
 
Abstract— Earlier work used partial invariance to identify 

regions in state space where feedback linearization can be used 
despite the presence of unstable inverse dynamics. Such 
regions can be used as terminal regions in MPC with obvious 
advantages. Considering SISO bilinear systems, this paper 
exploits the fact that feedback linearization steers the state to 
the kernel of the output map. By restricting attention to this 
kernel, the paper develops results allowing for significant 
enlargement of the terminal region. Expressions are also given 
for maximal partially invariant sets, the recursive use of which 
leads to significant further enlargement. 

I. INTRODUCTION

The consensus in linear MPC [1] employs a dual mode 
prediction paradigm which splits the prediction horizon into 
two modes. The near future comprises a finite horizon in 
which control moves are treated as degrees of freedom. For 
the subsequent infinite prediction horizon a terminal 
feedback law is assumed. To ensure constraints satisfaction 
this is defined to be feasible within a terminal set (usually 
an invariant ellipsoid). In the interest of optimality it is 
usual to choose the terminal control law as the LQ-optimal 
for a given cost penalizing deviations from steady state.  

The dual prediction mode paradigm carries over to the 
nonlinear case but computation of an optimal terminal law 
is not generally tractable. Input-Output Feedback Lineariz-
ation (IOFL) provides an attractive remedy and has been 
used in nonlinear MPC (e.g. [2]), and in particular its use as 
a terminal control has been exploited (e.g. [3]). However 
the existence of unstable equilibria as well as issues of 
feasibility and variable relative degree limit the size of 
potential invariant sets and in some instances preclude the 
definition of such sets altogether. It then becomes necessary 
to use suboptimal control laws, but the use of optimal IOFL 
(OIOFL) can still be beneficial in their design. This issue 
was addressed in [4] in the context of SISO bilinear 
systems, where sets were defined which, relative to a given 
terminal set, are Partially Invariant and Feasible (PIF) under 
IOFL. PIF implies that under OIOFL the state at the next 
instant enters a terminal set which is invariant and feasible 
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(IF) under the terminal control law (which itself could be 
the OIOFL, if that is possible, or some other law otherwise). 

The computation of IF sets for nonlinear systems is non-
trivial and to reduce computational complexity, [4] 
considered the use of low-complexity polytopes. However 
even for SISO bilinear systems, the conditions for 
invariance are nonlinear, making the problem of designing 
IF polytopes of maximum volume nonconvex. To avoid this 
difficulty, [4] used sufficient conditions based on over-
bounding auxiliary polytopes. Auxiliary polytopes were 
also used to define low-complexity polytopes which, under 
IOFL, are PIF with respect to given IF polytopes. The use 
of low-complexity polytopes restricts the size of PIF sets 
and therefore limits the benefits of OIOFL control laws. 

The present paper also considers SISO bilinear systems 
and proposes extensions that increase significantly the PIF 
set. This is achieved by exploiting the fact that OIOFL 
causes the next state to lie in the kernel of the output map C. 
By restricting attention to IF sets in the kernel of C, sets are 
obtained which are necessarily larger than the intersections 
of the earlier IF sets with the kernel of C. Correspondingly, 
this analysis allows for the definition of larger PIF sets. The 
paper then considers the problem of defining maximal PIF 
sets and through these proposes a procedure for enlarging 
IF sets in the kernel of C, and consequently for enlargement 
of the maximal PIF sets. PIF sets (or more conveniently 
suitably inscribed polytopic sets) can be used as terminal 
sets in the dual prediction mode paradigm. To illustrate the 
results we use a simple example allowing easy visualization 
of the benefits of the procedures developed in the paper.  

