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Abstract— Motivated by questions in stability theory for
hybrid dynamical systems, we establish some fundamental
properties of the set of solutions to such systems. Using the
notion of a hybrid time domain and general results on set
and graphical convergence, we establish under weak regularity
and local boundedness assumptions that the set of solutions is
sequentially compact and “upper semicontinuous” with respect
to initial conditions and system perturbations. The latter
means that each solution to the system under perturbations
is close to some solution of the unperturbed system on a
compact hybrid time domain. The general facts are then used
to establish several results for the behavior of hybrid systems
that have asymptotically stable compact sets. For example, it
is shown that the basin of attraction for a compact attractor
is (relatively) open, the attractivity is uniform from compact
subsets of the basin of attraction, and asymptotic stability is
robust with respect to small perturbations.

I. INTRODUCTION

The development of effective nonlinear controllers re-

quires a clear understanding of stability and its robustness

in nonlinear systems. For differential equations, this theory

is well established and nicely summarized in the book by

Khalil [16], for example. For discontinuous and/or switch-

ing systems, the theory is more recent and not yet complete.

In the last decade, important elements of stability theory

for differential inclusions have been established. Clarke et

al. [9] showed the existence of smooth Lyapunov functions

for asymptotically stable differential inclusions, and in the

process, that the asymptotic stability is a robust property.

(Related results are in [20], [6], and [31]. For discrete-time

“difference inclusions” see [15].) Ryan [27] established a

general invariance principle, extending the seminal work of

Krasovskii [17] and LaSalle [19], [18]. Artstein and co-

workers [2], [1] provided novel singular perturbation and

averaging results for differential inclusions. See also [30].

The goal of this paper is to provide some of the tools

that will allow the mentioned results to be extended to

hybrid inclusions: systems where the state flows according

to a differential inclusion and also jumps according to a

difference inclusion. In differential inclusions, the main
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facts from which (robust) stability results follow are that sets

of solutions are sequentially compact under mild growth

conditions (in particular, the limit of solutions is a solution)

and “upper semicontinuous” with respect to initial condi-

tions and system perturbations (every perturbed solution is

close, in an appropriate sense, to some unperturbed one).

One of the first obstacles to considering such results

for hybrid systems is the fact that ordinary time may be

insufficient to describe the evolution of a hybrid system.

Several characterizations of potentially suitable hybrid time

domains are given in the literature. We point to Tavernini

[29], Michel [23], Lygeros et al. [21], and van der Schaft

and Schumacher [32] for particular examples. Most recently,

the concurrent conference papers by Collins [10] and the

authors et al. [11] have proposed treating the number of

jumps as an independent variable and parameterizing the

state of a hybrid system by (t, j) – that is, x(t, j) is the

state at time t and after j jumps. In [11], the motivation for

such parameterization was that it naturally allows for the

use of graphical convergence to solutions of hybrid systems.

Such convergence, and other tools of set-valued analysis,

are well-developed and used in nonsmooth analysis, see

Rockafellar and Wets [26], and Aubin and Cellina [4] for

applications to differential inclusions. The need to rely on

nonclassical analysis is quite strong in hybrid systems, as,

for example, the standard concepts like uniform conver-

gence are not well-suited to handle discontinuous solutions.

Earlier results on the continuity of hybrid solutions with

respect to initial conditions include those by Tavernini [29],

Broucke and Arapostathis [7], and Lygeros et al. [22]. These

give, respectively: continuity near “regular states” under

strong continuity properties of the data; existence of contin-

uous selections from sets of solutions when Zeno behaviors

are excluded; and continuity of solutions under a uniqueness

assumption. The work of Collins [10], for systems with a

compact state space, contains a statement about the upper

semicontinuity of a map from initial conditions to jump

values that are possible after a given number of jumps.

In our work, we have no uniqueness assumptions, permit

Zeno behaviors, and allow a noncompact state space. The

regularity assumptions in our work, here and in [11], extend

those in [10] beyond compact state spaces, and appear

to be the weakest possible for the results reported here.

