propose a modification to the
DA algorithm for selecting an optimal subset of compounds
from the given combinatorial array. This modification leads
to an optimization problem where the objective function
tackles both the issues of diversity and representativeness
effectively. The process involves identifying different com-
pound locations in an iterative fashion, and is discussed
in the following sections. The iterations are carried out as
dictated by the DA algorithm.

In order to quantify the different criteria for designing
libraries (namely ‘diversity’ and ‘similarity’), it is required
to define appropriate molecular descriptors which define
the various compounds. Its has been previously shown
that a 2-d molecular descriptor space exhibits a proper
‘neighbourhood behaviour’ which is essential for charac-
terizing ‘similarity’ and ‘diversity’ properties between two
compounds [1]. In all our simulations, we consider a 2-
d molecular descriptor space in which the all compounds
reside. The Euclidean distance between two points in the
space provides a good approximation of the degree of
‘similarity’ or ‘diversity’ between these two compounds.
Thus in this scenario of a 2-d descriptor space, the close

980



neighbours of an active compound will also be active. On
the other hand, two compounds which are far apart (in terms
of the Euclidean distance) can be labeled as diverse. The
2-d descriptor space provides a means of quantifying the
properties of different compounds.

In addition to ‘similarity’ and ‘diversity’, other criteria
can also be used so that the set of compounds satisfy
particular design objectives. ‘Confinement’ is often used as
a criterion to quantify the degree to which the properties of
a set of compounds lie between prescribed upper and lower
ranges [2]. Another objective is maximizing the ‘activity’ of
the set of compounds against some predefined targets. This
‘activity’ is usually measured in terms of the quantitative
structure of the given set. The presence of these multiple
(and often conflicting) design objectives make the library
design problem a multi-objective optimization problem.

III. DETERMINISTIC ANNEALING ALGORITHM

In its prototypical form, the problem of selecting repre-
sentative elements for the purpose of library design can be
stated as:

Given a distribution p(x) of the elements x in a descrip-
tor space D, find the best set of M representative elements
rj that solves the following minimization problem:

min
rj , 1≤j≤M

∫
D

p(x)
{

min
1≤j≤M

d(x, rj)
}

dx. (1)

Here d(x, rj) represents an appropriate distance metric
between the representative element rj and the element x.
Alternatively, this problem can also be formulated as finding
an optimal partition of the descriptor space D into M cells
Rj and assigning to each cell Rj a representative element
rj such that the following cost function is minimized

∑
j

∫
Rj

d(x, rj)p(x)dx.

Realistic objective functions have unpredictable surfaces
with many local minima, and thus require design algorithms
that avoid them. The DA algorithm is suited for this purpose
since it is specifically designed to avoid local minima.

This algorithm can be viewed as a modification of another
algorithm called Lloyd’s algorithm [8], [5]. Lloyd’s algo-
rithm is an iterative method which identifies two necessary
conditions of the optimal solution and then ensures that at
each iteration, the partition of domain and the representative
elements satisfy these conditions:

1) Nearest Neighbor condition (Voronoi partitions): The
partition of the domain is such that each element in
the domain is associated to the nearest representative
element.

2) Centroid condition: The representative elements are
such that the location rj is in centroid of the jth cell
Rj .

In this algorithm, the initial step consists of randomly
choosing locations of representative elements and then suc-
cessively iterating between the steps: (1) forming Voronoi

partitions, and (2) moving the representative elements to
respective centroids of cells till the sequence of locations
of representative elements converge. It should be noted that
the solution depends substantially on the initial allocation as
in the successive iterations the locations are influenced only
by ‘near’ points of the domain and are virtually independent
of ‘far’ points. As a result the solutions from this algorithm
‘typically’ get stuck to local minima.

