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Abstract— A method which ensures uniqueness of the poly-
hedral partition of the parameter space for convex multipara-
metric quadratic programs (mp-QP) is presented. When the
mp-QP has non-unique solutions, the norm of the solution
vector is minimized and a unique affine optimizer function is
identified for each region. It is proven, that under certain
assumptions on the problem data, a globally continuous
piecewise affine optimizer function is selected.

Index Terms— Multiparametric programming, constrained
optimal control, quadratic programming, normal cone opti-
mality condition, explicit model predictive control.

I. INTRODUCTION

Several efficient algorithms for solving multiparametric

quadratic programs (mp-QP) have been developed recently

[1], [2], [3]. The growing interest in multiparametric prob-

lems is due to the fact that explicit solutions to model

predictive control problems can be obtained by solving

multiparametric programs [1], [4].

Substantial work has been done on the continuity prop-

erties of the value function and optimal solution set for

multiparametric problems [5], [6], [7], [8], [9], [10]. Con-

tinuity of the optimal set mapping is closely related to the

stability of the optimization problem and the stability of

quadratic programs is studied in [11] and [12]. Continuity

and stability results for multiparametric programs are often

derived from set theory presented in [13], [14] and [15].

The algorithm presented by Bemporad et al. [1] obtains

solutions to strictly convex mp-QPs, however, with some

modifications, it can also be used for convex problems

[2]. Borrelli et al. [16] proposed a geometric algorithm for

multiparametric linear programs (mp-LP) that explores the

parameter space in the same manner as in [1]. Common to

the algorithms for convex mp-QP, including the geometric

algorithm for mp-LP, is that the optimizer function may be

discontinuous even if the optimal solution set is a contin-

uous point to set map and therefore admits a continuous

selection [17]. Moreover, the polyhedral partition of the

parameter space is generally non-unique and may consist

of polyhedra with intersecting interiors. A method which

ensures continuity of a particular optimizer selection for

mp-LPs, without parameters in the objective function, is

presented in [18].

∗Corresponding author.

We point out that using the normal cone optimality

condition to construct parametric regions of optimality for

strictly convex mp-QPs [19] results in a unique polyhedral

partition. For convex mp-QP a unique, non-intersecting

partition is obtained by always choosing the solution with

the least Euclidian norm. If the mp-QP has non-unique

solutions, a strictly convex mp-QP is formulated such that

the norm of the solution vector is minimized subject to the

optimality conditions of the original problem.
A unique, non-intersecting polyhedral partition of the

parameter space ensures that the polyhedra in the piecewise

affine mapping are independent of the algorithm used to

explore the parameter space.
If the optimal set mapping for the convex mp-QP is

continuous, the minimum norm selection will be a globally

continuous mapping from parameter to solution space.
Convex mp-QPs is a problem that arises in explicit soft-

constrained model predictive control [20], as a sub-problem

in mp-NLP algorithms [21], and for explicit model predic-

tive control with a linear cost function [4]. Discontinuities

of the optimizer function may lead to chattering in an

optimal control approach, and hence, a method which yields

a continuous optimizer function is desirable.

II. PRELIMINARIES

A. Problem setup

The standard formulation of an mp-QP is as follows

z∗(θ) � min
x∈Rn

{f(x, θ) |Ax ≤ b + Sθ} , (1)

where f(x, θ) � 1
2xT Hx + θT FT x + cT x, θ ∈ R

s is a

parameter of the optimization problem, and the vector x ∈
R

n is to be optimized for all values of θ ∈ Θ, where Θ ⊆
R

s is some polyhedral set. Moreover H = HT ∈ R
n×n,

F ∈ R
n×s, A ∈ R

q×n, b ∈ R
q×1 and S ∈ R

q×s are

matrices. If in addition, H ≥ 0 or H > 0, the mp-QP is

convex or strictly convex, respectively. If H = 0, then (1)

is referred to as a multiparametric linear program (mp-LP),

which is a subclass of the problem addressed in this paper.
Recall that the set of affine combinations of points in a

set S ⊂ R
n is called the affine hull of S. The dimension

of a set S ⊂ R
n, denoted dim(S); is the dimension of the

affine hull of S. If the dimension of S is n, then S is said

to be full-dimensional.
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Let the set of parameters for which the minimum in (1)

exists be denoted Θ∗ and let X∗(θ) be the set of optimizers

to (1) for a given θ ∈ Θ∗. Without loss of generality it is

assumed that Θ∗ is full-dimensional, see [16] for details.

