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Abstract— As a natural extension of our recent work on
finding optimal feedback control laws based on generating
functions of a Hamiltonian system, we consider an optimal
control problem with control constraints and a singular opti-
mal control problem. For the problem with control constraints,
we consider the time optimal control of the double integrator,
and show that our approach can recover the necessary and
sufficient conditions of optimal feedback control laws directly.
For the singular optimal control problem, we study the linear
quadratic problem and show that our method reproduces the
conventional solution satisfying the necessary conditions for
optimality. The current study is used to more fully understand
our approach with the goal of defining a method that is
applicable to more general systems.
Key Words. Minimum-time problem, Singular Opti-
mal Control, Hamiltonian System, Generating Function,
Hamilton-Jacobi Equation, Legendre Transformation

I. INTRODUCTION

Over the past 40 years, there have been tremendous
developments in solving optimal control problems with
control bounds and with singular control intervals. However,
these problems remain challenging due to the inherent
switching structure of the control which is not known a
priori, the possible existence of singular control regimes,
non-smoothness, and the possible singularity of the cost
function. These technical difficulties have been serious
barriers for all approaches, including the two main branches
of inquiry; necessary conditions for optimality derived from
Pontryagin’s principle [1], and employment of the sufficient
condition characterized by the Hamilton-Jacobi-Bellman
(HJB) equation [2].

Recently, Park and Scheeres studied the optimal feedback
control problem in the context of Hamiltonian dynamical
systems [3][4][5]. They formally proved an underlying link
between the optimal cost function and a generating function
for a class of canonical transformations. This enabled them
to devise a systematic methodology to evaluate the optimal
feedback control and cost function satisfying both neces-
sary and sufficient conditions, with the assumption of no
constraints on states and control variables and of an analytic
cost function. This approach was successfully applied to a
nonlinear optimal control problem [6].

The current work is an extension of this approach into
problems with control bounds and singular optimal control
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problems. The whole document is structured as follows. We
formulate the optimal control problem as a Hamiltonian
system. Then, we present a theorem which relates the
optimal cost function and a certain kind of generating
function, and discuss its implications. (section II).

We first consider a simple yet representative time optimal
problem subject to control constraints. Given the limitation
of solving the HJB equation directly due to the inherent sin-
gularity at the terminal boundary condition, we alternatively
solve the Hamilton-Jacobi (HJ) equation for a certain gener-
ating function whose terminal boundary condition is always
well-defined and non-singular. Then, this is transformed into
the cost function. Unlike conventional methods based on the
necessary conditions, our solution satisfies both necessary
and sufficient conditions simultaneously. The cost of these
favorable properties lies in the increase of dimension; for a
system with n states, we must take into account 2n variables
in the HJ equation for a generating function, whereas the
HJB equation is a function of n states (section III).

Next we show that our method applies to the traditionally
difficult singular problems encountered in optimal control
problems. Studying the linear quadratic singular optimal
control problem, we show that our approach reproduces the
same solution as the conventional approach based on the
necessary conditions, and indicate how our approach can
be directly generalized to nonlinear systems (section IV).

II. GENERATING FUNCTIONS FOR SOLVING OPTIMAL

FEEDBACK CONTROL PROBLEMS

Consider minimization of the following performance in-
dex

J = φ(x(tf ), tf ) +
∫ tf

t0

L(x(τ), u(τ), τ)dτ

subject to the following system with initial condition

ẋ(t) = F (x(t), u(t), t) , x(t0) = x0

Here x ∈ �n, u ∈ �m, t ∈ �, φ(x(tf ), tf ) : �n ×� → �,
L(x(τ), u(τ), τ) : �n×�m×� → �, and F (x(t), u(t), t) :
�n × �m × � → �n. Also t0 and tf represent the
initial and terminal time index, respectively. We impose the
relevant control bounds later. For the terminal boundary
conditions, two extreme types are treated: (1) terminal
states are completely specified to a fixed point in �n

and (2) terminal states are completely unspecified. Given
this problem statement, our objective is to evaluate the
optimal trajectory which minimizes the cost function and
satisfies the imposed boundary conditions and constraints,
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and to find the optimal feedback control law for a domain
considered in (x, t) ∈ �n ×�.

