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Abstract— We revisit a class of reset control systems con-
taining first order reset elements (FORE) and Clegg integra-
tors and propose a new class of models for these systems.
The proposed model generalizes the models available in the
literature and we illustrate, using the Clegg integrator, that
it is more appropriate for describing the behavior of reset
systems. Then, we state computable sufficient conditions for
L2 stability of the new class of models. Our results are based
on LMIs and they exploit quadratic and piecewise quadratic
Lyapunov functions. Finally, a result on stabilization of linear
minimum phase systems with relative degree one using high
gain FOREs is stated. We present two examples to illustrate
our results. In particular, we show that for some systems a
FORE can achieve lower L2 gain than the underlying linear
controller without resets.

I. INTRODUCTION

Reset controllers were proposed for the first time by
Clegg in 1958 [8] with the aim of providing more flexibility
in linear controller designs and of potentially removing fun-
damental performance limitations of linear controllers. The
first systematic designs for reset controllers were reported in
the 1970’s [17], [13] and there has been a renewed interest
in this class of systems in the late 1990’s [5], [1], [3], [4],
[6], [7], [10], [12], [11], [14], [19].

A reset controller is a linear controller whose output
is reset to zero whenever its input and output satisfy an
appropriate algebraic relationship. For instance, in [4] and
the references cited therein a class of reset controllers was
considered where the output of the controller is reset to zero
whenever its input is equal to zero. The Clegg integrator
introduced in [8] acts like a linear integrator whenever its
input and output have the same sign and it resets its output
to zero otherwise (see Section II). Consequently, its de-
scribing function has the same magnitude plot as the linear
integrator but it has 51.9◦ less phase lag than the linear
integrator. This feature of the Clegg integrator was used
for the first time in [17] to provide a systematic procedure
for controller design exploiting this device. Subsequently, a
new reset device called the first order reset element (FORE)
was introduced in [13] and a controller design procedure
based on FOREs was proposed. The design procedure was
based on linear frequency domain techniques for robust
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stabilization. These early results on reset control systems
are summarized in a recent paper [6].

The first example that clearly illustrated advantages of
reset over linear controllers was presented in [2] where a re-
set controller was designed to achieve design specifications
that are impossible to achieve by any linear controller. First
attempts to rigorously analyze stability of reset systems with
Clegg integrators can be found in [14], [12]. In particular, an
integral quadratic constraint was proposed in [12] to analyze
stability of a class of reset systems. However, the proposed
condition was conservative as it was independent of reset
times. Stability analysis of reset system consisting of a sec-
ond order plant and a FORE was conducted in [7]. However,
the same approach could not be used to analyze higher order
reset systems. Stability analysis of general reset systems
can be found in [4] (see also [11]) where Lyapunov based
conditions for asymptotic stability of general reset systems
were presented. Moreover, the authors proposed computable
conditions for quadratic stability based on linear matrix
inequalities (LMIs). Bounded-input bounded-state stability
of general reset systems was obtained as a consequence of
quadratic stability. Finally, an internal model principle was
proved for tracking of and disturbance rejection.

Recently, in [18] we have presented Lyapunov like con-
ditions for L2 stability and exponential stability of general
reset systems. Our results apply to a more general class
of models than those considered in the literature (see [4]);
in particular, resets can occur on more complicated sets
than those considered in [4]. Using the Clegg integrator we
show that this class of models is indeed natural to consider
when analyzing reset systems (see Section III). Moreover,
our conditions involve locally Lipschitz Lyapunov functions
as opposed to continuously differentiable ones considered
in [4]. In particular, this allows us to consider piecewise
quadratic Lyapunov functions in verifying exponential or
L2 stability of reset systems. We also prove a new result
that shows that any minimum phase relative degree one
SISO linear plant can be L2 stabilized using a high gain
FORE. Using examples we show that piecewise quadratic
functions allow to analyze systems with unstable FOREs
and, in general, corresponding to exponentially unstable
linear closed-loops (these situations cannot be effectively
addressed by using quadratic Lyapunov functions).