The feasible set of (1) for a given θ ∈ Θ is given by P(θ) �
{x ∈ R

n |Ax ≤ b + Sθ}. We seek the value function z∗ :
Θ∗ �→ R and an optimizer function x∗ : Θ∗ �→ R

n, which

is continuous if the problem admits a continuous selection.

We will use the following notation: if A is a matrix,

then Ai denotes the ith row of A and AJ denotes the sub-

matrix consisting of the rows of A corresponding to the

index set J .

The following definitions are taken from [2] [16].

Definition 1 (Active set): Let x be a feasible solution

to (1) for a given θ. We define the active constraints as

the set of constraints which fulfill Aix− bi −Siθ = 0, and

inactive constraints as the set which fulfills Aix−bi−Siθ <
0. The active set A(x, θ) is the set of indices of the active

constraints, that is,

A(x, θ) � {i ∈ {1, . . . , q}|Aix − bi − Siθ = 0} .

Moreover, let N (x, θ) denote the set of inactive constraints,

that is, N (x, θ) � {1, . . . , q}\A(x, θ).
Definition 2 (Optimal active set): Let θ be given. Let the

optimal active set A∗(θ) be the set of constraints which are

active for all x ∈ X∗(θ), that is

A∗(θ) � {i|i ∈ A(x, θ),∀x ∈ X∗(θ)}
=

⋂
x∈X∗(θ)

A(x, θ).

Let N ∗(θ) � {1, . . . , q}\A∗(θ).
Definition 3 (LICQ): For an active set A, we say that

the linear independence constraint qualification (LICQ)
holds if the set of active constraint gradients are linearly

independent, i.e., AA has full row rank.

Definition 4 (Critical region): Given an optimal active

set A∗ we define the critical region as the set of parameters

for which the optimal active set remains unchanged, that is,

ΘA∗ � {θ ∈ Θ|A∗(θ) = A∗}. (2)

It should be noted that critical regions are convex and that

their closures are polyhedral. Since the optimal active set

is unique for all θ ∈ Θ∗, critical regions cannot intersect,

however, the intersection of their closures may be non-

empty. Since Θ∗ is assumed to be full-dimensional and the

number of optimal active sets is finite, there exists a finite

number of full-dimensional critical regions such that the

union of their closures is equal to Θ∗.

Theorem 1 (Solutions to an mp-QP): A solution to a

convex mp-QP can be represented as a piecewise affine

mapping

x∗(θ) = x∗
A(θ) if θ ∈ RA, (3)

where RA ⊆ Θ∗ are closed, full-dimensional, and convex

polyhedral sets such that⋃
A∈I

RA = Θ∗, (4)

and I is a subset of all possible active

sets {A(x∗(θ), θ) |θ ∈ Θ∗ }.

Proof: See [1] and [2].

The polyhedra RA will be defined as described below, and

it should be noted that our definitions differ slightly from

those in [1] and [2]. Given a θ ∈ Θ∗ and the associated

optimal active set Ā∗ such that ΘĀ∗ is full-dimensional.

If X∗(θ) is a singleton for all θ ∈ cl(ΘĀ∗), then RĀ∗ �
cl(ΘĀ∗). If X∗(θ) is not a singleton for all θ ∈ cl(ΘĀ∗),
then ΘĀ∗ is divided into a finite set of full-dimensional

polyhedra, whose union is equal to cl(ΘĀ∗), where each

polyhedron is associated with only one affine optimizer

function. We will refer to these polyhedra as sub-regions.

The optimal solution function x∗(θ) is single valued, since

if a given θ is in more than one RA, x∗
A(θ) is chosen

according to some predetermined ordering of the sets in I.