II. EARLIER WORK

Consider the SISO bilinear system with model: 

( 1) ( ) ( ( )) ( ), ( ) ( ), nx k Ax k B Fx k u k y k Cx k x+ = + + = ∈R  (1) 

and input constraints ( ) { : }u k U u u u∈ = ≤ , for which the 

OIOFL control law 

, 0
CAx

u CB CFx
CB CFx

= − + ≠
+

 (2a,b) 

minimizes the cost  

2

0

( )
k

J y k
∞

=

=∑ . (3) 
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This is the usual regulation MPC cost, with the difference 
that it does not penalize control activity; in the past 
penalizing control has been used as a device for avoiding 
constraint violations. However this device is not needed 
here because input constrains are accounted for explicitly.  

The law of (2) results in zero predicted cost and is thus 
optimal, but it may not converge to desired equilibrium 
points. The usual remedy is to deploy instead the LQR 
optimal for the linearization of (1) about a given 
equilibrium point. However such a terminal control law is 
clearly suboptimal and in may also result in a small terminal 
IF set. Instead [4] proposes a bilinear controller:

1 T

Kx
u

xµ
= −

+
(4) 

with ,K µ  chosen to maximize the volume of the low-

complexity polytope 

( ) { | 1}, n nV x Vx V ×
∞

Π = ≤ ∈R  (5) 

under the IF conditions 

( )
1 , 1

1
T

T

B Fx K
V A x Cx Kx u x

x
ε µ

µ
∞

⎡ ⎤+− ≤ − ≤ +⎢ ⎥+⎣ ⎦
 (6) 

The parameter ε  is a tuning knob that can be used to 
compromise between the need to maximize the volume of 

( )VΠ  and dynamic performance (given that ε  controls the 
upper bound on convergence rate within ( )VΠ . For 
simplicity in the sequel it will be assumed that 0ε = . 
However even with this assumption, (6a) is nonlinear and to 
reduce complexity [4] introduces an auxiliary polytope 

ˆ( )VΠ  which is made to over-bound ( )VΠ  and then 
invokes a sufficient condition for (6) in terms of the vertices 

ˆ,i iw w  of ( )VΠ , ˆ( )VΠ , respectively: 

ˆ ˆ(1 ) ( ) (1 )

(1 )

ˆ 1

T T
i j i j i

T
i i

i

V w Aw B Fw Kw w

Kw w u

Vw

µ µ

µ
∞

∞

⎡ ⎤+ − + ≤ +⎣ ⎦

≤ +

≤

 (7a-c) 

where (7a) ensures invariance, (7b) feasibility, and (7c) the 
over-bounding of ( )VΠ  by ˆ( )VΠ . With this formulation it 
is possible to perform the volume maximization for ( )VΠ
recursively via a succession of convex optimizations which 
give a monotonic increase in volume. 

The OIOFL law (2) is optimal with respect to (3) 
whereas (4) is not. The only reason for using (4) instead of 
(2) is to avoid instability, e.g. in the neighbourhood of an 
unstable equilibrium point. The question therefore arises 
whether there are regions of state space where (2) can be 
used while preserving convergence to the equilibrium point. 
The answer is given in [4] in terms of sets which, under (2), 
are PIF w.r.t. a set that is IF under (4). Thus for any initial 
condition in the PIF set, under (2) the state will either 
remain in the PIF set, in which case (2) remains applicable, 

or will enter the IF set in which case the controller can 
switch to (4). Sufficient conditions for a set ( )VΠ  with 
vertices jw  to be PIF w.r.t. ( )VΠ  are: 

( ) ( )i j i j iV CB CFw Aw B Fw CAw CB CFw
∞

⎡ ⎤+ − + ≤ +⎣ ⎦  (8) 

and that ( )x V∈ Π  satisfies either the conditions 

( ) , ( ) , ,C A uF x uCB C A uF x uCB CFx CB− + < − < − <  (9a) 

or the conditions 
( ) , ( ) , .+ <− − − <− < −C A uF x uCB C A uF x uCB CFx CB  (9b) 

Like (6), (8) is nonlinear and to reduce computational 
complexity, [4] makes use of an over-bounding polytope 
with vertices jw , allowing use of a sufficient condition for 
(8) in which jw  is replaced by jw . This condition is linear 
in iw  and hence enables successive maximization of the 
volume of the PIF polytope through recursion of a convex 
optimisation problem. It is noted that, depending on which 
of (9a) and (9b) holds, (8-9) lead to the definition of two 
separate sets denoted by ( )V+Π  and ( )V−Π  respectively 
and it is the union of these two sets which is PIF.  