The paper is organized as follows. In Section II we
discuss the physical model of the Clegg integrator and in
Section III we comment on our hybrid notation, inspired
by [9]. In Section IV we establish properties of SISO reset
systems via quadratic and piecewise quadratic Lyapunov
functions and state a high gain result for closed-loop sys-
tems with FOREs. Finally, in Section V we illustrate the
proposed methodology on two examples. All the statements
will be reported without proofs due to space constraints.
Notation: We use the notation (x, y) = [xT yT ]T . Given a
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state variable x of a system with jumps, throughout the
paper we will denote its derivative with respect to time
(which is defined almost everywhere) by ẋ. Moreover, at
jump times, we will denote the value of the state after the
jump by x+ and the value of the state before the jump
simply by x. See also Section III-A for more details.

II. A RESET MODEL OF THE CLEGG INTEGRATOR

In 1958, J.C. Clegg published a paper [8] where he pro-
posed a modification to the existing analog control schemes
to reduce the phase lag induced by a linear integrator. When
using infinite gain operational amplifiers, it is well known
that the linear integrator can be implemented using a resistor
on the input path and a capacitor on the feedback path of the
circuit. The corresponding input/output relation of the linear
integrator can be written in the time domain as ẋ = − 1

RC v.

C

R

u

C

R vC1

vC2

Rd xr

-

-

Fig. 1. The “Clegg integrator”.

The modification proposed by Clegg corresponds to the
scheme of Figure 1 (which is reported here from [8] with a
sign inversion at the output, for convenience of exposition).
The Clegg integrator dynamics can be described as follows.
First note that by the infinite gain assumption of the oper-
ational amplifier, the input voltages (marked by gray dots
on the figure) are always zero. Then, the two capacitors’
voltages satisfy vC1(t) ≤ 0 and vC2(t) ≥ 0 for all times
(otherwise the infinite current flowing in the diodes would
instantaneously discharge the capacitor). Moreover, when
v(t) < 0, regardless of the preceding voltage stored in the
upper capacitor, the current flowing in the two diodes and
through the upper Rd will (almost) instantaneously impose
vC1(t) = 0. However, when v(t) ≥ 0, the upper circuit will
correspond to the linear integrator because the diodes will
both be open (being subjected to a non-positive voltage).
Similarly for the lower circuit, if v(t) > 0, we will have
vC2(t) = 0 and if v(t) ≤ 0 the circuit will integrate. Since,
as commented above, vC1(t) ≤ 0 and vC2(t) ≥ 0 for all
times, given xr(t) := −vC1(t)−vC2(t), the integrating and
reset conditions for both circuits can be written as{

ẋr =
1

RC
v, if xrv ≥ 0,

x+
r = 0, if xrv ≤ 0.

(1)

Remark 1: Further insight on equation (1) can be gained
by observing that v and xr can never have opposite signs.
Indeed, if v > 0, then v+

C2 = 0, and since vC1 ≤ 0 for all
times, vxr ≥ 0. Similarly for the case v < 0. On the other
hand, whenever v �= 0, there will always be one circuit

integrating (the upper one if v > 0 and the lower one if
v < 0) and the other circuit at zero. ◦

III. MODELING ISSUES FOR THE CLEGG INTEGRATOR

In this section we will comment on how the model
(1) should be interpreted and represented to guarantee
important properties of the arising reset dynamical system.

A. A hybrid representation for solutions

The results given in this paper are based on the theoretical
results reported in [18]. Before even addressing the problem
of characterizing useful properties of the solutions to reset
linear systems, it is mandatory to adopt a mathemati-
cal representation for such solutions which is capable of
guaranteeing fundamental properties, such as existence of
solutions for all times and robustness of the stability results.
A first step in this direction corresponds to suitably defining
the domain of the solution for the reset system. In particular,
the domain of the solution xr to the Clegg integrator of
Figure 1 will be taken to be the Cartesian product of two
domains: one related to the elapsed time and the other
one related to the number of jumps that occurred since the
initial time. This type of mathematical framework for hybrid
systems was introduced in [9] and used in [18] to prove the
main results that this paper appeals to.

According to the notion of solutions commented above,
the Clegg integrator dynamics (1) can be written as{

ẋr(t, j) =
1

RC
v(t), if xr(t, j)v(t) ≥ 0,

xr(tj+1, j + 1) = 0, if xr(tj+1, j)v(tj+1) ≤ 0,
(2)

where xr(t, j) represents the state of the Clegg integrator at
time t, assuming that j resets have occurred before time t.
Note that with this notation, if tj+1 represents the time at
which the j-th reset occurred, then xr(tj+1, j) represents
the integrator value before the jump and xr(tj+1, j + 1)
represents the integrator value after the jump.
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Fig. 2. Response to a sinusoidal input in a hybrid domain.