For example, from the differential inclusions describing the

continuous evolution of the hybrid system we do not require

more than what is needed for upper semicontinuity of

solutions when no discrete behaviors are present; similarly

for the difference inclusions describing the jumps.
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Related results on the behavior of solutions under regu-

larization or perturbation of the system include Johansson et

al. [13], Hiskens and Pai [12], Prieur [24], and Prieur and

Astolfi [25]. The last work addresses robust stabilization

of a certain nonholonomic chained system. We note though

that, to our knowledge, a systematic study of robust stability

of hybrid systems has not been previously carried out.

In what follows, we establish that the solution set for

hybrid inclusions satisfying basic conditions is sequentially

compact (Theorem 4.2) and upper semicontinuous (Corol-

laries 4.4 and 5.4). As applications, we show basic proper-

ties of compact attractors for hybrid systems, in particular

that their asymptotic stability is semiglobally practically

robust with respect to perturbations. Results on a general

LaSalle-like invariance principle and the construction of

smooth Lyapunov functions for asymptotically stable hybrid

systems, based on the foundations established here, can be

found in Sanfelice et al. [28] and Cai et al. [8].

II. HYBRID INCLUSIONS

We write R≥0 for [0, +∞) and N for {0, 1, . . .}. We call

a subset S ⊂ R≥0 × N a compact hybrid time domain if

S =

J−1⋃
j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 . . . ≤
tJ . We say S is a hybrid time domain if for all (T, J) ∈ S,

S ∩ ([0, T ]× {0, 1, . . . , J})
is a compact hybrid domain; equivalently, if S is a union

of a finite or infinite sequence of intervals [tj , tj+1] × {j},

with the “last” interval possibly of the form [tj , T ) with T

finite or T = +∞. Hybrid time domains were proposed

in [10] and [11]. They are essentially equivalent to “hybrid

time trajectories” of [21], [5], and [22], but give a more

prominent role to the “discrete” variable j. On each hybrid

domain there is a natural ordering of points: (t, j) � (t′, j′)
if t+j ≤ t′+j′ (equivalently, t ≤ t′ and j ≤ j′). Points from

two different hybrid time domains need not be comparable.

By a hybrid arc we will understand a function x defined

on a hybrid time domain, and such that x(t, j) is locally

absolutely continuous in t for a fixed j. Alternatively, one

could think of a hybrid arc as a set-valued mapping from

R≥0 × N whose domain is a hybrid time domain (for a

set-valued mapping M , the domain domM is the set of

arguments for which the value is nonempty). A sample

solution of a hybrid system (corresponding to the height

in the Bouncing Ball example, see for example [22]) in the

hybrid coordinates is shown in Figure 1.

The state of a hybrid system is often given by a “con-

tinuous” variable and “discrete” one. We will not explicitly

distinguish between the two. The set of potential values

of the discrete variable – often consisting of descriptive

elements like “off” or “on” – can be identified with a subset

of integers. This leads to more compact notation.
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Fig. 1. Solution of a hybrid system in hybrid coordinates

A hybrid system H will be given on a state space O

by set-valued mappings F and G describing, respectively,

the continuous and the discrete evolutions, and sets C

and D where these evolutions may occur. A hybrid arc

x : domx �→ O is a solution to the hybrid system H if

(S1) For all j ∈ N and almost all t such that (t, j) ∈
domx,

x(t, j) ∈ C, ẋ(t, j) ∈ F (x(t, j)). (1)

(S2) For all (t, j) ∈ domx such that (t, j+1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)). (2)

The fundamental conditions on H that will enable us to

show, among other things, that an appropriately understood

limit of solutions to H is itself a solution, are:

(A0) O ⊂ R
n is an open set.

(A1) C and D are relatively closed sets in O.
(A2) F : O →→ R

n is outer semicontinuous and locally
bounded, and F (x) is nonempty and convex for all
x ∈ C.