III. RESTRICTIONS IN THE KERNEL OF C

A major obstacle to use of IOFL is non-minimum phase 
characteristics, which imply potential cancellation of 
unstable internal dynamics. To overcome this problem [4] 
introduced the bilinear control law (4), however as 
demonstrated by example, non-minimum phaseness does 
not preclude the possibility of convergence to stable 
equilibrium points. Below we consider this case first, 
extensions to the general case (through the use of stabilizing 
controllers such as (4)) are straightforward and are 
considered later in this section. Without loss of generality it 
will be assumed that the stable equilibrium point is at the 
origin; this can always be achieved through the shift 
transformations oz x x= − , ov u u= −  where ox , ou  denote 
the equilibrium values, so that (1) becomes 

( 1) ( ) ( ( )) ( ), ,o o o o o oz k A z k B Fz k v k A A u F B B Fx+ = + + = + = +  (10) 

The starting point here is the following simple observation. 
Lemma 3.1 Provided the current state is in the feasible 

set defined by { : }x CAx u CB CFxΓ = ≤ + , the optimal 
IOFL steers the next state into the kernel of C , denoted K . 

Proof: For ( )x k ∈ Γ , under optimal OIOFL we have 
( )

( 1) ( ) [ ( )]
( )

CAx k
x k Ax k B Fx k

CB CFx k
+ = − +

+
 (11) 

so that ( 1) 0Cx k + = . Note that, for ( )x k ∈ Γ , (2) tends to a 
limit less than u  in modulus as 0CB CFx+ → .     

As explained in Section 2, (8) is a sufficient condition for 
( )VΠ  to be PIF under (2) w.r.t. ( )VΠ , but to reduce 

computational complexity, this condition is replaced with 

[( ) ( )i j i j iV CB CFw Aw B Fw CAw CB CFw
∞

+ − + ≤ +  (12) 
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where jw
�

 denote vertices of a polytope ( )VΠ
�

 that over-
bounds ( )VΠ � . However this condition is only sufficient 
and can lead to conservative results. Lemma 3.1 suggests a 
method for enlarging of the PIF set since it implies that 
under OIOFL, the PIF property applies not w.r.t. ( )VΠ , 
but rather its intersection with K . However polytopic sets, 
though computationally convenient, implies a degree of 
conservatism, with the implication that ( )VΠ ∩K  may not 
represent the largest IF polytope in K . Note that the IF 
property in [4] was defined w.r.t. (4), but in the case of 
stable equilibrium points under OIOFL, IF can be defined 
w.r.t. (2). Clearly, restricting attention to K  produces IF 
polytopes at least as large as ( )VΠ ∩K , but which can 
potentially be larger, with a consequent further enlargement 
effect on the associated PIF sets (as demonstrated by the 
example in Section 6). 

Before giving conditions for the definition of IF sets in 
the kernel of C , first note that polytopes in K  are defined 

( ) { : ( )}, ( ) { : 1}P x Mr r r r
∞

Ψ = = ∈ Π Ψ Π Ψ = Ψ ≤  (13) 

where the columns of M span K , 1 1n n− × −Ψ ∈R  is full-rank, 
and for convenience we assume that 1

T
nM M I −= . Clearly 

( )Π Ψ  defines a low-complexity polytope in Rn-1  and its 
vertices are denoted iω . Accordingly the vertices of ( )P Ψ
are iMω  and this distinguishes them from the vertices iw
of the low-complexity polytope ( )VΠ  in nR . 