First define the pre-Hamiltonian H̄ as

H̄(x, λ, u, t) = L(x, u, t) + λT F (x, u, t) (1)

where λ represents the costates. Then, Pontryagin’s princi-
ple provides the necessary conditions for optimality [7]:

ẋ = H̄λ(x, λ, u, t) (2)

λ̇ = −H̄x(x, λ, u, t) (3)

u∗(x, λ, t) = arg min
ū

H̄(x, λ, ū, t) (4)

Substituting (4) into (1), (2), and (3) defines a Hamiltonian
canonical system for states and costates only:

H(x, λ, t) = H̄(x, λ, u∗(x, λ, t), t) (5)

ẋ = Hλ(x, λ, t) (6)

λ̇ = −Hx(x, λ, t) (7)

Evaluating the (candidate) optimal trajectory corresponds
to solving this system of ordinary differential equations
(ODEs) satisfying the relevant boundary conditions. If the
terminal states are not specified, then the transversality
condition provides n additional boundary conditions at the
terminal time [7]:

λ(tf ) =
∂φ(x(tf ), tf )

∂x(tf )
, (8)

Since the total 2n boundary conditions are split, the optimal
control problem is reduced to a two point boundary value
problem (TPBVP).

Finally the candidate optimal trajectory found from this
TPBVP should satisfy the sufficient condition for optimal-
ity, which is given by the following theorem [8]:

Theorem 2.1 (Sufficient Condition for Optimality): If
J(x, t) is sufficiently smooth and satisfies the Hamilton-
Jacobi-Bellman (HJB) equation with the given boundary
condition

∂J

∂t
(x, t) + min

ū
H̄

(
x,

∂J

∂x
, ū, t

)
= 0 (9)

J(xf , tf ) = φ(xf , tf ),

then it is the optimal cost function. Furthermore, the optimal
control law is determined from

u = arg min
ū

H̄

(
x,

∂J

∂x
, ū, t

)
.

As is seen, this traditional procedure consists of two
steps; first the candidate optimal trajectory is evaluated from
the necessary condition, and then it is checked to see if
it satisfies the HJB equation. This procedure is caused by
the extreme difficulty of solving the HJB equation directly;
except for very simple formulations the HJB equation does
not have closed form solutions. Furthermore, for some
types of boundary conditions, the HJB equation becomes
singular at the terminal time [3], which adds to the problem
difficulty.

Instead of this traditional two-step procedure, we employ
our recently developed technique. We treat the trajectory
(x(t), λ(t)) as a transformation between terminal coordi-
nates (x, λ, t) and initial coordinates (x0, λ0, t0), which
is by definition a canonical transformation1. Then, using
generating functions of the given canonical transformation,
we evaluate the optimal trajectory, which satisfies both
necessary and sufficient conditions simultaneously. The
following theorem justifies our single-step approach:

Theorem 2.2 (Optimal Cost and Control Law from F1):
Let xf be the (fixed) terminal state at tf and x be the
(moving) initial state at t. Also let F1(xf , x, tf , t) be
a generating function for the given phase flow. Then,
F1 satisfies the necessary conditions of the TPBVP by
definition. Also, the function

V (x, t) = −F1(xf , x, tf , t) + φ(xf , tf )

is the optimal cost function and satisfies the HJB equation
and the sufficient conditions. Furthermore, the optimal
feedback control can be expressed as

u = arg min
ū

H̄

(
x,

∂V (x, t)
∂x

, ū, t

)
Proof Refer to Park and Scheeres [5].

III. APPLICATION TO OPTIMAL CONTROL PROBLEM

WITH CONTROL CONSTRAINTS

In the above theorem, we make no assumption on whether
the control is bounded, assumptions made in our previous
investigations in [3] and [4]. Thus, to show this generality in
our approach we first consider a system with discontinuity
and constraints on its controls.

