
Abstract— A nonlinear optimal re-entry temperature 
control problem is solved using single network adaptive critic 
(SNAC) technique. The nonlinear model developed and used 
accounts for conduction, convection and radiation at high 
temperature, represents the dynamics of heat transfer in a 
cooling fin for an object re-entering the earth’s atmosphere. 
Simulation results demonstrate that the control synthesis 
technique presented is very effective in obtaining a desired 
temperature profile over a wide envelope of initial 
temperature distribution. 

I. INTRODUCTION 
n this paper, the problem under consideration is a high 
temperature heat-transfer application, which may 
represent a cooling fin for an object on re-entry into the 

Earth’s atmosphere.  The system dynamics is governed by a 
nonlinear partial differential equation, and hence, it is a 
distributed parameter system (DPS). Analysis and control 
design for such systems are often more complex as 
compared to lumped parameter systems (which are 
governed by a set of ordinary differential equations). 

An engineering approach to deal with DPS problems is 
to have a finite dimensional lumped parameter 
approximation of the system using a set of orthogonal basis 
functions in a Galerkin projection. To obtain a low-order 
lumped parameter approximation, the basis functions are 
designed from a set of snap-shot (representative) solutions, 
following a technique called proper orthogonal 
decomposition (POD). Out of the numerous works 
published in literature on this topic and its use in control 
system design, we cite [1], [3] [8]-[10] for reference. 

Even though POD technique has been used in practice 
for control design of nonlinear DPS systems, an important 
issue that remains open is the use of a ‘good controller’ for 
simulating the system to collect the snap-shot solutions, 
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which are used to design the basis functions. Quite often an 
open-loop controller is used for this purpose. In this work, 
however, a state feedback controller designed based on the 
philosophy of dynamic inversion [4] was incorporated to 
generate the snap-shot solutions. Since this controller is 
stabilizing, the snap-shots so obtained are more likely to be 
encountered with the application of the optimal controller.  

Many difficult real-life control design problems can be 
formulated in the framework of optimal control theory. The 
dynamic programming formulation offers the most 
comprehensive solution approach to nonlinear optimal 
control in a state feedback form [2]. However, solving the 
associated Hamilton-Jacobi-Bellman (HJB) equation 
demands a very large (rather infeasible) number of 
computations and storage space requirement. An innovative 
idea was proposed by Werbos [11] to get around this 
numerical complexity through a dual neural network 
approach called adaptive critic (AC). In one version of the 
AC approach, one network (called the action network) 
represents the mapping between the state and control 
variables while a second network (called the critic network) 
represents the mapping between the state and costate 
variables. Optimal solution is reached after the two 
networks are iteratively trained. This process overcomes 
the computational complexity of the dynamic programming 
approach. 

Recently, a significant improvement to the adaptive critic 
architecture has been proposed by Padhi et al. [7], [8]. It is 
named as single network adaptive critic (SNAC) because it 
uses only the critic network instead of the action-critic dual 
network set up in typical adaptive critic architecture. SNAC 
is applicable to a large class of problems for which the 
optimal control (stationary) equation is explicitly solvable 
for control in terms of state and costate variables. This 
leads to significant computational savings besides 
eliminating the approximation error due to action networks.  

In this paper, the SNAC technique is used to design a 
state feedback optimal controller for the problem under 
consideration. It has been demonstrated from the numerical 
simulation studies that the technique solves for the optimal 
controller for a large number of initial conditions at a time. 
Note that the solution can be implemented in real-time as 
the on-line computation involves only using the neural 
networks. 

Modeling and Control of a Re-entry Heat 
Transfer Problem Using Neural Networks 

K. A. Grantham, R. Padhi, S. N. Balakrishnan and D. C. Look, Jr. 

I

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

WeB06.2

727



II. MATHEMATICAL MODEL FOR THE PROBLEM
The problem under consideration is a high temperature 

heat-transfer application, which may represent a cooling fin 
for an object on re-entry into the Earth’s atmosphere. 
Figure 1 depicts the pertinent geometry. 

Figure 1: Pictorial representation of the problem 

For such a problem, using the law of conservation of 
energy [6] in an infinitesimal volume at a distance y  having 
length y , we get 

y gen y y conv rad chgQ Q Q Q Q Q              (1) 
where, 

/yQ kA T y            (2a) 

genQ S A y             (2b) 

1convQ h P y T T          (2c) 

2

4 4
radQ P y T T         (2d) 

/chgQ C A y T t          (2e) 
In (1)–(2a-e), ,T t y  and ,S t y  represents the 
temperature and ,S t y  is the rate of heat generation per 
unit volume, which acts as the control variable for this 
problem. The meanings of various parameters and their 
numerical values used and are given in Table 1. 