Theorem 3.1 The polytope ( )P Ψ ∈K  with vertices 

iMω  is IF under OIOFL if  

i iCAM u CB CFMω ω≤ +  (14) 

and there exists ( )Π Ψ�  with vertices iω�  such that 

1iω
∞

Ψ ≤� (15) 

for which either of the two conditions below holds true 

( )
1

( )
jT

i
j

B FM CA
M A M

C B FM

ω
ω

ω
∞

⎡ ⎤+
Ψ − ≤⎢ ⎥

+⎢ ⎥⎣ ⎦

�
�

, (16a) 

( )
1

( )
jT

i
j

B FM CA
M A M

C B FM

ω
ω

ω
∞

⎡ ⎤+
Ψ − ≤⎢ ⎥

+⎢ ⎥⎣ ⎦
� . (16b) 

Proof: Condition (14) is necessary and sufficient for 
( )P Ψ ⊆ Γ  i.e. so that (2) is feasible for all ( )x P∈ Ψ . 

Condition (15) is necessary and sufficient for 
( ) ( )Π Ψ ⊇ Π Ψ� . Finally, by Lemma 3.1 it is known that 

under OIOFL, ( )x k  will be steered to ( 1)x k + ∈K  and its 
coordinates within K  will be ( 1) ( 1)Tr k M x k+ = + . 
Therefore by (11) for ( ) ( )x k Mr k=  the necessary and 
sufficient condition for invariance becomes 

( ( ))
( ) 1

( ( ))
T B FMr k CA

M A Mr k
C B FMr k

∞

⎡ ⎤+Ψ − ≤⎢ ⎥+⎣ ⎦
 (17) 

As in Section 2, the vertices of ( )Π Ψ  and ( )Π Ψ�  can be 
used to replace (17) (which is nonlinear in terms of ( )r k ) 

by the sufficient condition of (16a) or (16b).          ,
Together with (14) and (15), either condition (16a) or 

(16b) ensures IF. However (16a,b) are not equivalent, and 
hence the condition resulting in larger ( )Π Ψ  and ( )P Ψ
should be selected. The formulation presented in Theorem 
3.1 allows for the maximization of the volume of ( )Π Ψ  to 
be performed through successive convex optimizations. 

Algorithm 3.1 Initialize the process by selecting a small 
( )Π Ψ�  and maximize over the vertices iω  the volume of 
( )Π Ψ . Scale up the optimal ( )Π Ψ  and use the resulting 

polytope as the new over-bounding polytope ( )Π Ψ�  and 
repeat. Stop the procedure when improvement in the 
volume of ( )Π Ψ  is below a given threshold. 

Corollary 3.1 Algorithm 3.1 can always be made to give 
a polytope ( )Π Ψ  no smaller than the intersection of any 
given IF polytope ( )VΠ  with K . 

Proof:  This is obvious if one uses the intersection of the 
corollary to initialise the algorithm.             ,

We next define sets which, under OIOFL, are PIF w.r.t. 
( )P Ψ  rather than ( )VΠ . It was earlier agued that under 

OIOFL, PIF w.r.t. ( )VΠ  is essentially the same as PIF 
w.r.t. ( )VΠ ∩K . The implication of Corollary 3.1 is that 
Algorithm 3.1 results in a set ( )P Ψ  larger than ( )VΠ ∩K . 
As will be illustrated in the examples section this can have a 
significant effect on the size of the PIF set.  