A. Problem Formulation

We consider a simple yet representative time optimal
control of a double integrator system: minimize

J =
∫ tf

t0

dt

subject to the double-integrator system with control con-
straints: [

ẋ1

ẋ2

]
=

[
x2

u

]
, |u| ≤ 1 (10)

The initial and terminal boundary conditions are given by[
x1(t0)
x2(t0)

]
=

[
x10

x20

]
,

[
x1(tf )
x2(tf )

]
=

[
x1f

x2f

]
Define the pre-Hamiltonian as

H̄(x, λ, u, t) = 1 + λ1x2 + λ2u

Then, the costate equations are[
λ̇1

λ̇2

]
=

[
0

−λ1

]
⇒

[
λ1

λ2

]
=

[
c1

−c1t + c2

]
(11)

1Refer to Greenwood [9], Goldstein [10], and Guibout and Scheeres
[11] for a review of canonical transformations and generating functions.
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where c1 and c2 are constants compatible with the given
boundary condition. Pontryagin’s principle yields the opti-
mal control logic:

u = arg min
ū

H̄(x, λ, ū, t) = −sgn(λ2),

which enables us to evaluate the Hamiltonian as a function
of states and costates:

H(x, λ, t) = 1 + λ1x2 − |λ2|
Also the transversality condition for free final time provides
[7]

H(tf ) = 1 + λ1(tf )x2(tf ) − |λ2(tf )| = 0 (12)

As is seen, the optimal control is determined by the sign of
λ2, which is a linear function in time t. The singular interval
exists only if c1 = c2 ≡ 0. However, then the Hamiltonian
H(t) ≡ 1, which violates (12). These arguments imply that
there do not exist any singular intervals and we have only
4 possibilities for the optimal control logic:

u = ∓1 , ∓1 → ±1

B. The Traditional Approach and its Drawbacks

Integrating backward with this control logic and enforc-
ing the corner condition for each switching case, we have
the following candidate solutions case-by-case: [8]

• If u = ∓1, then

(x10, x20) ∈ {(x1, x2)|(x1 − x1f ) ± 1

2
(x2

2 − x2
2f ) = 0} (13)

J = ±(x20 − x2f ) (14)

• If u = ∓1 → ±1, then

{(x1, x2)|(x1 − x10) ± 1

2
(x2

2 − x2
20) = 0, t ∈ [t0, ts]} (15)

{(x1, x2)|(x1 − x1f ) ∓ 1

2
(x2

2 − x2
2f ) = 0, t ∈ [ts, tf ]} (16)

ts = t0 ± x20 +

√
±4(x10 − x1f ) + 2(x2

20 + x2
2f

)

2
(17)

J = ±(x20 + x2f ) +

√
±4(x10 − x1f ) + 2(x2

20 + x2
2f

) (18)

It can be verified that the optimal cost (14) and (18) satisfy
the sufficient condition characterized by the HJB equation:

1 +
∂J

∂x1
x2 −

∣∣∣∣ ∂J

∂x2

∣∣∣∣ = 0 , J(xf , tf ) = 0,

thus it is indeed the optimal solution.
Here we observe that this procedure consists of two

steps: first it employs the necessary conditions to derive the
candidate optimal control and the corresponding optimal
trajectory, and then it checks the sufficient condition by
introducing this candidate solution into the HJB equation.