Table 1: Parameter Definitions and Numerical Values 
Parameter Definition Numerical value 
k Thermal conductivity 19 / oW m C

A Cross sectional area 2 3

P Perimeter 4 6

h Convective heat transfer 
coefficient 

20 /W m C

1
T Temperature of the medium 

in the immediate surrounding 
of the surface 

100 C

2
T Temperature at a far away 

place in the direction normal 
to the surface 

40 C

Emissivity of the material 0.965

Stefan-Boltzmann constant 
8

2 4

5.669 10
/W m K

Density of the material 37865 /kg m

C Specific heat of the material 0.46 /kJ kg C

Substituting the expressions of (2) in (1) and carrying 
out the necessary algebra, it leads to 

1 2

2
4 4

2

1T k T P
h T T T T S

t C y A C C
   (3) 

For convenience, the following parameters are defined 
1 /k C , 1 /Ph A C , 3 /P A C  and 

1/ C . Substitution of these parameters in (3) leads to  

1 2

2
4 4

1 2 32

T T
T T T T S

t y
    (4) 

Boundary conditions considered for (4) are as follows: 

        
0

, 0
y y L

T T
c

y y
        (5) 

where the value of c  will be dictated by the temperature 
profile ,T t y  at 0y . In our numerical implementation, 
c  was to be time varying, the value of which was dictated 
by the instantaneous value of the slope of ,T t y  at 0y .
An insulated boundary condition at the tip is considered 
with the assumption that either there is some physical 
insulation at the tip or the heat loss at the tip is negligible 
(due to its low surface area). Note that a one-dimensional 
approximation is assumed in the temperature dynamics, 
assuming that a steady-state is obtained in the other spatial 
dimensions instantaneously. 

III. CONTROL DESIGN: MATHEMATICAL
FORMULATION 

The goal is to reach a desired temperature profile in the 
fin; i.e. *T y T y as t , where *T y  is a desired 
final temperature distribution which is assumed to be a 
constant profile along the fin.  

A. Feedforward Controller 
The steady state control solution *S  is obtained by 

substituting *T  in place of T  in (4) and imposing the 
steady-state condition * / 0T t .  This leads to 

4

1 2

2 *
* * * 4

1 2 32

1 T
S y T T T T

y
    (6) 

This *S  acts as a feedforward controller for this problem. 
A feedback controller (to be discussed next) is added to it 
to obtain the total controller. 

B. Feedback Controller: Optimal Control Formulation 
Due to the availability of the desired steady state 

temperature profile *T y  and associated feedforward 
controller *S y , we split ,T t y  and ,S t y  as follows 

*, ,T t y T y x t y       (7a) 
*, ,S t y S y u t y       (7b) 

where ( , )x t y  and ( , )u t y  are the deviations in temperature 
(state) and control from their respective steady state values. 
Next, the deviation dynamics are developed by substituting 
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these expressions in (5) and carrying out the necessary 
algebra. This leads to 

2 2
1 2 3/x

x y x f x u
t

        (8) 

where 3 2 3* * 2 * 3 4( ) (4 6 4 )f x T x T x T x x . The associated 
boundary conditions are obtained by substituting (7a-b) in 
(5), which are as follows 

* *
0 0

/ / , / /
y y Ly y L

x y c T y x y T y    (9) 

The purpose of the feedback controller ( , )u t y  is to make 
sure that ( , ) 0x t y  as t . Note that in the proces it is 
also desired that ( , ) 0u t y  as ( , ) 0x t y . These goals are 
achieved by minimizing the following cost function 

2 2

0 0

1
2

L

J q x r u dy dt       (10) 

where 0q  and 0r  are the weights for state and control 
respectively. Although the mathematical requirement for 
obtaining a solution for the controller is 0q , in this 
application we will consider 0q  in order to ensure the 
cancellation of the state deviations. Equations (8)-(10) 
results in consistent optimal control formulation. In the 
following subsections details about the technique used for 
solving this optimal control problem are addressed. 