As an example, Figure 2 represents the Clegg integrator
state response with this notion of solution when the input
v is selected as a sine wave with unit frequency. The
dashed horizontal lines represent the reset times tj and
the red horizontal lines are the hybrid domain of the
solution xr(t, j). Throughout the rest of the paper we will
always use the shorthand notation ẋ for ẋ(t, j) and x+ for
x(tj+1, j + 1).
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B. Requiring closed flow and jump sets
One way to understand the hybrid model (2) for the Clegg

integrator is to call its first equation the “flow” equation and
its second equation the “jump” equation. The two conditions
at the right hand side become then the “flow” condition and
the “jump” condition. At any time t, a solution of the hybrid
system (2) will then flow or jump depending on whether
its value at that time belongs to the so-called “jump set”
(namely, the set of states for which the jump condition is
true) or it belongs to the “flow set” or even both. Let’s
consider the simple example of a Clegg integrator connected
to an integrating plant:

v = r − y, ẏ = xr + d, (3)

where r and d ar reference and disturbance inputs. For this
feedback interconnection, the flow condition corresponds to
xry ≤ 0 and the jump condition corresponds to xry ≥ 0. In
particular, when looking at the (y, xr) plane as a represen-
tation for the closed-loop state, the jump set corresponds to
the first and third quadrants and the flow set corresponds to
the second and fourth quadrants. Note that the vertical and
horizontal axes belong to both the jump and the flow sets.

According to the notation in [18], we denote the flow set
by C and the jump set by D. For the system (3), we can
use the following representation for these two sets:

C :=

{
(y, xr) :

[
xr

y

]T

M

[
xr

y

]
≥ 0

}
,

D :=

{
(y, xr) :

[
xr

y

]T

M

[
xr

y

]
≤ 0

}
,

(4)

where M :=
[

0 −1
−1 0

]
. It is important to emphasize that

both the jump and flow sets defined in (4) are closed. This
condition is necessary for the theoretical developments in
[9] to apply. The results in [9] (which are also used in [18])
allow us to establish robust asymptotic stability results for
the closed-loop between linear plants and reset controlling
elements. Therefore we will assume from now on that the
sets C and D are closed.

Remark 2: (Uniqueness of solutions) Asking that the sets
C and D be closed implies that there are regions of the state
space belonging to both sets. Therefore, solutions may jump
or flow in these regions, so that the solutions to the arising
reset linear systems may be non unique. Non uniqueness
becomes a necessary notion when wanting to establish
robust results for the reset system, as a matter of fact, when
the feedback system is affected by (arbitrarily small) noise,
the state could be pushed in several different directions
and different solutions may correspond to different noise
selections. These and other robustness issues are addressed
and solved in the hybrid framework that we adopt here and
in the stability results that we will rely on in this paper. ◦

It should be emphasized that several recent papers (see,
e.g., [11], [4] and references therein) have addressed the
problem of feedback systems with Clegg integrators and,
more generally, feedback systems with First Order Reset
Elements (FORE). In that work, the Clegg integrator dy-
namics is captured by a different set of equations, namely{

ẋr =
1

RC
v, if v �= 0,

x+
r = 0, if v = 0.

(5)

This representation is however prone to problems and we
will not adopt it here for several reasons:
1. The model (5) does not represent the behavior of the
Clegg integrator circuit for all initial conditions. Assume
that xr < 0 and v is a constant positive signal. Since the
input and output of the circuit in Figure 1 can never have
opposite signs (see Remark 1), the actual circuit will reset
xr instantaneously to zero. However, the model (5) will
never reset xr to zero because v �= 0 for all times and the
response will be flowing for all times. On the other hand, the
model (1) will jump instantaneously to zero and generate
one solution that flows for all positive times. This solution
corresponds to the actual response of the circuit.
2. In (5), the flow set C corresponds to almost all the state
space so that the closure of C coincides with the whole
state space. It is therefore possible to generate arbitrarily
small noise that will prevent the state from jumping on
all trajectories. This lack of robustness is solved in (1)
where closed jump and flow sets are employed (see [9] for
more details on robustness concepts in the hybrid domains).
Note that the lack of robustness of the model (5) can
be even experienced in simulation. For example, when
implementing the closed-loop (3) in Simulink using (5), the
Clegg integrator state is never reset to zero due to the time
discretization performed by the simulator.
3. The model (5) will impose a flow condition in regions
of the state space where the Clegg integrator circuit would
jump. Consequently, for establishing useful stability results,
the model (5) would require to check suitable inequalities
also in regions of the state space that do not require it,
whereas our representation (1) wouldn’t.