(A3) G : O →→ O is outer semicontinuous and G(x) is
nonempty for all x ∈ D.

The set C is relatively closed in O if C = O∩C , where

C is the closure of C; similarly for D. The mapping F

is locally bounded if for any compact K ⊂ O there exists

m > 0 such that F (K) ⊂ mB, where B denotes the closed

unit ball. Outer semicontinuity is defined in Section III.

A solution to H is called maximal if it cannot be

extended, and complete if its domain is unbounded. Clearly,

complete solutions are maximal. In this framework, a so-

lution is Zeno if it is complete and domx is bounded in

the t-direction. Basic existence and extension of solutions

properties of H are summarized below. In a slightly differ-

ent setting, most of them were stated in [5].

Below, TC(x) is the tangent cone to C at x ∈ C. It is

the set of all v ∈ R
n for which there exists a sequence of

real numbers αi ↘ 0 and a sequence vi → v such that for

i = 1, 2, . . ., x + αivi ∈ C. For details, see [3] or [26].
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Proposition 2.1: Assume (A0)-(A2). If x0 ∈ D or the
following condition holds:

(VC) x0 ∈ C and for some neighborhood U of x0, for
all x′ ∈ U ∩ C, TC(x′) ∩ F (x′) 
= ∅,

then there exists a solution x to H with x(0, 0) = x0 and
domx 
= (0, 0). If, for all x0 ∈ C ∪ D, either

(VD) x0 ∈ D and G(x0) ∩ (C ∪ D) 
= ∅,
or (VC) holds, then every solution to the hybrid system can
be extended to a maximal solution, and a maximal solution
x is either complete or eventually leaves every compact
subset of O.

The viability condition (VC) is automatically satisfied at

each point x0 in the interior of C. Thus, when C ∪D = O,

either (VC) or (VD) holds for all x0 ∈ C ∪ D.

III. PRELIMINARIES – SET CONVERGENCE

Consider a sequence {Si}∞i=1 of sets in R
n. Its outer limit,

denoted lim supi→∞ Si, is the set of all x ∈ R
n for which

there exists a subsequence {Sik
}∞k=1 and points xik

∈ Sik
,

such that xik
→ x. The inner limit, denoted lim inf i→∞ Si,

is the set of all x ∈ R
n for which there exist xi ∈ Si such

that xi → x. The limit of the sequence exists if the outer and

inner limits agree, and then limi→∞ Si = lim supi→∞ Si =
lim infi→∞ Si. The inner and outer limits always exist, are

closed (Proposition 4.4, [26]) but may be empty. If the outer

limit is empty (and then so are the inner limit and the limit),

the sequence escapes to the horizon; equivalently: for all

ρ > 0 there exists i0 such that for all i > i0, Si ∩ ρB = ∅.

Example 3.1: Let Si = [ai, bi] ⊂ R. The limit of Si’s

exists if and only if ai’s and bi’s converge (to finite or

infinite limits). Then, limi→∞ Si = [limi→∞ ai, limi→∞ bi]
if the latter two limits are finite (otherwise the infinite

“endpoints” are not in the limit). In general, the inner

limit is the interval with endpoints a = lim supi→∞ ai,

b = lim infi→∞ bi if a ≤ b; otherwise it is empty. The outer

limit need not be an interval; for example if S2i−1 = [1, 2],
S2i = [3, 4], then lim supi→∞ Si = [1, 2] ∪ [3, 4].

Lemma 3.2: Let {Si}∞i=1 be a sequence of hybrid time
domains, and suppose limi→∞ Si = S. Then S is a hybrid
time domain. If each Si is unbounded, then so is S.

Set convergence has a certain uniformity property, which

applies to unbounded sets if truncations are considered.