C.  Initial Condition Generation 
In this subsection a procedure is given to generate a large 

number of possible initial conditions. Note that to account 
for reality, the initial conditions should be continuous and 
smooth profiles along the spatial domain. To achieve this 
objective, the initial conditions for the problem ( )inix y  is 
expressed as a Fourier series as 

0
1 1

cos 2 / sin 2 /
N N

n nini
n n

x y a a n y L b n y L        (11) 

In (11) this equation 0 , na a , and nb  are the Fourier series 
constants (to be determined), N  is the number of terms 
used in the series and L  is the length of the fin.  The 
Fourier series constants are chosen by imposing constraints 
on the norms of the initial condition and its first and second 
derivatives (with respect to the spatial variable) as follows 

2 2 2

1 2 3, ,
ini ini ini

x y k x y k x y k             (12) 
The constants 1 2 3, , 0k k k  are judiciously selected so that 

it allows sufficient flexibility to generate a large number of 
smooth profiles and yet does not lead to too much 
(unrealistic) waviness in the profiles. The set containing all 
such initial conditions define our domain of interest. 

Note that once the constants 1 2 3, , 0k k k  are selected and 
N  is fixed, the process of finding ( )inix y  include finding 
the coefficients 0 , ,i ia a b , ( 1, , )i N  satisfying (12) and 
then substituting those in (11). We omit the details both for 
brevity as well as for lack of space. 

D. Proper Orthogonal Decomposition: A Brief Review 
Let ( ) : 1 ,ix y i N y  be a set of N snapshot

solutions (observations) of a physical process over the 
domain  at arbitrary instants of time. The goal of the 
POD technique is to design a coherent structure that has the 
largest mean square projection on the snapshots.  
Consequently, functions  (the basis functions) are 
designed which most resemble 

1
( ) N

i i
x y  , by maximizing 

the figure of merit given by 
2

1

1 , / ,
N

i
i

I x
N

           (13) 

As a standard notation, the 2L  inner product is defined as 
, dy . It has been shown in the literature that 

when the number of degrees of freedom required to 
describe ix  is larger than the number of snapshots N

(always true for infinite dimensional systems), it is 
sufficient to express the basis functions as linear 
combinations of the snapshots, i.e. 

1

N

i i
i

w x               (14) 

The coefficients iw  are to be determined such that 
maximizes the figure of merit in (13). The steps involved in 
this are as follows: 

Construct an eigenvalue problem 

0

,

1

ij N N

L

ij i j

CW W C c

c x y x y dy
N

           (15) 

Obtain N  eigenvalues and corresponding eigenvectors 
of the C  matrix. Sort the eigenvalues in descending 
order 1 2 0N . Let the corresponding 
eigenvectors be  

1 1 1
1 1, ,

T TN N N
N NW w w W w w  (16) 

Note that the eigenvectors are orthogonal to each 
other. 

Normalize the eigenvectors to satisfy 
, 1/

Tl l l l
lW W W W N         (17) 

This will ensure that the POD basis functions are 
orthonormal. 
Cut-off the eigenspectrum “judiciously”, so that the 
truncated system with N N  eigenvalues will satisfy  

1 1

N N

j j
j j

. Usually, it turns out that N N .

Finally, construct the N  basis functions as 
1

1
1 1

, ,
N N

N
i i i iN

i i

y w U y w U        (18) 

An interested reader can refer to [9] for more details about 
this procedure. 
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E.  Analogous Lumped Parameter System Representation 
After obtaining the basis functions, following the principle 
of ‘separation of variables’, ( , )x t y  and ( , )u t y  are 
expanded as follows 

1

ˆ, ( ) ( )
N

j j
j

x t y x t y          (19a) 

1

ˆ, ( ) ( )
N

j j
j

u t y u t y         (19b) 

One can notice that both ( , )x t y  and ( , )u t y  have the 
same basis functions. This is because the final aim is to 
design a state feedback controller, where the controller is a 
function of the state variables. Essentially, the basis 
functions for the state are assumed to be capable of 
spanning the controller as well. Substituting these 
expansions of state and control variables in (8), we obtain 

1 2 3
1 1 1 1

ˆ ˆ ˆ ˆ
N N N N

j j j j j j j j
j j j j

x x x f x u      (20) 

Next, taking the Galerkin projection of (20) on the basis 
function i  (i.e. taking the inner product with respect to 

i ), and using the fact that the basis functions are 
orthonormal, we obtain 

1 2 3
1

ˆ ˆ ˆ ˆ, ,
N

i i j j i i i
j

x x x f x u       (21) 

Repeating this exercise for 1, ,i N  leads to a low-order 
analogous lumped-parameter system representation. 