C. Imposing temporal regularization

One of the problems accurately modeled in [9] corre-
sponds to the so-called “Zeno solutions” where the state
jumps infinitely many times in a bounded time interval
(so that the corresponding hybrid domain is unbounded in
the jump direction thereby remaining bounded in the flow
direction). While this peculiar situation is well modeled
mathematically in [9], it is not reasonable to implement
a control system that could generate solutions of this kind
because unmodeled effects would come into place so that
the actual solution exhibits an unpredictable behavior. To
avoid the presence of Zeno solutions, reset control systems
are augmented here with an extra jump rule which imposes
that after any jump a pre-designed time interval ρ has to
expire before a subsequent jump is allowed. This type of
rule has been used, e.g., in [16] and was therein called
“temporal regularization”. The same idea was also used in
the context of reset systems in [7, §2]. We will therefore
use that notation also here. As an example, the Clegg inte-
grator augmented with temporal regularization corresponds
to generalizing equation (2) as follows:

τ̇ = 1,

ẋr =
1

RC
v

}
if xrv ≥ 0 or τ ≤ ρ, (6a)

τ+ = 0,
x+

r = 0

}
if xrv ≤ 0 and τ ≥ ρ, (6b)

The stability and performance results that we will report
next will all refer to reset elements which are modified as
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in (6) where ρ is a sufficiently small positive number. Note
that even simulation packages like Simulink will not be able
to compute the solution forward in time if the simulation
scheme is not implemented with some kind of temporal
regularization.

IV. HYBRID MODELING AND PROPERTIES OF SISO
RESET SYSTEMS

A. Models for FORE control loops

Consider a strictly proper SISO linear plant whose dy-
namics is described by

P
{

ẋp = Apxp + Bpuu + Bpdd,
y = Cpxp,

(7)

where u is the control input, d is a disturbance input and
y is the measured plant output (Ap, Bpu, Bpd and Cp

are matrices of appropriate dimensions). For the plant (7),
assume that a FORE control system is designed as follows:

FORE
{

ẋr = λrxr + e, if exr ≥ 0
x+

r = 0, if exr ≤ 0, (8)

Interconnection
{

u = kxr,
e = r − y

(9)

where r ∈ R is a reference signal. Moreover, k denotes
the loop gain and λr ∈ R denotes the time constant of the
FORE. Note that λr can be any number (including positive
ones) while k should be positive. For example, choosing
k = 1 and λr = 0 corresponds to implementing in the
FORE the Clegg integrator commented in Section II.

The overall closed-loop system augmented with the tem-
poral regularization can then be described by the following
equations:{

τ̇ = 1,
ẋ = Ax + Bdd + Brr,

if xT Mx ≥ 0 or τ ≤ ρ,{
τ+ = 0,
x+ = Arx,

if xT Mx ≤ 0 and τ ≥ ρ,

y = Cx

(10)

where A denotes the flow matrix, Ar denotes the reset
matrix and M characterizes the flow and the jump sets (note
that these two sets have their boundaries in common). Based
on the values in (7), (8) and (9), the matrices in (10) are

A =
[

Ap Bpuk
−Cp λr

]
, Bd =

[
Bpd

0

]
, Br =

[
0
1

]
,

Ar =
[

I 0
0 0

]
, M =

[
0 −CT

p

−Cp 0

]
,

C = [ Cp 0 ] .

(11)

B. Lyapunov-based results

In [18] Lyapunov-based results for a general class of
reset systems have been given. These results allow us to
establish exponential stability of the closed-loop and L2

performance properties. The main result of [18] can be
written as follows for the special reset control system in
(10), when only focusing on second order homogeneous
Lyapunov functions.