On the other hand, it is extremely difficult to solve the
HJB partial differential equation (PDE) directly. In fact,
observing the stationarity of the Hamiltonian with respect to
time, we know that ∂J/∂t = 0. Then, we split the case into
∂J/∂x2 > 0 and ∂J/∂x2 < 0, which results in two linear

u = −1

u = +1
u = +1

x
1
 = 0.5x

2
2

u = −1

x
1
 = −0.5x

2
2

Fig. 1. Time-Optimal Control Logic for Double Integrator System
(Terminal Condition at the Origin)

first order PDEs. The traditional method of characteristics
yields the optimal cost as an arbitrary function of specific
arguments. That is,

J = ±x2 + f±

(
x1 ± 1

2
x2

2

)

However, it turns out that we cannot determine f± due to
the inherent singularity of the boundary conditions:

J(0) = 0 = f±(0)

If we could find the ‘true’ optimal control satisfying both
necessary and sufficient conditions by a single process,
it would greatly facilitate the whole solution procedure
and yield the optimal trajectory with greater ease. As an
attempt towards that goal, we use our recently developed
technique based on the theory of canonical transformations
and generating functions.

C. Evaluation of Optimal Solution by Generating Function

Instead of resorting to the conventional two step process
in the previous section, we use our recently developed single
step procedure based on Theorem 2.2. Our goal is to find
F1, which provides the optimal cost and the associated
optimal control logic by Theorem 2.2. F1 is, by definition,
the solution to the associated HJ equation

∂F1

∂t
+ H

(
x,

∂F1

∂x
, t

)
= 0

To solve the HJ equation for a generating function requires,
at the least, that the functional form of the generating
function be specified at some epoch2. It turns out that for our
canonical transformation we cannot define a priori such a
functional form for F1 at any epoch, whereas we can for the
related generating function F2. Recall that for our canonical
transformation the old and new coordinates are equal when

2Refer to [4], [5], and [11] for more detailed description of the solution
of HJ equations along with their boundary conditions.
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t = t0. Using the associated state-costate relations for F2,
we can show that F2(x, λ0, t = t0, t0) = xT λ0 generates
this identity transformation

x0 =
∂F2

∂λ0
= x , λ =

∂F2

∂x
= λ0.

Therefore, given the Hamiltonian of a system, we can
solve the HJ equation for F2 from the initial time and
then evaluate the F1 through the Legendre transformations
[9][10][11]:

F1 = F2 − xT
0 λ0 (19)

Now consider the HJ equation for F2 instead of F1:

∂F2

∂t
+ H

(
x,

∂F2

∂x
, t

)
= 0

From the stationarity of Hamiltonian and the transversality
condition (12), we see that ∂F2/∂t ≡ 0, which results in

1 +
∂F2

∂x1
x2 −

∣∣∣∂F2

∂x2

∣∣∣ = 0 , F2(x, λ0, t = t0, t0) = x1λ10 + x2λ20

We split the case into ∂F2/∂x2 > 0 and ∂F2/∂x2 < 0.
Then, the HJ equation becomes

∂F2

∂x1
x2 ∓ ∂F2

∂x2
= −1.

Noting that the PDE is linear, we can solve it by the method
of characteristics:

dx1

x2
=

dx2

∓1
=

dλ10

0
=

dλ10

0
=

dF2

−1

⇒

⎧⎪⎪⎨
⎪⎪⎩

−1
dF2

= ∓1
dx2

⇒ F2 ∓ x2 = c1
x2
dx1

= −1
dx2

⇒ x1 + 1
2x2

2 = c2

−dλ10 = 0 ⇒ λ10 ≡ constant
−dλ20 = 0 ⇒ λ20 ≡ constant

⇒ F2 = ±x2 + f∓

(
x1 ± 1

2
x2

2, λ10, λ20

)
where f∓ is an arbitrary function of the given arguments.

Now introducing the initial boundary condition yields

x10λ10 + x20λ20 = ±x20 + f∓
(

x10 ± 1

2
x2
20, λ10, λ20

)
⇒ f∓

(
x10 ± 1

2
x2
20, λ10, λ20

)
= x10λ10 + x20λ20 ∓ x20

where x10 and x20 are constants. Hence, F2 is

F2 = ±(x2 − x20) + x10λ10 + x20λ20

With the aid of the Legendre transformation (19), we obtain
F1 in the case where no switching occurs:

F1(xf , x0, tf , T ) = ∓(x20 − x2f ).