Before considering PIF however, consideration is given 
to the general case in which the state is required to converge 
to an unstable equilibrium point (or all equilibrium points 
under OIOFL are unstable). There may not then exist sets 
which are IF under OIOFL, so that suboptimal controllers 
such as the bilinear controller (4) must be employed. The 
simplest way to handle this is to choose 'C  satisfying 

1 1
' , '

' '
TK C A C F

C B C B
µ= =  (18) 

then all the results of the section carry over since the control 
law (4) under (18) is the OIOFL law for (1) with respect to 
a new output ' '( )oy C x x= − . Such an output is “synthetic” 
in the sense of [5] since then 0x x→  implying convergence 
of the actual output y Cx=  to the desired steady state value 

oCx . Of course (18) limits the degrees of freedom available 
in the definition of ( )VΠ  and this may significantly affect 
the size of the associated IF polytopic set. Thus it may be 
necessary to use (4) without the constraints of (18). It is 
nevertheless still possible to benefit from the use of the 
enlarged ( )P Ψ  provided that it is no longer required to be 
IF but rather PIF under (4).  

Theorem 3.2 Let ( )VΠ  denote a polytope which is IF 
under (4). Then under (4), the polytope ( )P Ψ ∈K  with 
vertices iMω  is PIF w.r.t. ( )VΠ  if 
| | |1 |T

i iKM u Mω µ ω≤ +  (19) 
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and there exists ( )Π Ψ�  with vertices iω�  such that 

1iω
∞

Ψ ≤�  (20) 

and either of the two conditions below hold true. 

( )
1

1
j

iT
j

B FM K
V A M

M

ω
ω

µ ω
∞

⎡ ⎤+
− ≤⎢ ⎥

+⎢ ⎥⎣ ⎦

�
�

 (21a) 

( )
1

1
j

iT
j

B FM K
V A M

M

ω
ω

µ ω
∞

⎡ ⎤+
− ≤⎢ ⎥

+⎢ ⎥⎣ ⎦
�  (21b) 

The proof of this result is similar to that of Theorem 3.1 
and will be omitted. We note that maximizing the volume of 

( )P Ψ  (under the conditions of Theorem 3.2) will in 
general result in a polytope larger than ( )VΠ ∩K  and 
therefore use of ( )P Ψ  instead of ( )VΠ  (or indeed of 

( )VΠ ∩K ) can lead to significant enlargement in the 
volume of the PIF sets proposed in [4]. 

IV. PARTIALLY INVARIANT SETS W.R.T. POLYTOPES IN THE 

KERNEL OF C

To address the problem of unstable inverse dynamics, 
earlier work [4] considered sets which under OIOFL are 
PIF w.r.t. sets ( )VΠ  that are IF (either under OIOFL or a 
bilinear controller).  A set Σ  is said to be PIF under OIOFL 
w.r.t. a set Π  if OIOFL steers every state in Σ into Π  in 
one feasible move. In the sequel we refer to the set Σ , with 
respect to which Π  is PIF, as the target set. 

Below we obtain enlarged PIF sets through the 
restrictions to K  described in Section III. However, rather 
than consider polytopes ( )P Ψ ∈K  centred at the origin, 
here we consider target sets centred at Mc : 

( , ) { | ( ) 1}P Mc x Mr r c
∞

Ψ = = Ψ − ≤  (22) 

Theorem 4.1 Under OIOFL the maximum PIF set Σ of 
(1) w.r.t. ( , )P McΨ  is  

1

( )i i
i N

+ −
≤ ≤

⎡ ⎤Σ = Γ Σ Σ⎢ ⎥
⎣ ⎦

∩ ∪∩  (23) 

where  

0 0

0 0

0 0

T T T T
i i i i i i

T T T T
i i i i i i i i

x H x g x f x H x g x f

x x H x g x f x x H x g x f

CB CFx CB CFx

− + − +

+ + − − + −

⎧ ⎫ ⎧ ⎫+ − < + − >
⎪ ⎪ ⎪ ⎪

Σ = + − > Σ = + − <⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪+ > + <⎩ ⎭ ⎩ ⎭

,

,

T T T T T T
i i i

T T T T T
i i i i i i

T T T T T
i i i i i i

H F C A A C F

g CB A BCA cCF CF f cCB CB

g CB A BCA cCF CF f cCB CB

φ φ
φ φ φ φ
φ φ φ φ

− +

+ −

= −

= − − − = +

= − + − = −

(24) 

with T
iφ  denoting the ith row of TMΨ . 