Theorem 1: [18] Consider the reset control system (10)
with the matrix selection (11) and pick any arbitrarily small
number ε > 0. Select either w = r and Bw = Br or w = d
and Bw = Bd. Assume that there exists a locally Lipschitz

function V (x) := xT P (x)x, and strictly positive constants
a1, a2, γ and ε, such that

1) a1|x|2 ≤ V (x) ≤ a2|x|2 for all x ∈ R
n,

2) P (λx) = P (x) = P T (x) > 0 for all x ∈ R
n and for

all λ ∈ R,

3)
∂V (x)

∂x
(Ax+Bww)+ε|x|2 +

1
γ
|y|2−γ|w|2 < 0, for

almost all x such that xT (M + εI)x ≥ 0,
4) V (Arx) − V (x) ≤ 0 for all x such that xT Mx ≤ 0.

Then there exists a small enough ρ∗ > 0 such that for
any fixed ρ ∈ (0, ρ∗), the FORE control system (10) is
exponentially stable and has a finite L2 gain from w to y
which is smaller than γ.

Remark 3: The condition at item 2 corresponds to requir-
ing that the Lyapunov function is homogeneous of degree
two. The condition at item 3 corresponds to requiring that
in a set that is slightly larger than the flow set the Lyapunov
function is a disturbance attenuation Lyapunov function for
the input w and the output y. The condition at item 4
corresponds to requiring that the Lyapunov function does
not increase along resets. As compared to the main result in
[18], Theorem 1 does not explicitly require that immediately
after the resets the closed-loop state belongs to the flow
set. Indeed, since resets will always drive the FORE state
to zero, the state after reset will necessary belong to the
flow set (by the structure of M ) and no extra requirement
is needed on the resetting strategy. ◦
C. LMI formulations of the Lyapunov results

The result given in Theorem 1 can lead to a convex
formulation if the homogeneous of degree two Lyapunov
function is restricted to a smaller class of functions. We
concentrate next on Lyapunov functions that are quadratic
or piecewise quadratic and show how the conditions of
Theorem 1 transform into convex constraints formulated as
linear matrix inequalities (LMIs).

Theorem 2: (Quadratic Lyapunov conditions) Consider
the reset control system (10) with the matrix selection (11).
Select either w = r and Bw = Br or w = d and Bw = Bd.

If the following linear matrix inequalities in the variables
P = PT > 0, τF , τR ≥ 0, γ > 0 are feasible:[

AT P + PA + τF M PBw CT

� −γI 0
� � −γI

]
< 0,

AT
r PAr − P − τRM ≤ 0,

(12)

Then there exists a small enough ρ∗ > 0 such that for
any fixed ρ ∈ (0, ρ∗), the FORE control system (10) is
exponentially stable and has a finite L2 gain from w to y
which is smaller than γ.

The LMI results in Theorem 2 have severe limitations
mainly arising from the conservativeness associated with the
use of quadratic Lyapunov functions. Indeed, it is possible
to show that the conditions (12) are never feasible if the
FORE element is not exponentially stable. The most natural
relaxation of the quadratic conditions consists in piecewise
quadratic conditions where several quadratic functions are
selected in different sectors of the state space and patched
together to form a unique piecewise quadratic function. In
general, piecewise quadratic relaxations of convex quadratic
conditions lead to non convex formulations that don’t
correspond to LMIs. However, in our special case, it is
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possible to write convex conditions by exploiting the special
structure of the flow and jump sets. The corresponding result
is reported next.

Theorem 3: (Piecewise quadratic Lyapunov conditions)
Consider the reset control system (10) with the matrix
selection (11). Assume (without loss of generality) that
the plant (7) is in observability canonical form (so that
Cp = [0 · · · 0 1]). Select either w = r and Bw = Br

or w = d and Bw = Bd. Choose any N ≥ 2 and define θi,
i = 0, . . . , N such that 0 = θ0 < θ1 < · · · < θN =

π

2
(for

example, in our case studies we select θi = i
N

π
2 ). Define

the angle vectors Θi ∈ R
n as

Θi = [ 01×n−2 sin(θi) cos(θi) ]T , i = 0, . . . , N,

and their orthogonal matrices Θi⊥ (so that ΘT
i⊥Θi = 0) as

Θi⊥ :=
[

I 0 0
0 cos(θi) − sin(θi)

]T

, i = 0, . . . , N.