Theorem 3.3: ([26], Thm 4.10) For a sequence {Si}∞i=1

and a closed set S, limi→∞ Si = S if and only if for all
ε > 0, ρ > 0, there exists i0 ∈ N such that for all i > i0,

S ∩ ρB ⊂ Si + εB, Si ∩ ρB ⊂ S + εB.

As an immediate consequence of this fact, one can show

that arcs eventually get close to their omega limits.

Example 3.4: Let x : domx �→ R
n be a complete hybrid

arc. The omega limit of x, denoted Ω(x), is the set of all

accumulation points of x(t, j) as t+j → +∞. Equivalently,

Ω(x) = lim sup
i→∞

Si where Si = {x(t, j) | t + j ≥ i}.

A general property of set limits implies Ω(x) is closed.

If x is uniformly bounded, then Ω(x) 
= ∅, and Theorem

3.3 yields: for all ε > 0 there exists mε such that for all

(t, j) ∈ domx with t + j ≥ mε, x(t, j) ∈ Ω(x) + εB.

An important property of set convergence is that, much

like for real numbers, a sequence of sets either diverges

or has a convergent subsequence. We will rely on this in

selecting subsequences of solutions to hybrid systems.

Theorem 3.5: ([26], Thm 4.18) Every sequence {Si}∞i=1

of nonempty subsets of R
n either escapes to the horizon or

has a subsequence converging to a nonempty set S.
Set convergence can be used to give sequential definitions

of continuity of set-valued mappings. A mapping M :
R

n →→ R
m is outer semicontinuous at x if for all sequences

xi → x, yi ∈ M(xi) with yi → y, we have y ∈ M(x).
Equivalently, M is outer semicontinuous at x if for all

sequences xi → x we have lim supi→∞ M(xi) ⊂ M(x).
Inner semicontinuity and continuity can also be defined, see

Chapter 5 in [26]. The mapping M is outer semicontinuous

on R
n if and only if the graph of M :

gphM := {(x, y) ∈ R
n × R

m | y ∈ M(x)}
is a closed set (Theorem 5.7 in [26]). Our assumptions can

also be phrased in terms of graphs: F : O →→ R
n is outer

semicontinuous if gphF , equal to {(x, y) | x ∈ O, y ∈
F (x)}, is relatively closed in O × R

n.

Outer semicontinuous mappings have closed values. If the

mapping is also locally bounded, the values are compact.

For locally bounded set-valued mappings with closed val-

ues, outer semicontinuity agrees with what is often referred

to as upper semicontinuity: for any ε > 0 there exists δ > 0
such that for all x′ with ‖x′−x‖ < δ, M(x′) ⊂ M(x)+εB.

This need not be true in general.

IV. GRAPHICAL CONVERGENCE OF SOLUTIONS

Set convergence gives rise to a nonclassical concept of

convergence of functions and set-valued mappings. A se-

quence {Mi}∞i=1 of set-valued mappings converges graph-
ically to a set-valued mapping M if limi→∞ gphMi =
gphM . See Chapter 5 in [26] for more details.

Even if each Mi is a function, the graphical limit may

be set-valued. For example, take Mi : [0, 1] �→ [0, 1] given

by Mi(x) = xi. The graphical limit is M(x) = 0 for x ∈
[0, 1), M(1) = [0, 1]. Graphical convergence can easily treat

mappings with different domains.

We will usually be interested in graphical convergence of

hybrid arcs subject to some boundedness assumptions. We

will say that a sequence of hybrid arcs xi : domxi �→ R
n

is locally eventually bounded with respect to O if

for any m > 0, there exists i0 > 0 and a compact set

K ⊂ O such that for all i > i0, all (t, j) ∈ domxi

with t + j < m, xi(t, j) ∈ K .

If a locally eventually bounded with respect to O sequence

converges graphically to x, then x(t, j) ∈ O for all (t, j) ∈
domx. More importantly, we have the following result.