Definition 5 (Non-intersecting solution): We say that a

solution to an mp-QP is non-intersecting if every

pair (Ai,Aj) ∈ I × I satisfies

dim(RAi
∩ RAj

) ≤ s − 1, i 
= j.
If a solution satisfies Definition 5, then a given θ may only

be in more than one RA for lower dimensional subsets

of Θ∗. Note that closure of a full-dimensional critical region
is abbreviated to critical region from this point on.

B. Normal cone optimality condition

Recall that a set C is called a cone if for every x ∈ C
and scalar ξ ≥ 0, we have ξx ∈ C. Moreover, a cone

represented by the intersection of a finite number of closed

half-spaces is called an H-cone, and a cone represented

by a finite number of rays is called a V-cone. If A is a

matrix, then cone(A) denotes the set of all nonnegative

combinations of the column-vectors of A.

Consider the following problem

J∗ � min
x∈Rn

{f(x) |x ∈ Ω} ,

Ω � {x ∈ R
n|gi(x) = 0, i ∈ E ; gj(x) ≤ 0, j ∈ I},

where E and I are finite sets of indices, and f , gi and gj

are smooth, real-valued functions on a subset of R
n. The

following definitions are taken from [22].

Definition 6 (Tangent Vector): A vector w ∈ R
n is tan-

gent to Ω at x if for all vector sequences {xi} with xi → x
and xi ∈ Ω, and all positive scalar sequences ti ↓ 0, there

is a sequence wi → w such that xi + tiwi ∈ Ω for all i.
Definition 7 (Tangent Cone): The tangent cone TΩ(x) is

the collection of all tangent vectors to Ω at x.

Definition 8 (Normal Cone): The normal cone to Ω at x,

NΩ(x), is the orthogonal complement of the tangent cone,

that is

NΩ(x) =
{
v|vT w ≤ 0, ∀w ∈ TΩ(x)

}
. (5)

Theorem 2 (First order necessary optimality condition):
If x∗ is a local minimizer of f in Ω, then

−∇xf(x∗) ∈ NΩ(x∗). (6)

Proof: See [22].
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If f(x) and Ω are convex, then x∗ is a global minimum

and (6) is also sufficient.
Given the polyhedron Φ = {x|Ax ≤ b}. Let x0 be

a point on the boundary of Φ. Let A0 be the set of

inequalities which are active at x0, hence Aix0 = bi for i ∈
A0, and Aix0 < bi for i /∈ A0. Note that for a polyhedron

the tangent cone TΦ(x0) at x0, is equal to the set of feasible

directions at x0 [23], i.e.

TΦ(x0) = {d|AA0d ≤ 0}. (7)

The normal cone at x0 is defined as

NΦ(x0) = cone(AT
A0

), (8)

i.e. a V-cone with the rows of AA0 defining the rays and

a single vertex at the origin. Let the matrix L define the

corresponding H-cone, that is

NΦ(x0) = {y|Ly ≤ 0}. (9)

Note that any normal cone can also be associated with an

active set, i.e. NΦ(A) = {y|LAy ≤ 0}. The optimality

condition (6) becomes

L∇xf(x0) ≥ 0. (10)

III. STRICTLY CONVEX MP-QP

If H > 0 in (1), the problem can be reformulated

such that only a quadratic term remains in the objective

function [1]. Without loss of generality we use the following

formulation for strictly convex mp-QP:

z∗(θ) � min
x∈Rn

{
1
2
xT Hx | Ax ≤ b + Sθ

}
. (11)

In this section it is pointed out that constructing the regions

in the solution as proposed in [19] yields a unique set

of polyhedra for strictly convex mp-QP. Let A∗(θ0) be

an optimal active set for (11). The optimizer function

associated with A∗(θ0) is unique and represented as

x∗
A∗(θ) = Kθ + k, (12)

where K ∈ R
n×p and k ∈ R

n [1].
When it is clear from the context, the argument θ (or θ0)

will be omitted when referring to an optimal active or

inactive set.