ˆˆ ˆ ˆ ˆX AX f X BU           (22a) 

where 1
ˆ ˆ ˆ,...,

T

N
X x x and 1

ˆ ˆ ˆ,...,
T

N
U u u . Other terms are 

defined as follows 
1 2

0 00

3 0

,

,

ˆ ˆ ,

ij N N

y LL L

ij i j i j i j i j
y

L

i i i

A a I B I

a dy dy

f X f x f x dy

   (22b) 

Note that the spatial boundary conditions for the problem 
usually get absorbed while evaluating the integrals. Next, 
in the cost function (10) we observe that 

2

1 10

ˆ ˆˆ ˆ, ,
L N N

T
i i j j

i j

qx dy q x x q x x X QX   (24) 

where 
N

Q q I . Similarly we can write 

2

1 10

ˆ ˆˆ ˆ, ,
L N N

T
i i j j

i j

ru dy r u u r u u U RU    (25) 

where 
N

R r I .
Thus the cost function in (10) can be written as 

0

1 ˆ ˆ ˆ ˆ
2

T TJ X QX U RU dt          (26) 

Equations (22a-b) and (26) define an analogous optimal 
control problem in the lumped parameter framework, which 
is solved using the SNAC technique (discussed next). 

IV. CONTROL DESIGN: SINGLE NEURAL
ADAPTIVE CRITI C (SNAC) SYNTHESIS

The focus of this work is on the large class of problems 
where the control variable ˆ

kU  is explicitly solvable in 
terms of state variable ˆ

kX  and costate variable 1k . A set 
of neural networks is used to solve the optimal control 
problem contained in (22a-b) and (26), together with 
appropriate boundary conditions.  This control synthesis is 
obtained through a set of critic networks (retaining the 
terminology of the adaptive critic method [7], [11].  

A.  Necessary Conditions of Optimality 
The neural network technique requires a discrete time 

version of these equations. To arrive at such discrete 
equations it is well-known that the state equation (22a-b) 
develops forward, while the costate equation develops 
backward in time. Hence, at any instant of time kt  one can 
write the discrete-time versions of state and costate 
equations as 

1
ˆ ˆ ˆ ˆ,k d k kX F X U                 (27) 

1
ˆ ˆ ˆ, ,k d k k kG X U        (28) 

where d̂F  and ˆ
dG  are the resulting algebraic functions of 

their arguments. The details of this process have been 
omitted for brevity. The discrete version of the optimal 
control equation can be written as 
       1

1
ˆ T

k kU R B          (29) 
Note that 1k  is substituted for ( )t  to make the equation 
compatible with the discrete optimal control theory [2].  

B. State Generation for Neural Network Training 
Note that the lumped parameter states can be computed 

from ( )x y  in (19a) as follows 
ˆ ,j jx x y y         (30) 

Hence, in principle one can use the method adopted for 
generation of the initial conditions (see Section III.C) to 
generate a number of such profiles and then use (30) for 

1, ,j N  to come up with appropriate values for ˆ
kX .

However, an alternative (easier) method of generating this 
lumped parameter state vector for training the networks 
was followed. All the snapshots were used and the 
minimum and maximum values for the individual elements 
of ˆ

kX were fixed. Let maxX̂  and minX̂  denote the vectors of 
maximum and minimum values for the elements of  ˆ

kX

respectively. Then fixing a positive constant 0 1iC , the 

idea is to select min max
ˆ ˆ ˆ,k iX C X X . Let 

min max
ˆ ˆ ˆ ˆ: ,i k k iS X X C X X . One can notice that for 

1 2C C ,   1 2S S . Thus, for some i I , 1IC  and 
IS  it will include the domain of interest for initial 

conditions. Hence, to begin the synthesis procedure, a small 
value for the constant 1C  was chosen and the networks 
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were trained for the states, randomly generated within 1S .
The constant iC  was increased this way until the set iS

included the domain of interest for the initial conditions. In 
this paper, 1 0.05C , 1 0.05 1iC C i  for 2, 3,i  and 
continued until i I , where 1IC .