559



Lemma 4.1: Assume (A0)-(A3). Let xi : domxi �→ R
n,

i = 1, 2, . . . be solutions to H. Suppose that {xi}∞i=1 is
locally eventually bounded with respect to O and converges
graphically to a set-valued mapping x : R≥0 × N �→ R

n.
Then domx is a hybrid domain and x is a solution to H.

Application of Theorem 3.5 to graphs of solutions to H
(see also Theorem 5.36, [26]), together with Lemma 4.1

and Lemma 3.2, yields the following important result.

Theorem 4.2: Assume (A0)-(A3). Let xi : domxi �→ R
n

be a locally eventually bounded with respect to O sequence
of solutions to H. Then there exists a subsequence of
xi’s graphically converging to a solution of H. Such a
limiting solution is complete if each xi is complete, or more
generally, if no subsequence of xi’s has uniformly bounded
domains (i.e. for any m > 0, there exists im ∈ N such that
for all i > im, there exists (t, j) ∈ domxi with t+ j > m).

We write S(x0) for the set of all maximal solutions to

H from x0, S(K) for all those from a set K , and call H
forward complete at x0 if each x ∈ S(x0) is complete.

Results given so far did not require any growth conditions

on G; local boundedness was needed for F . In what follows,

we need a related condition on G:

(A4) G : O →→ O is locally bounded.

Theorem 4.3: Assume (A0)-(A4). Suppose H is forward
complete at x0. Then for any (T, J) ∈ R≥0×N there exists
δ > 0 and a compact subset K ⊂ O such that any xδ ∈
S(x0 + δB) satisfies xδ(t, j) ∈ K for all (t, j) ∈ domxδ ,
(t, j) � (T, J).

Graphical convergence gives rise to a notion of closeness

of solutions. For locally eventually bounded sequences, this

closeness takes the form as in the Corollary below.

Corollary 4.4: Assume (A0)-(A4). Suppose that H is
forward complete at every x0 ∈ K for some compact set K .
For any ε > 0 and (T, J) ∈ R≥0×N there exists δ > 0 with
the following property: for any solution xδ ∈ S(K + δB)
there exists a solution x to H with x(0, 0) ∈ K such that

(a) for all (t, j) ∈ domx with t ≤ T , j ≤ J there
exists s such that (s, j) ∈ domxδ, |t − s| < ε, and

‖x(t, j) − xδ(s, j)‖ ≤ ε.

(b) for all (t, j) ∈ domxδ with t ≤ T , j ≤ J there
exists s such that (s, j) ∈ domx, |t − s| ≤ ε, and

‖xδ(t, j) − x(s, j)‖ ≤ ε;

To conclude this section, we mention a result by Collins

[10]. Here, it can be derived from Theorem 4.2. Following

[10], we say that a given set of solutions to H is uniformly

non-Zeno if there exist T > 0 and J ∈ N so that for any

solution in that set, in any time period of length T , at most J

jumps can occur (more specificaly, if (t, j), (t′, j′) ∈ domx,

then |t − t′| ≤ T implies |j − j′| ≤ J). Suppose that a

compact set K ⊂ O is forward invariant, that is any x ∈
S(K) is such that x(t, j) ∈ K for all (t, j) ∈ domx. Then

either the set S(K) of all solutions to H with x(0, 0) ∈ K is

uniformly non-Zeno or there exists an instantaneous Zeno

solution (a complete solution x with domx = {0} × N)
starting in K .

V. PERTURBATIONS OF HYBRID SYSTEMS

Below, we consider a sequence of hybrid systems Hi

given by sets Ci, Di and mappings Fi : O →→ R
n,

Gi : O →→ O on the open set O. Since we do not require

existence or outer semicontinuity from the solutions to Hi

as studied for H, in Sections II, III, we do not need (A1)-

(A4) to hold for Hi. We do assume the following:

(C1) Sequences of sets {Ci}∞i=1, {Di}∞i=1 are such that

O ∩ lim supi→∞ Ci ⊂ C, O ∩ lim supi→∞ Di ⊂ D.