Proof: A necessary and sufficient condition for Σ  to be 
PIF w.r.t. ( , )P McΨ  is that for every x ∈ Σ  we have:  

( )
1T B Fx

M A CA x c
CB CFx

∞

⎛ + ⎞⎡ ⎤Ψ − − ≤⎜ ⎟⎢ ⎥+⎣ ⎦⎝ ⎠
 (25) 

which gives the conditions of (24) after re-arranging. 
Clearly since either 0CB CFx+ >  or 0CB CFx+ < , the 
PIF set must comprise the union of i+Σ  and i−Σ , but these 
must hold for all i  implying the intersection over i  in (23). 
Finally that intersection must also be intersected with Γ  in 
order to ensure that Σ  is feasible.            ,

It is noted that due to symmetry, the definition of ,i i+ −Σ Σ
can be achieved using only half the number of inequalities 
given in (24). It is also clear that due to the quadratic nature 
of these inequalities, the boundaries of ,i i+ −Σ Σ  can be 
ellipsoidal (as illustrated in the examples section) or 
hyperbolic depending whether or not the matrices 

T T T T T t
i iF C A A C Fφ φ−  are sign-definite. 

Remark 4.1 Computational complexity can be reduced 
(albeit at the cost of a certain degree of conservatism) by 
defining PIF polytopes Σ with vertices iw  through the use 
of over-bounding polytopes with vertices iw� . Thus 
replacing (25) by either of the following two conditions 

( )
1,

( )
1

B FwT iM A CA w cjCB CFwi

B FwT iM A CA w cjCB CFwi

⎛ ⎞⎡ ⎤+
⎜ ⎟Ψ − − ≤⎢ ⎥⎜ ⎟+⎢ ⎥⎣ ⎦⎝ ⎠ ∞
⎛ ⎞⎡ ⎤+
⎜ ⎟Ψ − − ≤⎢ ⎥⎜ ⎟+⎢ ⎥⎣ ⎦⎝ ⎠ ∞

�
�

�

. (26) 

and invoking this condition on either side of the hyper-
plane 0CB CFx+ =  defines two PIF polytopes: +Σ , −Σ . 

Remark 4.2 The PIF conditions above are stated for the 
case of a target set in the kernel of C . However they also 
apply w.r.t. general polytopes ( )VΠ ; all that is required is 
that Ψ  is replaced by V , M  is replaced by the identity 
matrix, and T

iφ  is replaced by T
iv , the ith row of V . 

V. DUAL PREDICTIVE MODE MPC AND TERMINAL SETS

Sections 3 and 4 provide a means of computing enlarged 
regions where it is possible to benefit from the optimality of 
OIOFL despite the presence of non-minimum phase 
dynamics. In addition however, the IF and PIF regions 
defined in Theorems 3.1, 3.2, 4.1, and Remark 4.1 can be 
used in dual prediction mode MPC. Thus, if convergence to 
a stable OIOFL equilibrium point can be achieved, then the 
intersection of the PIF region Theorem 4.1 and Remark 4.1 
with the IF region of Theorem 3.1 could be used as a 
terminal region; the assumed terminal control law is OIOFL 
and the corresponding predicted cost over mode 2 would be 
zero. Clearly the implied constraint comprises simple linear 
inequalities. On the other hand, if it is desired to converge 
to an unstable equilibrium under OIOFL, then it is possible 
to use as terminal region the intersection of the PIF region 
of Theorem 4.1 and Remark 4.1 with the IF region of [4]. 
Again the implied stability constraint comprises linear 
inequalities whereas the implied terminal control law is 
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OIOFL within the PIF set and (4) otherwise. Use of OIOFL 
incurs a predicted cost of zero, whereas the cost-to-go 
associated with (4) can be computed explicitly (see [4]). 