It is seen that J = −F1 is equivalent to (14) in the previous
section.

It is in the indirect procedure of determining F1 where
the advantage of our method lies. Unlike the HJB equation
for the optimal cost, the HJ equation for F2 always has
a non-trivial boundary condition defined by the identity
transformation, which helps us solve for F2. Then F1 can

be obtained by the Legendre transformation, directly giving
us the optimal cost and the corresponding optimal control
logic by Theorem 2.2.

It remains to evaluate F1 when there is a switching
in control logic. Consider first the case of u = −1 →
+1. If we integrate the system for u = −1 with the
initial condition and u = +1 with the terminal condition
separately, we can obtain the optimal trajectories (15)-(16).
Forcing continuity at the switching time ts, we have the
coordinates (x1s, x2s):

x1s =
x10 + x1f

2
+

x2
20 − x2

2f

4

x2s = −
√

4(x10 − x1f ) + 2(x2
20 + x2

2f )

2

Then, integrating system (10) from t0 to ts yields

ts = t0 + x20 +

√
4(x10 − x1f ) + 2(x2

20 + x2
2f )

2

Also noting that the total elapsed time is simply the addition
of both elapsed times before and after the switching time,
we have3.

tf − t0 = |x20 − x2s| + |x2f − x2s|
= (x20 + x2f ) +

√
4(x10 − x1f ) + 2(x2

20 + x2
2f

)

Now note that we have two constraints: 1) λ2(ts) = 0
from the switching condition and 2) H(tf ) = 0 from the
transversality condition. Introducing these conditions into
(11) determines c1 and c2:

c1 =
2√

4(x10 − x1f + 2(x2
20 + x2

2f )

c2 = 1 +
2(t0 + x20)√

4(x10 − x1f + 2(x2
20 + x2

2f )

Then the state-costate relations for F1 yield

λ10 = − ∂F1

∂x10
= c1

λ20 = − ∂F1

∂x20
= −c1t0 + c2

λ1f =
∂F1

∂x1f
= c1

λ2f =
∂F1

∂x2f
= −c1tf + c2

3In fact, for the minimum time problem we do not necessarily evaluate
F1 for the switching case since the elapsed time tf − t0 itself is the
cost function. Once we find the optimal cost function, we can directly
evaluate the optimal control from the optimal cost function. However, we
still derive how to find F1 for the switching case since it is useful for other
formulations where the cost function to be minimized is not the terminal
time.
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Integrating with respect to each dependent variable
(x10, x1f , x20, x2f ) sequentially yields

F1 = −(x20 + x2f ) −
√

4(x10 − x1f ) + 2(x2
20 + x2

2f )

(u = −1 → +1)

Also, similar arguments lead to F1 for u = +1 → −1:

F1 = +(x20 + x2f ) −
√

−4(x10 − x1f ) + 2(x2
20 + x2

2f )

(u = +1 → −1)

It can be easily seen that the cost function for the switching
case is equivalent to (18).

All these results serve as an explicit example of the fact
that our previous results on the relation between the optimal
cost function and the F1 generating function hold regardless
of control constraints. Also note that we evaluated F1 for
the switching control logic solely based on F1 for the two
simple cases of no switching. Our methodology is a stand-
alone technique of solving optimal control problems, which
satisfies both necessary and sufficient conditions.

Finally, we state F2 for completeness:

F2(xf , λ0, t) =

⎧⎪⎨
⎪⎩

±x2f + x10λ10 + x20λ20 ∓ x20 , (u = ∓1)

±λ2
20−2λ20∓1

2λ10
∓ x2f + x1f λ10 ∓ x2

2f
λ10

2
,

(u = ∓1 → ±1)

Here x10 and x20 can be considered as free variables, which
are independent of xf and λ0. It can be easily verified that
F1 and F2 are linked via the Legendre transformation.