Theorem 3 (Critical region): The optimizer function

x∗
A∗(θ) associated with optimal active set A∗(θ0) is

optimal in the polyhedron defined by

RA∗ =
{

θ ∈ Θ
∣∣∣∣ AN∗x∗

A∗(θ) ≤ SN∗θ + bN∗

LA∗Hx∗
A∗(θ) ≥ 0

}
, (13)

where LA∗ is the normal cone defined by the optimal active

set A∗(θ0).
Proof: See [19].

Lemma 1 (Uniqueness of the solution): The solution to

a strictly convex mp-QP obtained by defining sub-regions

as in (13), is unique and satisfies Definition 5.
Proof: Uniqueness of the solution follows directly

from uniqueness of A∗(θ), x∗
A∗(θ), and the normal

cone NP(θ) for all θ ∈ Θ∗. Since X∗(θ) is a singleton for

all values of θ ∈ Θ∗, all RAs in the solution are closures

of critical regions. Since critical regions does not intersect,

the property in Definition 5 is satisfied.

IV. CONVEX MP-QP

Consider problem (1). In the rest of the paper H is only

restricted to be positive semidefinite and symmetric (this

includes H = 0), and consequently, the optimizer for a

given θ may be non-unique. We present a method which

selects the optimizer function with minimum Euclidian

norm. As in [18], the norm of the solution vector will be

minimized subject to optimality conditions of the original

problem and it is proven that the resulting solution is unique

and non-intersecting.

A. Cone condition for convex QP

The cone condition was defined for a general class

of optimization problems in section II-B. We state the

optimality condition explicitly for (1);

LA (Hx + Fθ + c) ≥ 0, (14)

where LA is the normal cone matrix corresponding to the

active set A(x∗(θ0), θ0).
Proposition 1: Consider problem (1). Let θ = θ0

and A∗(θ0) be the optimal active set and denote P(θ0)
by P0. For any optimal solution x∗(θ0) we have

− (Hx∗(θ0) + Fθ0 + c) ∈ NP0(A∗(θ0)). (15)

Proof: For A(x∗(θ0), θ0) = A∗(θ0) this is the normal

cone condition for optimality. We must show that (15)

holds when A(x∗(θ0), θ0) ⊃ A∗(θ0). Consider an optimal

solution x̄∗(θ0) for which A(x̄∗(θ0), θ0) = A∗(θ0). Let

x̃∗(θ0) be optimal such that A(x̃∗(θ0), θ0) ⊃ A∗(θ0) is the

active set. Noting that Hx̄∗(θ0) = Hx̃∗(θ0) (follows easily

from results in [24]) we get:

− (Hx̃∗(θ0) + Fθ0 + c) (16)

= − (Hx̄∗(θ0) + Fθ0 + c) ∈ NP0(A∗(θ0)).

B. Enforcing uniqueness of the optimizer function

Lemma 2: Consider problem (1). For every A∗(θ0) there

is an associated optimal set mapping X∗
A∗ : ΘA∗ �→ 2R

n

and the mapping can be represented by

X∗
A∗(θ) � {xA∗(θ, p)|

xA∗(θ, p) � Kθθ + Kpp + k,

LA∗ (HxA∗(θ, p) + Fθ + c) ≥ 0,
AN∗xA∗(θ, p) ≤ bN∗ + SN∗θ} , (17)

where LA∗ defines a normal cone matrix associated with

the optimal active set A∗(θ0), Kp is a basis for the null

space of AA∗ , Kθ ∈ R
n×s and k ∈ R

n×1 are constant

matrices given by the active set A∗(θ0).
Proof: First part of the proof is to show that

xA∗(θ, p) = Kθθ + Kpp + k (18)
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defines all solutions to

AA∗x = bA∗ + SA∗θ. (19)

Assume now that AA∗ does not have full row rank and

let rank(AA∗) = m. Since there exists at least one solution

to (19), the system can be reduced to m equations. Applying

QR-decomposition AA∗ = Q

[
R
0

]
as in [1] we get

Rx = b1 + S1θ (20)

0 = b2 + S2θ (21)

where R ∈ R
m×n and

[
b1

b2

]
= Q−1bA∗ ,

[
S1

S2

]
= Q−1SA∗ .