The DA algorithm [11], [10] does away with this local
influence of domain elements by allowing each element x ∈
D to be associated with every representative element rj

through a weighting parameter p(rj |x). Thus this algorithm
does away with the hard partitions of Lloyd’s Algorithm.
The DA formulation includes a modified distortion term

D =
∫
D

p(x)
∑

j

d(x, rj)p(rj |x)dx,

which is similar to the cost function in Equation 1. It also
includes an entropy term

H = −
∫
D

p(x)
∑

j

p(rj |x) log p(rj |x)dx,

which measures the randomness of distribution of the
associated weights. This entropy is the highest when the
distribution of weights over each representative element is
the same (p(rj |x) = 1/M ) for each x, i.e., when all x have
the same influence over every representative element. This
algorithm solves the following optimization problem

min
rj

min
p(rj |x)

D − TkH︸ ︷︷ ︸
:=F

at the kth iteration where Tk is a parameter called tem-
perature which tends to zero as k tends to infinity. The
cost function F is called Free Energy as this formulation
has a close parallel in statistical physics [9]. Clearly for
large values of Tk, we mainly attempt to maximize the
entropy. As Tk is lowered we trade entropy for the reduction
in distortion, and as Tk approaches zero, we minimize D
directly to obtain a hard (non random) solution. Minimizing
the Free Energy term F with respect to the association
probabilities p(rj |x) is straightforward and gives the Gibbs
distribution

p(rj |x) =
e−d(x,rj)/T

Z
, where (2)

Z :=
∑

i

e−d(x,ri)/T (3)

is called the partition function. The corresponding minimum
of F is obtained by substituting for p(rj |x) from Equation
2,

F̂ = −T

∫
D

p(x) log Z. (4)

To minimize F̂ with respect to the representative elements
{rj}, we set the corresponding gradients equal to zero i.e.,
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( ∂F̂
∂rj

= 0); this yields the corresponding implicit equations
for the locations of representative elements

rj =
∫
D

p(x|rj)xdx 1 ≤ j ≤ M (5)

where

p(x|rj) =
p(x)p(rj |x)∫

D p(x′)p(rj |x′)dx′ . (6)

Note that p(x|rj) denotes the posterior probability calcu-
lated using Bayes’s rule and the above equations clearly
convey the ‘centroid’ aspect of the solution.

The DA algorithm consists of minimizing F̂ with respect
to {rj} starting at high values of Tk and tracking its
minimum while lowering Tk. The steps at each k are

1) fix {rj} and use Equation 2 to compute the new
weights {p(rj |x)}.

2) fix {p(rj |x)} and Equation 5 to compute the repre-
sentative elements {rj}.

IV. MODIFIED DETERMINISTIC ANNEALING

ALGORITHM

In the original DA formulation, different resources are
indistinguishable since each of them carry equal weight.
However, there are situations where the capacity constraints
distinguish one resource from another. In order to account
for such capacity constraints, it is necessary to modify the
DA algorithm. For the specific problem of library design,
such a scenario occurs when we want to address the issue
of ‘representativeness’ of individual clusters in the final
library design. In order to constrain the size of each cluster,
it becomes necessary to distinguish between the various
locations of representative elements. Moreover, constraints
on the experimental resources also call for a modification
of the DA algorithm. In this section, we present two
modifications of the original DA algorithm for tackling the
issues faced in library design.

A. Incorporating the representativeness criterion

We present a modified version of the DA algorithm
for a capacity constrained problem. This modification is
necessary in order to incorporate the criterion of ‘repre-
sentativeness’ in the algorithm. As discussed in Section II,
such a criterion when used along with ‘diversity’ effectively
addresses the problem of avoiding ‘singletons’ in the library.

This can be achieved by choosing multiple compounds
at each representative element location. The multiplicity
λj at each location of the representative element rj can be
regarded as number of compounds that should be chosen
from that location. According to the nature of the problem,
the capacity (Wj) at each location of representative element
can be constrained. Taking this constraint into account, we
get the following constrained minimization problem:

min
rj ,1≤j≤M

∫
D

p(x)
{

min
1≤j≤M

d(x, rj)
}

dx

such that
λj = Wj 1 ≤ j ≤ M

Note here that a large value of λj implies that compounds
near the location rj need to be given more weight than those
at other locations. It should also be noted that although
the constraints do not seem to occur in the cost function
explicitly, they can be interpreted as the multiplicity (λj)
at each location. In terms of the DA algorithm, this can be
thought of as multiple units of resources at each location.
Taking this into account, the partition function in Equation
3 can be rewritten as