(C2) Sequences of set-valued mappings {Fi}∞i=1,

{Gi}∞i=1 are such that F∞(x) ⊂ F (x), G∞(x) ⊂
G(x) for all x ∈ O, where F∞, G∞ denote the outer

graphical limits of Fi’s, Gi’s.

(C3) The sequence {Fi}∞i=1 is locally uniformly

bounded: for any compact set K ⊂ O there exists

m > 0 such that for any i = 1, 2, . . . Fi(K) ⊂ mB.

(C4) The sequence {Gi}∞i=1 is locally uniformly

bounded with respect to O: for any compact set K ⊂ O

there exists a compact K ′ ⊂ O such that for any

i = 1, 2, . . ., Gi(K) ⊂ K ′.

The outer graphical limit of {Fi}∞i=1 is the mapping F∞

such that gphF∞ = lim supi→∞ gphFi. Assumption (C1)

holds, in particular, when the sequences of Ci’s and Di’s

converge, and C = O ∩ limi→∞ Ci, and similarly for D.

An analogous statement can be made about (C2).

Theorem 5.1: Let xi : domxi �→ R
n be a solution to a

hybrid system Hi, i = 1, 2, . . .. Suppose that the sequence
{xi}∞i=1 is locally uniformly bounded with respect to O and
its graphical limit x exists. Then x is a solution to H.

Below, Si(x
0) is the set of maximal solutions to Hi from

x0; later in this section Sδ(x
0) has a similar meaning.

Corollary 5.2: Suppose H is forward complete at x0.
Then, for any (T, J) ∈ R≥0 ×N there exists δ > 0, i0 > 0,
and a compact subset K ⊂ O such that for all i > i0, any
x ∈ Si(x

0+δB) satisfies x(t, j) ∈ K for all (t, j) ∈ domx,
(t, j) � (T, J).

Robustness analysis of H calls for consideration of

perturbations Hδ, given on O by sets Cδ , Dδ, and mappings

Fδ , Gδ , for a continuously varying parameter δ > 0. We will

be interested in Hδ’s that have the convergence property:

for any sequence 1 > δ1 > δ2 > . . . > 0 converging to 0,

sequences {Ci}∞i=1, {Di}∞i=1 and {Fi}∞i=1, {Gi}∞i=1 satisfy

assumptions (C1), (C2), (C3), and (C4), where for each i =,

Ci = Cδi
, similarly for Di, Fi, Gi.

Example 5.3: Let α : O �→ R≥0 be continuous and such

that, for all x ∈ O, x + α(x)B ⊂ O. Then, one considers

systems Hδ on O, given for δ ∈ (0, 1) by the sets

Cδ = {x ∈ O | x + δα(x)B ∩ C 
= ∅},
Dδ = {x ∈ O | x + δα(x)B ∩ D 
= ∅},
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and the mappings Fδ : O →→ R
n, Gδ : O →→ O given by

Fδ(x) = conF (x + δα(x)B) + δα(x)B,

Gδ(x) = {y | y ∈ η + δα(η)B, η ∈ G (x + δα(x)B)} .

Above, con S isthe convex hull of a set S. Obviously, Fδ

is convex-valued. It can be checked that Fδ is nonempty-

valued on Cδ , same for Gδ on Dδ. Finally, it can be

verified that Hδ’s have the convergence property. We add

that such perturbations combine those used for differential

or difference inclusions by [9], [31], [15].

Corollary 5.4: Suppose that H is forward complete at
every x0 ⊂ K for some compact set K . Suppose that the
perturbations Hδ have the convergence property. Then, for
any ε > 0 and (T, J) ∈ R≥0 × N there exists δ∗ > 0 with
the following property: for any δ ∈ (0, δ∗] and any xδ ∈
Sδ(K+δB) there exists a solution x to H with x(0, 0) ∈ K

such that conditions (a) and (b) of Corollary 4.4 hold.