Although the terminal constraints described above are 
linear, the feasibility constraints over mode 1 are nonlinear 
and generally nonconvex. Therefore it may be advantageous 
to use the PIF regions of Theorem 4.1 without the 
modification of Remark 4.1. This leads to nonlinear and 
possibly nonconvex terminal constraints, but direct use of 
(24) can allow a very significant expansion of the terminal 
region as demonstrated in Section 6. 

Given a polytope ( )P Ψ  which is IF under (2), it is 
possible to invoke (24) to define the maximal set Σ  which, 
under (2), is PIF w.r.t. ( )P Ψ . It follows therefore that 
every point in Σ∩K  will be steered by OIOFL into ( )P Ψ
and subsequently remain in ( )P Ψ . Using conditions for 
PIF w.r.t. Σ∩K , a region 'Σ  can therefore be defined 
which, though much larger than Σ , contains points at which 
it is possible to use the optimal law of (2) without concern 
for non-minimum phase difficulties (in the sense that the 
state will always remain within 'Σ  and will converge to the 
equilibrium point). However Σ∩K  need not be convex and 
to simplify computation below we require PIF w.r.t. an 
inscribed polytope in place of Σ∩K . This procedure can 
be applied recursively as in the computation of controllable 
sets [7,8], however here we are invoking the PIF property 
with reference to a particular control law, namely OIOFL. 

Algorithm 5.1 Step 0: For 0i =  set ( )( ) ( )iP PΨ = Ψ . 
Step 1: Use Theorem 4.1 in order to define the maximal 

set ( )iΣ  which is PIF w.r.t. ( )( )iP Ψ ; inscribe in ( 1)i+Σ  a 
polytope ( 1) ( )( ) ( )i iP P+Ψ ⊇ Ψ . 

Step 2:  If ( ) ( 1)( ) ( )i iP P +Ψ − Ψ is smaller than a given 
threshold, set * ( )iΣ = Σ  and stop; otherwise increment i
and return to Step 2. 

The following two results are stated without proof.
Lemma 5.1 The sets ( )iΣ  of Algorithm 5.1 have the 

nested property that ( ) ( 1)i i−Σ ⊆ Σ  and ( )( ) iP Ψ ⊆ Σ  for all i . 
Theorem 5.1 ( )iΣ  of Algorithm 5.1 are IF under (2).
Remark 5.1 Just as condition (24) of Theorem 4.1 allows 

for the definition of sets ,i i+ −Σ Σ  with non-zero centres, so 
in Algorithm 5.1 it is possible to use target sets 

( ) ( ) ( ) ( )( , ) { | || ( )|| 1}i i i iP Mc x Mr r c ∞Ψ = = Ψ − ≤
with non-zero centres ( )iMc . This contributes further to the 
very significant enlargement effect of the recursive 
procedure of Algorithm 5.1. 

Algorithm 5.1 may be computationally demanding but is 
implemented offline. Use of *Σ  rather than Σ  implies no 
increase in online computation, and this can be reduced 
through the use of polytopic inscriptions of *Σ . Implicit in 
the application of Algorithm 5.1 is the assumption that 

( )P Ψ  is IF, which implies that under OIOFL there exists at 

least one stable equilibrium point. If this is not the case, 
then recursion can still be used to bring about significant 
terminal set enlargements, but it has to be applied with 
respect to a stabilizing controller such as that of (4) rather 
than (2). 

VI. ILLUSTRATIVE EXAMPLES

For the purpose of visualization we restrict attention to 
bilinear systems with only two states. Furthermore for 
simplicity we also restrict attention to an example that has 
one stable and one unstable equilibrium point under 
OIOFL; as explained the case of two unstable equilibrium 
points can be covered by the extension of the results of 
sections 3-5 to the bilinear control law of (4) in place of (2). 
The matrices of the model (given in the form of (1)) are: 

[ ]0.22 0.6 0.9 0.4 0.2
, , 1 0.3 ,

0.4 0.6 1 0.2 0.4
A B C F

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

and for these values, under IOFL the system has a stable 
equilibrium point at the origin and an unstable equilibrium 
point at ( 0.3007,1.0025)− . 