QR-factorization ensures that rank(R) = m, i.e. R has full

row rank. We assume that b2 and S2 are zero or empty

(justified in remark 1).

The null-space method [22] can be applied to systems

of equations which have full rank, hence, we have that any

solution to (20) can be expressed as the sum of a particular

solution and a component in the null space of R, that is,

x = YRxY + ZRxZ (22)

where ZR is a basis for the null space of R, and RYR and[
YR ZR

]
are non-singular. Since RZR = 0 we have

x = YR (RYR)−1 (b1 + S1θ) + ZRxZ (23)

Equation (17) ensures that the negative gradient of (1) is

in the normal cone defined by A∗(θ0) and the solution is

thereby optimal. Due to (17), xA∗(θ, p) is also feasible.

Remark 1: When S2 is non-zero, (21) and the inequal-

ities that ensure feasibility of x define a polyhedron

in R
w, w < s. As explained in section II-A we are only

interested in polyhedra in R
s. See [1] for details.

The matrices ZR and YR in the null space method can

be chosen by performing a particular QR-factorization, see

[22] for details. We can define the explicit expressions for

Kθ, Kp and k

Kθ = YR (RYR)−1
S1, (24)

Kp = ZR, (25)

k = YR (RYR)−1
b1. (26)

Proposition 2: Kθ and k defined by equation (24) and

(26), respectively, are unique for a given active set A∗(θ0)
Proof: All solutions to equation (19) have the same

row space component [25].

Lemma 3: Given an optimal active set A∗(θ0) for prob-

lem (1) and let the affine function xA∗(θ, p) be given

by (18) with Kθ, Kp and k defined as in (24)-(26). The

following mp-QP

v∗ � min
p

{
1
2
xA∗(θ, p)T xA∗(θ, p) |xA∗(θ, p) ∈ X∗

A∗(θ)
}

,

(27)

which is defined for all θ ∈ ΘA∗ and where X∗
A∗(θ) is the

set given by (17), has a unique optimizer p∗(θ), which is a

piecewise affine function of θ.

Proof: Problem (27) can be written as

v∗ = min
p

1
2
pT Hpp + θT FT

θpp + cT
p p + C, (28a)

s.t. AN∗(Kθθ + Kpp + k) ≤ bN∗ + SN∗θ, (28b)

LA∗ (H(Kθθ + Kpp + k) + Fθ + c) ≥ 0, (28c)

where Hp = KT
p Kp, FT

θp = KT
θ Kp, cT

p = kT Kp, and C
is a constant term. Since Kp has linearly independent

columns, KT
p Kp > 0, and hence, the mp-QP is strictly

convex and the results in the previous section apply.

Corollary 1: Any basis Kp for the null space of AA∗

in equation (18) will yield the same optimal xA∗(θ, p∗(θ))
in problem (27). Moreover, the product Kpp

∗(θ) is unique

regardless of the chosen basis.

Proof: All valid bases Kp will define the same

convex set X∗
A∗(θ). Minimizing the strictly convex function

1
2xT

A∗(θ, p)xA∗(θ, p) must then yield a unique optimal

solution xA∗(θ, p∗(θ)). Since Kθ, k and xA∗(θ, p∗(θ)) are

unique regardless of the chosen Kp, so is Kpp
∗(θ).

Corollary 2: Let the constraints in (27) be written as

Ãp ≤ b̃ + S̃θ, (29)

Given the optimal active set Ã∗(θ0) for problem (27) and

the associated solution p∗Ã∗(θ). p∗Ã∗(θ) is optimal in the

unique region given by

RÃ∗ �
{

θ ∈ Θ

∣∣∣∣∣
ÃÑ∗p∗Ã∗(θ) ≤ b̃Ñ∗ + S̃Ñ∗θ

LÃ∗

(
Hpp

∗
Ã∗(θ) + Fθpθ + cp

)
≥ 0

}
,

(30)

where LÃ∗ is the normal cone matrix defined by the active

set Ã∗(θ0).
Proof: The optimizer xA∗(θ, p∗(θ)), the optimal active

set Ã∗(θ), the product Kpp
∗(θ), and the normal cone LÃ∗

are unique for all θ ∈ Θ∗, and Lemma 1 applies.