Example 5.5: Given a hybrid system H on O with F

nonempty and convex valued on O (not just on C), consider

an augmented system H̃δ with state space Õ = O ×R and

C̃δ = (C × R≥0) ∪ (O × [0, δ]), D̃δ = D × R≥δ,

F̃ (x̃) = F (x) × {1}, G̃(x̃) = G(x) × {0},
with the augmented state x̃ = (x, τ) for τ ∈ R. Similar

augmented systems with δ > 0 were considered in [13] to

eliminate Zeno behavior. Indeed, when δ > 0 jumps are

separated by at least δ amount of time. On the other hand,

when δ = 0, the behavior of the x component of the solution

is exactly that of H. Such a temporal regularization has the

convergence property. Thus, the conclusions of Corollary

5.4 are valid. In turn, the x component of each solution to

the regularized system is close to some solution of H on

compact hybrid time domains.

VI. APPLICATIONS TO STABILITY: COMPACT

ATTRACTORS

For a hybrid system H with state space O, the compact

set A ⊂ O is said to be stable if for each ε > 0 there

exists δ > 0 such that each x ∈ S(A + δB) is complete

and satisfies ‖x(t, j)‖A ≤ ε for all (t, j) ∈ domx (i.e. the

distance from A to x is less than ε). It is said to be attractive
if there exists µ > 0 such that each x ∈ S(A + µB) is

complete and satisfies limt+j→∞ |x(t, j)|A = 0. The set of

points from which solutions are complete and converge to

A is called the basin of attraction for A and is denoted BA.

The set A is said to be locally asymptotically stable if it is

both stable and attractive. The set A is said to be uniformly
attractive from the compact set K ⊂ O if each x ∈ S(K)
is complete and for each ε > 0 there exists m such that

x ∈ S(S) and t + j ≥ m imply |x(t, j)|A ≤ ε.

Proposition 6.1:
(i) Suppose that for each x0 ∈ C∪D, either (VC) or (VD)

of Proposition 2.1 holds. Then for any locally asymp-
totically stable compact set, the basin of attraction is
open relative to C ∪ D.

(ii) If a compact set A is forward invariant and uniformly
attractive from a compact set containing a neighbor-
hood of A in C∪D then it is stable, and hence locally
asymptotically stable.

(iii) A locally asymptotically stable compact set is uni-
formly attractive from each compact subset of its basin
of attraction.

(iv) For each compact subset K of the basin of attraction,

reachT,J (K) := {x(t, j) |x ∈ S(K), (t, j) � (T, J)} .

is compact for any (T, J) ∈ R≥0 × N. Furthermore,
∪(T,J)∈R≥0×NreachT,J (K) is compact.

The results above, when specialized to differential inclu-

sions and difference inclusions, have appeared recently in

[9], [31], [15], and [14].

A function β : R≥0 × R≥0 × N → R≥0 belongs to

class-KLL if it is continuous, β(·, t, j) is zero at zero and

nondecreasing, β(s, ·, j) and β(s, t, ·) are nonincreasing and

converge to zero as the argument becomes unbounded. A

function ω : X → R≥0 is a proper indicator of a compact

A ⊂ X with respect to an open X if ω(x) = 0 if and only if

x ∈ A, and ω(xi) → ∞ when limxi 
∈ X or lim |xi| = ∞.