Define also the sector matrices Si = ST
i ∈ R

n×n as

S0 := Θ0ΘT
N + ΘNΘT

0

Si := −(ΘiΘT
i−1 + Θi−1ΘT

i ), i = 1, . . . , N.

If the following linear matrix inequalities in the variables
Pi = PT

i > 0, τFi ≥ 0, i = 1, . . . , N , P̂ = P̂T > 0,
τJ ≥ 0, γ > 0 are feasible:[

AT Pi + PiA + τFiSi PiBw CT

� −γI 0
� � −γI

]
< 0, (13a)

i = 1, . . . , N,

AT
r P̂Ar − P̂ + τJS0 ≤ 0 (13b)

ΘT
i⊥ (Pi − Pi+1) Θi⊥ = 0, i = 1, . . . , N − 1, (13c)

ΘT
0⊥(P1 − P̂ )Θ0⊥ = 0 (13d)

ΘT
N⊥(PN − P̂ )ΘN⊥ = 0 (13e)

then there exists a small enough ρ∗ > 0 such that for
any fixed ρ ∈ (0, ρ∗), the FORE control system (10) is
exponentially stable and has a finite L2 gain from w to y
which is smaller than γ.

Remark 4: An interpretation of the LMIs (13) will be
useful. The piecewise quadratic Lyapunov function aris-
ing from Theorem 3 is obtained by patching together
N quadratic functions (characterized by the matrices
P1, . . . , PN ) defined in the flow set and one quadratic
function (characterized by the matrix P̂ ) in the jump set.
According to this selection, conditions (13a) ensure that the
proposed Lyapunov function is a disturbance attenuation
Lyapunov function in the flow set and condition (13b)
ensures that the Lyapunov function is not increasing upon
jumps within the jump set. The remaining conditions ensure
that the patched Lyapunov function is continuous, namely
conditions (13c) ensure that it is continuous on the patching
surfaces inside the flow set and conditions (13d), (13e)
ensure that it is continuous on the patching surfaces at the
boundary of the flow and the jump sets. ◦

Remark 5: For implementation purposes, it is useful to
point out that the LMI constraints (13) can be implemented
with a good level of approximation by only using strict
linear matrix inequalities. In particular, once a very small

tolerance ε has been fixed, the non strict LMI (13b) can be
replaced by the strict LMI AT

r P̂Ar − P̂ + τJS0 < εI, and
the equality constraints (13c) can be replaced by the LMIs[

−εI ΘT
i⊥ (Pi − Pi+1) Θi⊥

� −εI

]
< 0,

(and similarly for (13d) and (13e)). The arising solutions
will satisfy the LMIs (13) up to a very small tolerance
(related to the selection of ε).

Note that given any solution to (13), all the variables
can be scaled by an arbitrary constant while preserving its
feasibility. It is therefore useful to also impose Pi > I , i =
1, . . . , N (without loss of generality) to obtain reasonable
values in the entries of the matrices Pi. ◦
D. A high gain stability result

In this section, using a simple Lyapunov construction
for a FORE controlling an integrator (which is a planar
system) and a small gain result, we establish that any
SISO minimum phase plant with relative degree one can
be stabilized using an appropriate high gain FORE. Indeed,
note that if the plant is minimum phase and relative degree
one, there exists a nonsingular change of coordinates so that
we can write the model (7) as follows [15, Remark 4.3.1]:

ż = Az + By + Bdd

ẏ = Cy + Dz + Eu + Edd ,

where y ∈ R and u ∈ R are respectively the plant output
and input and A is Hurwitz. Then the following holds:

Theorem 4: Consider the closed loop system consisting
of (14), (14), (8) and (9), with r ≡ 0 and A is Hurwitz.
Then, there exists k∗ > 0 such that for all k ≥ k∗, the
closed loop system is exponentially stable and L2 stable
from d to y.

V. EXAMPLES

In this section we will show how the LMI formulations
given in Section IV-C can be used to establish useful
stability and performance properties of several reset control
systems involving FORE or Clegg integrators. We first
address the most classical example, already introduced
in Section III-B of a Clegg integrator connected to an
integrator, and then address the case of a FORE connected
to an integrator.