C.  Selection of Network Structure and Initial Weights 
In this work the network was split internally into N  sub-

networks, assuming one network (rather a sub-network) for 
each channel of the costate vector. The input to each sub-
network, however, is the entire state vector kX . Since 

5N  (for this problem), five feedforward 5,5,1  neural 
networks were used. A 5,5,1  neural network means five 
neurons in the input layer, five neurons in the hidden layer 
and one neuron in the output layer. For activation 
functions, tangent sigmoid function was used for all the 
hidden layers and a linear function was used for the output 
layer. No optimization was carried out for the ‘best’ neural 
architecture. Numerical results (see Section V), however, 
indicate that the choice was appropriate to solve the 
problem that we were interested in. 

Next, appropriate values of initial weights of the 
networks need to be chosen. For this purpose, first one can 
notice that if the system is square (i.e. dimensions of ˆ

kU

and 1K  are same, which is the case for this problem), then 
from (29) one can write 

1

1
ˆT

K kB R U         (31) 
Hence, if one can come up with some stabilizing control 
solution  for ˆ

kU  (by any method), then (31) can be used to 
compute the corresponding 1K , ‘assuming’ that control 
solution to be optimal. Then the relationship between the 
corresponding ˆ

kX  and 1K  can be used to train (rather pre-
train) the networks, before starting the SNAC training 
process. This is what has been done in this paper, using 
dynamic inverse technique [4] to generate ˆ

kU

D. Training of Neural Networks 

The non-optimal neural network (but initialized with 
respect to a stabilizing solution, as discussed in Section 
IV.C) is subjected to the optimal control equations and 
trained appropriately. The training process with the target 
quantity is presented in Figure 2. Note that Figure 2 is self-
explanatory to outline the steps involved in the neural 
network training process. We omit the details for lack of 
space (see [7], [8] for details). 

The Levenberg-Marquardt method [5] was used in the 
back propagation technique for training. 2000 input-output 
data points for each iS  were chosen. After training the 
networks with 2000 data points for 25 epochs, the networks 
were checked for convergence with another 2000 different 
data points. If the convergence condition was met, the 

networks were trained again with a different set of 2000 
data points in 1iS  and so on. Otherwise, the training 
process was repeated with different sets of data points 
within iS .

Figure 2: Schematic for Single Neural Network Adaptive Critic

E.     Online Computation of the Control Solution 
After the controller synthesis, the following steps are used 
for computing the controller online: 

Measure the state variables at time kt  across the spatial 
dimension. Find the error of the state with respect to 
the desired steady-state profile using (7a) 
Compute ˆ

kX  using the basis functions.  

Using ˆ
kX  in the neural network, compute ˆ

kU .
Get the desired (spatially-continuous) control ,ku t y

from ˆ
kU , using the basis functions, from (19b). 

Get ,kS t y  from ,ku t y  using (7b)  

V. NUMERICAL RESULTS 
Two representative simulations are presented in this 

section.  Figures 3 demonstrates this property for a cooling 
fin with an initial temperature profile (assumed be an 
exponentially decaying function from root to tip).  It was 
verified that the desired temperature profiles and the 
system’s final temperature profiles are almost identical 
after the 120 second simulations. The associated control 
history is as shown in Figure 4. The relatively large 
magnitude of the controller is due to the short simulation 
time of 120 seconds (chosen to be small due to re-entry 
time limitation). In other applications where a longer 
simulation time is permissible, the magnitude of the 
controller will be less.  

As pointed out in Section I, the SNAC technique retains 
all the advantages of adaptive critic technique and is 
capable of finding the solutions for a large number of initial 
conditions. To demonstrate this, simulations have been 
carried out for a large number of ‘random’ initial 
conditions, generated following the approach presented in 
Section III.C. Figure 5 shows the result from such an initial 
condition. Once again this figure demonstrates that the goal 
is achieved without any problem, if the associated control 
(Figure 6) is applied.  
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Figure 3: Temperature Time History 

Figure 4: Control Time History 

Figure 5: Temperature Time History 

Figure 6: Control Time History 

VI. CONCLUSIONS

A nonlinear optimal re-entry temperature control 
problem is solved. All forms of heat transfer (namely 
conduction, convection and radiation) were accounted for, 
which results in a nonlinear distributed parameter model. 
This nonlinear model was used without any approximation 
(like linearization) to come up with an optimal controller 
using the single network adaptive critic (SNAC) technique. 
The simulation results demonstrate that by using the 
proposed technique, one can track a desired temperature 
profile, starting from any initial condition in the domain of 
interest.  
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