Theorem 6.2: Suppose the compact set A is locally
asymptotically stable with basin of attraction BA = (C ∪
D) ∩ X , where X is an open subset of O. Let ω be a
proper indicator of A with respect to X . Then, there exists
β ∈ KLL such that, for all solutions starting in BA,

ω(x(t, j)) ≤ β(ω(x(0, 0)), t, j) ∀(t, j) ∈ domx . (3)

Furthermore, if Hδ, δ ∈ (0, 1), is any family of perturba-
tions of H with the convergence property, then for each
compact set K ⊂ BA and each ε > 0 there exists δ∗ > 0
such that for each δ ∈ (0, δ∗], the solutions xδ of Hδ from
K satisfy, for all (t, j) ∈ domxδ ,

ω(xδ(t, j)) ≤ β(ω(xδ(0, 0)), t, j) + ε . (4)

The result above does not addresses the question of

existence of solutions to perturbed systems Hδ . Under the

current assumptions, not much can be said about existence,

as the convergence property does not assume any regularity

of Cδ , Dδ, Fδ , and Gδ . When Hδ is obtained by an “outer

perturbation” of H as in Example 5.3, then the data for

Hδ has the properties (A1), (A2), (A3), and if furthermore

C ∪ D = O for the original system, and consequently

Cδ ∪Dδ = O, then solutions to Hδ do exist for any initial

point in O. However, even then the question of existence of

solutions to a system with exogeneous inputs ẋ ∈ F (x+ e)
if x+ e ∈ C and x+ ∈ G(x+ e) if x+ e ∈ D, for example

to H under measurement error, remains unanswered. We do

not pursue this topic in this paper.

Finally, the following result is inspired by and relies on

the result of Collins [10] for unperturbed systems that have

compact state space (mentioned at the end of Section IV).

Theorem 6.3: Under the assumptions of Theorem 6.2, if
H has no instantaneous Zeno solutions in BA, then for each
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compact K ⊂ BA, there exists δ∗ > 0 such that all solutions
to Hδ, δ ∈ (0, δ∗], starting in K are uniformly non-Zeno.

Example 6.4: Consider controlling the state x1 of an

integrator using an actuator, with state denoted x2, that

can move in the negative direction at a constant rate

(normalized to minus one) but that can be reset in the

positive direction instantaneously. The flow equation is

given by ẋ1 = x2, ẋ2 = −1. We consider the flow set

C :=
{
x : x1 ≥ 0 or x2 ≥ √−kcx1

}
where kc ≥ 2, the

jump set D := R2\C and the reset rule

x+
2 = max {0,−ηx2} +

√
−krx1

where kr > kc and η ∈ [0, 1). The set {x : x1 ≥ 0} is

forward invariant, trajectories converge to this set in finite

time, and within this set the solutions are the same as those

of the bouncing ball example (see, for example, [22]) with

g = 1. In particular, the origin is forward invariant (the only

solution from the origin is the instantaneous Zeno solution

that remains at the origin) and uniformly attractive. Thus,

by Proposition 6.1 (ii), the origin is globally asymptotically

stable. To eliminate the instantaneous Zeno solution at the

origin, we can use a temporal regularization with C̃δ and

D̃δ as defined in Example 5.5 for δ ≥ 0, and additional

dynamics τ̇ = 1 − τ , τ+ = 0. We note that the set

R≥0 is forward invariant for τ , independent of δ ≥ 0.

Also, when δ = 0, the x component of the solution is

exactly the solution without the temporal regularization and

τ converges uniformly to the interval [0, 1]. It follows that

the set compact set A := {(x, τ) : ‖x‖ = 0 , τ ∈ [0, 1]} is

asymptotically stable when δ = 0 with basin of attraction

R
2 × R≥0. In particular, according to Theorem 6.2, with

z := (x, τ) and ω(z) := ‖x‖+ max {0, δ − 1}, there exists

β ∈ KLL such that, for each solution,

ω(z(t, j)) ≤ β(ω(z(0, 0)), t, j).

Furthermore, for each ε > 0 and compact set K ⊂ R
2×R≥0

there exists δ∗ > 0 such that the solutions of the hybrid

system H̃δ, δ ∈ (0, δ∗], satisfy

ω(zδ(t, j)) ≤ β(ω(zδ(0, 0)), t, j) + ε.

In particular, for τ(0, 0) ∈ [0, 1],

‖xδ(t, j)‖ ≤ β(‖xδ(0, 0)‖, t, j) + ε.
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