IV. APPLICATION TO SINGULAR OPTIMAL CONTROL

PROBLEM

As a second illustration, we consider a generic problem
in singular control. Here we again show that the solution
satisfying all the necessary conditions for singular control
can be found by first solving a different HJ equation with
non-trivial boundary conditions and then transforming to
the F1 generating function. The general sufficient condition
for a singular control problem has not been found.

A. Problem Formulation

Consider minimizing a quadratic cost function

J =
1
2
xT (tf )Qfx(tf ) +

1
2

∫ tf

t0

xT (t)Q(t)x(t)dt

subject to the linear system with initial condition

ẋ = Ax + Bu , x(t0) = x0

Here Q, Qf , A ∈ �n×n, and B ∈ �n×m. We assume that
Qf and Q(t) are positive semidefinite and that the terminal
time tf is fixed. If we define the pre-Hamiltonian as

H̄ =
1
2
xT Qx + λT (Ax + Bu), (20)

then the costate equations and transversality conditions are,
respectively, from the 1st order necessary conditions

λ̇ = −Qx − AT λ, λ(tf ) = Qfx(tf )

Also the optimality condition is

Hu = λT B = 0 (21)

Note that the optimality condition yields a singular arc; it
does not contain the control variables and does not provide
the control law in itself. In order to derive an expression for
the control variable, we take time derivatives of Hu until
the control variable appears:

d

dt
Hu = λ̇T B = 0 ⇒ −(λT A + xT Q)B = 0 (22)

d2

dt2
Hu = −λ̇T AB − ẋT QB = 0

⇒ (λT A + xT Q)AB − (xT AT + uT BT )QB = 0

⇒ u = −(BT QB)−1BT [(QA − AT Q)x − AT AT λ],

if BT QB is nonsingular (23)

(20), (21), and (22) represent 2m+1 equations which define
the locus of possible singular arcs in the 2n-dimensional
(x, λ) space. (23) is the linear feedback control law that
one obtains on a singular arc. The Kelley condition [7]

− ∂

∂u

[
d2

dt2

(
∂H

∂u

)T
]

= BT QB ≥ 0

is satisfied since we assume that Q is positive semidefinite.

B. Evaluation of Optimal Solution by Generating Function
Introducing the feedback control law into the Hamilto-

nian and the state and adjoint equations yields

H =
1

2
xT Qx + λT [A − B(BT QB)−1BT (QA − AT Q)]x

+λT B(BT QB)−1BT AT AT λ

ẋ = [A − B(BT QB)−1BT (QA − AT Q)]x

+[B(BT QB)−1BT AT AT + AAB(BT QB)−1BT ]λ

λ̇ = −Qx − [AT − (QA − AT Q)T B(BT QB)−1BT ]λ

Considering the condition Hu ≡ 0 and Ḣu ≡ 0 simultane-
ously, we have[

BT

BT AT

]
λ =

[
0

−BT Q

]
x

Assuming the pre-multiplied matrix [B AB]T are square
(that is, 2m = n) and invertible, we have

λ =
[

BT

BT AT

]−1 [
0

−BT Q

]
x = Kx (24)

Introducing (24) into (23) yields the singular optimal strat-
egy:

u = −(BT QB)−1BT [(QA − AT Q) − AT AT K]x,

if BT QB is nonsingular (25)

Now in order to study the relation between the singular
optimal cost function and the F1 generating function, we
first evaluate F2(x, λ0, t; t0), as in regular optimal control
problems. Observing that the Hamiltonian is quadratic, F2
can be expressed as a quadratic form:

F2(x, λ0, t; t0) =
1

2

[
x
λ0

]T [
Fxx(t, t0) Fxλ0 (t, t0)
Fλ0x(t, t0) Fλ0λ0 (t, t0)