Example 1: (A Clegg integrator controlling an integrator
plant) One of the simplest reset systems considered in the
literature corresponds to the control system where a Clegg
integrator is connected in feedback with an integrating
plant. Studying the stability of this simple closed-loop by
Lyapunov tools is already a challenging task to accomplish
which was addressed and solved recently in [12], [14]. The
equations of the closed-loop system can be written as⎧⎨

⎩
ẏ = xr + d
ẋr = r − y,

}
if xr(r − y) ≥ 0,

x+
r = 0, if xr(r − y) ≤ 0.

(14)

In this section, not only do we establish stability of the
closed-loop system but we also give a tight estimate on
the L2 gain of the system from the input d to the output
y, by employing the LMI-based techniques of Section IV-
C. In light of the stability properties established, e.g., in
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Fig. 3. Example 2. Left: level sets of the 51 quadratic Lyapunov functions
used for the case N = 50. Right: level set of the arising piecewise
quadratic Lyapunov function (bold) and of the quadratic Lyapunov function
from Theorem 2.

[12], [14], we may expect to get an estimate of the L2 gain
from d to y using the quadratic Lyapunov functions pro-
posed in Theorem 2. However, the LMI constraints therein
proposed turn out to be non feasible for this particular
problem. Indeed, even for such a simple closed-loop system,
a piecewise quadratic Lyapunov function is necessary to
obtain an estimate of the L2 gain. When using the LMIs
of Theorem 3, it is necessary to use at least N = 2 to
prove the closed-loop exponential stability. Moreover, as N
increases, tighter and tighter bounds are obtained for the L2

gain of the system. The following table reports some of the
values obtained by increasing the number of regions.

N 2 3 4 8 15 50
gain 2.834 1.819 1.377 0.914 0.884 0.87

◦
Example 2: (A FORE controlling an integrator) It has

been discussed in several papers (see, e.g., [11], [2]) that
reset control systems can overcome certain limitations of
linear control systems. In particular, for an integrating
plant, it is shown in [11] that the reset controller can
achieve arbitrarily large rising time of the closed-loop while
guaranteeing zero overshoot. This is proved to be non
achievable for linear control systems (see [11] for details).
In [11, §9.2.1], a FORE with time constant τ = 1 connected
in unit negative feedback to an integrator is used to illustrate
this fact. According to our notation, the closed-loop system
is described by the following dynamics⎧⎪⎨
⎪⎩

ẏ = xr + d

ẋr =
1
τ

(r − y − xr),

}
if xr(r − y) ≥ 0,

x+
r = 0, if xr(r − y) ≤ 0.

(15)

For this example, it is of interest to compare the L2 gain
of the reset control system to the L2 gain characterizing
the closed-loop without resets. In particular, the L2 gain
of the linear closed-loop is 1.468 and the estimate arising
from the quadratic Lyapunov construction of Theorem 2,
corresponding to 1.84, is not good enough to show that the
L2 gain of the reset control system is improved as compared
to the linear case. However, determining a bound using the
piecewise quadratic quadratic construction of Theorem 3
leads to a less conservative estimate of 1.18 (determined
using 51 quadratic Lyapunov functions), which is able
to predict the improved performance of the reset control
system.

Figure 3 shows on the left the level sets of the quadratic

functions involved in the piecewise quadratic construction,
and on the right, a level set of the patched piecewise
quadratic Lyapunov function (bold) compared to the level
set of the quadratic Lyapunov function establishing the
1.84 gain estimate. Note that for this example the optimal
piecewise quadratic Lyapunov function is nonconvex again.

It is useful to mention that it not necessary for the
FORE element in (15) to be exponentially stable. Indeed,
it is possible to show that any real selection of τ enforces
closed-loop stability. For example, picking τ = −1 in (15),
we obtain a reset closed-loop which would be exponen-
tially unstable without resets. On the other hand, the reset
closed-loop is exponentially stable, even though closed-
loop exponential stability cannot be established by the
quadratic construction of Theorem 2 in this case. However,
quite surprisingly, the L2 gain estimate established by the
piecewise quadratic construction of Theorem 3 corresponds
to 0.71 and is highly improved with respect to the case with
τ = 1 (see [18] for further insight on the use of unstable
FOREs). ◦
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