Z :=
∑

i

λie
−d(x,ri)/T

This leads to a modified Gibbs distribution and Free Energy
term. Following a procedure similar to that in the previous
section, we finally get

p(rj |x) =
λje

−d(x,rj)/Tk∑
i λie−d(x,ri)/Tk

This modified algorithm effectively addresses the issue of
‘diversity’ and ‘representativeness’ at the same time. The
value of Wj can be interpreted as the relative importance
of the clusters which we want to choose in the lead
generation library. Thus using this algorithm will not result
in the scenario portrayed by Fig.1. This algorithm gives
us an option for choosing the amount of ‘diversity’ and
‘representativeness’ that we want in a particular library.

B. Incorporating experimental resources constraints

In this section, we provide further modification to the DA
algorithm in order to account for constraints on experimen-
tal resources. In this scenario, we classify the library into q
types corresponding to experimental resources required by
the compounds for testing, i.e., the nth type of compound
requires the nth resource for testing. The algorithm modifi-
cation described in this section addresses the fact that there
are, necessarily, constraints on each of these resources in the
experimental process. This translates into direct constraints
on each of the representative elements, for example, the jth
representative element can avail only Wjn amount of the
nth resource. This type of a constraint is generally referred
to as multi-capacity constraint. [12].

The modified optimization problem is given by

min D =
∑

n

∫
D

pn(xn)
M∑

j=1

d(xn, rj)p(rj |xn)dxn

such that

λjn = Wjn 1 ≤ j ≤ M, 1 ≤ n ≤ q
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where pn(xn) is the probability distribution of the com-
pound corresponding to location xn, needing nth type of
resource and Wjn is the amount of nth resource that the
jth representative element can avail.

We proceed along the same lines as the DA algorithm by
defining the entropy term as

H = −
∑

n

∫
D

pn(xn)
M∑

j=1

p(rj |xn)logp(rj |xn)dxn

and minimizing the Free Energy given by F = D − TkH .
After some computations, we obtain the corresponding

Gibbs distribution as

p(rj |xn) =
λjne−d(xn,rj)/Tk∑
i λine−d(xn,ri)/Tk

Adding the constraints to this equation, we derive the new
Lagrangian given by

F
′
= −1/T

∑
n

∫
D

log(
∑

j

λjne−d(xn,rj)/T )pn(xn)dxn+

∑
j

∑
n

qjn(λjn − Wjn),

where qjn1 ≤ n ≤ q, 1 ≤ j ≤ M are Lagrange multipliers.
Finally, the optimal location of representative elements is
obtained by setting ∂F

′

∂rj
= 0. This gives the following set

of equations

rj =
∑

n pn(xn)p(rj |xn)xndxn∑
n pn(xn)p(rj |xn)dxn

where p(rj |xn) has been calculated as above.

V. SIMULATIONS AND RESULTS

A. Simulated Data Sets

For the purpose of simulation, the DA algorithm was
tested on two different types of data sets. The first set was
obtained as follows. 15 random locations were identified in
a square region of size 200 × 200. These locations were
then chosen as the cluster locations. Next, the size of each
of these clusters was chosen and all points in the cluster
were generated by a normal distribution of randomly chosen
variance. A total of 450 points comprised this data set.
Choosing 10 points from this data set results in a total of
8.4 ×1019 different possibilities.

The second data set was specifically designed to address
the problem of ‘diversity’ and ‘representativeness’ in the
lead generation library. In this set, cluster locations were
chosen so that a minority of the clusters were quite ‘di-
verse’, with the majority of cluster locations chosen close
together in a given region.