Remark 2: Note that in problem (27) the basis Kp is

fixed and consequently p∗(θ) is dependent on the choice

of the basis. However, since Kpp
∗(θ) is unique, the re-

gion RÃ∗ is uniquely defined for all valid bases.

We define the optimal piecewise affine mapping x∗ :
Θ∗ �→ R

n as

x∗(θ) � xA∗(θ, p∗Ã∗(θ)) if θ ∈ RÃ∗ . (31)

Theorem 4 summarizes the approach and concludes that

a unique solution that satisfies Definition 5 is obtained.

Theorem 4 (Uniqueness the solution): Let the affine

function xA∗(θ, p) be given by (18) with Kθ, Kp and

k defined as in (24)-(26) and let p∗(θ) be found from

(27). For any θ0 ∈ Θ∗ there is an associated optimal

active set A∗(θ0) and the affine function xA∗(θ, p∗Ã∗(θ))
is unique and optimal for (1) in the unique polyhedral

region given by RÃ∗ . Moreover, the piecewise affine

mapping x∗ : Θ∗ �→ R
n in (31) obtained by defining full

dimensional regions as in (30) is an optimal solution to (1),

which satisfies Definition 5.

Proof: Uniqueness of xA∗(θ, p∗Ã∗(θ)) is fulfilled by

construction and proven in Corollary 1. Optimality of x∗(θ)
with respect to (1) is also fulfilled by construction and
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is a consequence of Lemma 2 and 3. Uniqueness of the

region RÃ∗ follows from Corollary 2. That the solution

satisfies Definition 5 follows from uniqueness of RÃ∗ .

V. ON THE CONTINUITY OF SOLUTIONS TO CONVEX

MP-QP

Before we prove that the procedure in section IV-B

selects a continuous optimizer function under certain as-

sumptions on the problem data, we restate some definitions

from [13]. Let X and Y denote metric spaces in the

following three definitions.

Definition 9 (Lower semicontinuous point-to-set map):
The point to set map P : X �→ Y is lower semicontinuous

at x0, if for each open set Ω satisfying Ω ∩ P (x0) 
= ∅
there is a neighborhood U(x0) such that

x ∈ U(x0) ⇒ P (x) ∩ Ω 
= ∅. (32)

Moreover, P is lower semicontinuous on X if it is lower

semicontinuous at each x ∈ dom(P ).
Definition 10 (Upper semicontinuous point-to-set map):

The point to set map P : X �→ Y is upper semicontinuous

at x0, if for each open set Ω containing P (x0) there exists

a neighborhood U(x0) such that

x ∈ U(x0) ⇒ P (x) ⊂ U. (33)

Moreover, P is upper semicontinuous on X if it is upper

semicontinuous at each x ∈ dom(P ).
Definition 11 (Continuous point-to-set map): The point

to set map P : X �→ Y is continuous at x0 if it is both

upper semicontinuous and lower semicontinuous at x0. It

is continuous on X if and only if it is continuous at every

x ∈ dom(P ).
Theorem 5: Consider problem (1) and let the point to

set map X∗(θ) be continuous on Θ∗. The minimum norm

method presented in section IV-B ensures that the optimal

mapping x∗ : Θ∗ �→ R
n is continuous.

Proof: Let problem (27) be written as

v∗ � min
x∈Rn

{
1
2
xT x |x ∈ X∗(θ)

}
(34)

The minimizer of a strictly convex function over a continu-

ous point to set map is a continuous function [13, Theorem

VI.3.3], [26, Corollary 9.3.3].

Since the existence of a continuous selection for prob-

lem (1) is ensured by the continuity of X∗(θ) on Θ∗

we state the following corollary based on [7, Theorem

3.2.2, Theorem 3.3.3 and Theorem 5.3.2], which shows that

X∗(θ) is in fact continuous in some cases.

Corollary 3: The consider problem (1). The point to set

map X∗(θ) is continuous on Θ∗ if

(i): there does not exist a direction d ∈ R
n\{0} satisfying

Hd = 0 and (c + Fθ)T d = 0, (35)

∀θ ∈ Θ∗, or

(ii): F = 0.