Figure 1 gives a comparison of the procedures of [4] and 
the enlargements possible through the results presented in 

 Fig. 1. Comparison of IF polytopes 

 Fig. 2. IF regions computed using recursive PIF (Algorithm 5.1) 
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this paper. The two lines abc and def divide the plane into 
four sectors of which the two larger sectors define the 
feasible set Γ . The polytope with vertices marked “x” 
denotes the maximum volume low-complexity polytope 
which is IF under (2). The polytopes with vertices marked 
with upward-pointing triangles are the maximum volume 
polytopes obtained using the procedures of [4] and have a 
total area of 8.733. Restricting attention to the kernel of C
allows one to define a set (in this case the line segment 
defined by the two points marked “*” in Figure 1) which 
intersects the IF box but also contains points outside the 
box. Using this as a target set, it is possible to obtain the 
maximum volume polytopes with vertices marked in Figure 
1 by downward-pointing triangles. The total area of these is 
20.5387, representing a 135% enlargement in area. 

A comparable enlargement can also be observed in terms 
of the maximal PIF sets which, with the line segment as a 
target set, are given by the intersection of Γ with the shaded 
region bounded by the two sets of ellipsoids of Figure 1. 
The corresponding maximal PIF set w.r.t. the IF box is 
given by the intersection of Γ  with the regions bounded by 
the dashed lines. 

The significant benefits in terms of enlargement that can 
be brought about through the use of recursive PIF (i.e. 
through application of Algorithm 5.1) are shown in Figure 2 
where the shaded areas are the same as those shown in 
Figure 1 whereas the sets bounded by the dashed lines are 
the PIF regions after 3 iterations of steps 1 and 2 of 
Algorithm 5.1. As remarked in Section 5, these regions are 
also IF and can be used as terminal regions in a dual 
prediction mode MPC scheme using as the terminal law the 
unconstrained optimal, namely OIOFL. Furthermore, the 2 
polytopes in Figure 2 are inscribed in the PIF regions and 
are also contained in the feasible region Γ . These have a 
total volume of 852.602, which is almost 100 times the size 
of the maximum volume PIF polytopes obtained using the 
procedures of [4]. 

It is noted that use of the results of the paper in 
conjunction with the closed loop paradigm [6] allow the 
online optimization of dual prediction mode MPC to be 
performed explicitly for the special case of a single-step 
mode 1 horizon. According to the closed loop paradigm, 
feasibility is achieved by perturbing away from the optimal 
control law, but clearly in the interest of optimality such 
perturbations should be as small as possible. It is also 
possible to use the results of the paper to compute explicitly 
the boundaries of the stabilizable set for a single-step 
horizon. For the example under consideration this set, 
comprising the union of the light and dark shaded areas of 
Figure 3 can be seen to be a great deal bigger than the 
terminal regions of Figures 1 and 2. The light shaded area 

comprises all states for which a closed loop paradigm 
perturbation is necessary, whereas for all other points in the 
set the optimal OIOFL law can be used.  

VII. CONCLUSIONS

Optimal IOFL steers the state into the kernel of C and 
restriction of attention to this kernel allows for a significant 
enlargement of regions which, even in the presence of non-
minimum phase characteristics, can be used as terminal sets 
in dual prediction mode MPC. Further enlargement is 
possible through the use of maximal PIF sets and their 
recursive computation. The benefits of these procedures 
were demonstrated by means of a simple illustrative 
example. For the case that all the equilibrium points under 
IOFL are unstable, the results can be extended to stabilizing 
sub-optimal controllers such as the bilinear control laws 
proposed in earlier work. However the question of how to 
minimize the effects of suboptimality in this case remains 
an open problem. 
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