B. Simulation Results

Simulations were carried out (in MATLAB) on both data
sets described above. The results for data set 1 are shown
in Fig. 2. The DA algorithm is a hierarchical algorithm,
and thus it identifies natural clusters in the population at
each step. As the ‘temperature’ is decreased, the algorithm
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Fig. 2. Simulation results for data-set 1; (a) The locations of different
compounds and representative elements in the 2-d descriptor space. (b)
The weights associated with different locations of representative elements.
(c) The probability distribution of different compounds.

identifies the various clusters and sub-clusters in a hierar-
chical fashion. The pie chart in Fig. 2 shows the relative
weight that should be assigned to each representative ele-
ment. Representative elements with a large weight signify
that more compounds are chosen from that area. As was
required, the algorithm gave higher weights at locations
which had larger numbers of similar compounds. Thus
different relative weights at each resource location address
the issue of ‘representativeness’ in the library. At the same
time, it should be noted that the key issue of ‘diversity’
is not at all compromised in any sense. This is due to the
fact that the algorithm inherently recognizes the ‘natural’
clusters in the population. Thus a ‘unique’ compound (one
which is maximally diverse from all the others) will be
identified , but with a very small weight. This issue will be
further dealt with in the results for data set 2. Hence the DA
algorithm chooses a set of compounds which are diverse
(from each other) as well as representative for the entire
library. Fig. 3 shows the results for data set 2. The main
idea behind choosing such a data set was to demonstrate the
fact that ‘diversity’ alone cannot be used as an objective for
the design of lead generation libraries. As is seen from the
figure, the DA algorithm identifies all cluster locations. The
two cluster locations which were quite diverse from the rest
of the compounds are also identified albeit with a smaller
weight. As can be seen from the accompanying pie chart in
Fig. 3, the exception cluster was assigned a weight of 2%,
while the central lump was assigned a significant weight of
22%.

Another significant feature of the modified DA algo-
rithm is the flexibility it provides in dealing with ‘unique’
(i.e. far-away) clusters. By properly assigning the relative
importance of clusters apriori, we can choose whether to
include or reject these ‘unique’ clusters in the library design.
Though immediate rejection of ‘unique’ clusters compro-
mises the diversity of the library, there can be scenarios
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Fig. 3. Simulation results for data-set 2; (a) The locations of different
compounds and representative elements in the 2-d descriptor space. (b)
The weights associated with different locations of representative elements.
(c) The probability distribution of different compounds.

where the properties of these ‘unique’ cluster compounds
are totally undesired in the lead generation library. Thus the
modified DA approach gives us a means to deal with such
scenarios effectively.

Fig. 4 shows the results obtained by using the modified
algorithm for the case where constraints were imposed due
to the different experimental resources. The compounds
were classified into three types (denoted by ’green’, ’red’
and ’pink’ dots in Fig. 4). The algorithm was used to select
a total of 15 representative element locations. The ’blue’
crosses denote the locations chosen by the algorithm. This

Fig. 4. Simulation results (constraints due to experimental resources).
(a) Probability distributions of different types of compounds (based on
experimental resources required). (b) The locations of different compounds
and representative elements. (c) The capacities of each experimental
resource to different types.

modified DA algorithm was used for many test cases. The
essential feature of this algorithm is that it converges to the

global optimum each time, even for complex scenarios.

VI. CONCLUSIONS
In this paper, we have presented a new algorithm for the

design of a lead generation library for drug discovery, based
on a modified version of the DA algorithm. The modified
algorithm enables us to effectively and simultaneously ad-
dress the key issues of ‘diversity’ and ‘representativeness’
in the chosen lead generation library. At the same time, the
algorithm does not get stuck in local optima. Simulation
results have been presented for different capacity constraints
using three different simulated data sets.

Due to the inherently large size of present day combina-
torial libraries, the scalability of this algorithm needs to be
studied further. Since the present algorithm operates in a 2-
d space, modifications are being evaluated for incorporating
higher dimensions. The metric used for calculating distance
between two points can be modified to include additional
criteria in the optimization problem.

The DA algorithm effectively addresses the issue of
locating ‘inherent’ clusters in a given population. The next
step would be to identify the sub-clusters within inherent
clusters and further, requiring a modification in the basic
annealing algorithm so that it works in a recursive fashion.
The issue of recursive clustering using the present DA
algorithm is being considered.

The next step in drug discovery is usually the design of a
lead optimization library, in which the main criterion is that
of ‘similarity’ (to the lead compounds). The existing DA
algorithm can be further modified to address this problem
effectively. This issue is also being considered by the
authors at present.
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