][
x
λ0

]
856



The quadratic Hamiltonian in matrix form is

H =
1

2

[
x
λ

]T [
Hxx Hxλ

Hλx Hλλ

][
x
λ

]
=

1

2

[
x
λ

]T [
Q · · ·

A − B(BT QB)−1BT (QA − AT Q) · · ·
[A − B(BT QB)−1BT (QA − AT Q)]T

B(BT QB)−1BT AT AT + AAB(BT QB)−1BT

][
x
λ

]
=

1

2

[
x
λ0

]T [
I Fxx

0 Fλ0x

] [
· · ·

] [
I 0

Fxx Fxλ0

] [
x
λ0

]
where the following relation has been used:

λ =
∂F2

∂x
=

[
Fxx Fxλ0

] [
x
λ0

]

Finally introducing the above quadratic expression to the
Hamilton-Jacobi equation for F2 and considering each sub-
matrix component, we have the following matrix differential
equations for Fxx(t, t0), Fxλ0(t, t0), and Fλ0λ0(t, t0)

0 = Ḟxx + Hxx + FxxHλx + HxλFxx + FxxHλλFxx

0 = Ḟxλ0 + HxλFxλ0 + FxxHλλFxλ0

0 = Ḟλ0λ0 + Fλ0xHλλFxλ0

with initial conditions derived from the identity transfor-
mation F2(x, λ0, t = t0; t0) = xT λ0:

Fxx(t0, t0) = 0 , Fxλ0(t0, t0) = I , Fλ0λ0(t0, t0) = 0

We can now evaluate F1 from the Legendre transformation,
along with the relation λ = Kx → λ0 = Kx0:

F1 = F2 − xT
0 λ0

=
1

2
xT Fxxx + xT Fxλ0Kx0 + xT

0 (
1

2
KT Fλ0λ0K − K)x0

From the state-costate relations for F2, we have

x0 =
∂F2

∂λ0
= Fλ0xx + Fλ0λ0λ0

Introducing λ = Kx or λ0 = Kx0, we can rearrange this
equation for x:

x = F−1
λ0x(I − Fλ0λ0K)x0

where the relevant matrices are assumed to be invertible.
Finally introducing this into (26) yields F1 as a function of
initial condition only:

F1 =
1

2
xT
0 [(I − KT Fλ0λ0 )F−1

xλ0
FxxF−1

λ0x(I − Fλ0λ0K)

+2(I − KT Fλ0λ0 )K + (KT Fλ0λ0K − 2K)]x0

Again from Theorem 2.2, we have J = −F1, and is the
same as the (candidate) optimal cost from the traditional
method [8].

So far we have demonstrated how to solve the linear
quadratic singular optimal control problem by using gener-
ating functions. Deriving the singular optimal control logic
from the optimality condition and its auxiliary conditions,
we determine the quadratic Hamiltonian for states and
costates. Noting that it is difficult to solve the HJ equation
for F1 directly, we solve for F2 and convert it into F1 via
the Legendre transformation. Then by 2.2, we determine the
(candidate) optimal cost function.

Under the assumption of analyticity of the cost function
and the system, we can expand the Hamiltonian as a Taylor
series in the states and adjoints. Then, this procedure can
be generalized and applied to a nonlinear system with
(possibly) non-quadratic performance index by expanding
the generating functions in Taylor series form. For a more
detailed description of such higher order problems, we refer
to Park and Scheeres [5] and Guibout and Scheeres [11].

V. CONCLUSION

We have studied the application of Hamiltonian dynam-
ical system theory to the optimal control problem. We
have shown that our proposed method can be extended to
more general problems with control constraints and singular
optimal control problems. In spite of these generalizations,
a fundamental relation still holds between the optimal cost
function and the F1 generating function. Then, employing
this relation, we have investigated some novel solution pro-
cedures. For the problem with control constraints, our pro-
cedure provided the optimal solution satisfying both neces-
sary and sufficient conditions for optimality simultaneously.
For the singular optimal control problem, it reproduces the
solution from traditional methods satisfying both the 1st
order necessary conditions and the generalized Legendre-
Clebsche condition. Though we consider a specific system
for each application, our results imply that our solution
procedure can be applied to more general optimal control
problems with control constraints and singular intervals.
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