Proof: Note first that X∗(θ) is upper semicontinuous

on Θ∗ [7, Theorem 5.3.2].

(i): By [7, Theorem 3.2.3] X∗(θ) is lower semicontinu-

ous on Θ∗ if the lineality space

M = {d ∈ R
n|Hd = 0, (c+Fθ)T d = 0, AA∗d = 0} (36)

has the same dimension ∀θ ∈ Θ∗. If (i) holds, then

dim(M) = 0, ∀θ ∈ Θ ⊇ Θ∗.

(ii): It follows from [7, Theorem 3.3.3] that X∗(θ) lower

semicontinuous on Θ∗.

Remark 3: Current research is devoted to obtaining

weaker conditions on f(x, θ) and the constraint set for en-

suring the lower semicontinuity of the optimal set mapping.

Conditions that involve the assumption that a Slater point

exists for the constraint set [6], [7] are not applicable since

we are concerned with the set X∗(θ) = {x ∈ R
n|Ax ≤

b + Sθ, f(x, θ) ≤ z∗(θ)}.

VI. EXAMPLE

An example is included to illustrate uniqueness/non-

uniqueness of the solution and point (ii) of Corollary 3.

Consider the following convex mp-QP:

z∗ � min
{x∈P(θ)|θ∈Θ}

{
1
2
x2

4 − x1 − x2 − x3 + 0.5x5

}
,

P(θ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ R
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 + x2 + x3 ≤ 10 − θ1 − θ2

x1 − 2x2 ≤ 4 − θ1 − 2θ2

−x1 − 2x3 ≤ 3 − θ1 − 2θ2

−x3 + x5 ≤ 2 + θ2

−x5 ≤ 2 + θ1

x4 − x5 ≤ −θ1

−3 ≤ x1 ≤ 3
−3 ≤ x2 ≤ 3
−3 ≤ x3 ≤ 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

Θ �
{

θ ∈ R
2

∣∣∣∣ −1 ≤ θ1 ≤ 2.5
0 ≤ θ2 ≤ 3

}
.

Since F = 0, X∗(θ) is continuous on Θ∗. The unique set of

polytopes obtained by the proposed method is depicted in

Figure 1(a), where the subscripts denote which constraints

in (1) that are active at the optimum for (27). The constraints

are indexed in the order in which they are listed, i.e.

−3 ≤ x1 is constraint number 7 and x1 ≤ 3 is number

8. The optimizer is non-unique in several of the regions in

Figure 1(a), and by following the procedure in [2] there

are several possible solutions, one of which is depicted in

Figure 1(c), where the subscript denotes which constraints

that have been arbitrarily selected to construct the regions.

Not only is the solution non-unique, but the optimizer is

also discontinuous for some selections, see Figure 1(d). By

adding θ1x5 to the objective function, neither point (i) nor

(ii) in Corollary 3 hold, and consequently X∗(θ) may not

be continuous. By following the proposed method, a unique

solution is obtained, however, a continuous solution does

not exist, see Figures 1(e)-1(f). It should also be noted that

when a bilinear term is present in the objective function,

algorithms similar to that of [3] are not applicable, since

a region may have more than one neighboring region for

each facet, see [27] for a discussion of this topic.
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(c) Partition, F = 0, arbitrary se-
lection.
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3(θ) discontinuous, arbitrary
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(e) Partition, F �= 0, proposed
method.
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3(θ) discontinuous, proposed

method.

VII. CONCLUSIONS

We have showed that using the normal cone optimality

condition to construct critical regions [19] yields a unique

and non-intersecting solution for strictly convex mp-QPs.

For convex mp-QPs uniqueness of the solution is ensured

by choosing the minimum norm optimizer and using the

normal cone to characterize the parametric region in which

the selection remains optimal.

Global continuity of the piecewise affine optimizer func-

tion selected by the proposed method is guaranteed if

the optimal set mapping is continuous on the part of the

parameter space which renders the solution to the problem

feasible and bounded.
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