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Abstract— The minimum-energy output-transition problem for
dual-stage systems is solved in this article. The objective is to find
optimal feedforward inputs that change the system output from an
initial value y at time ti to a final value y at time tf during a specified
output-transition time-interval [ti, tf ]. The main contribution of this
article is the solution of the optimal output-transition problem for
systems with actuator redundancy (dual-stage systems). Additionally,
we show that the use of pre- and post-actuation inputs, outside the
output-transition time-interval, can lead to substantial reduction of
the output-transition cost. In particular, the method is applied to
a dual-stage disk drive model and simulation results are presented.
The results show that the output-transition cost (input-energy) can
be reduced by 97% with the use of pre- and post-actuation inputs
when compared to standard methods that do not use such pre- and
post-actuation.

I. INTRODUCTION

The minimum-energy output-transition problem for dual-stage
systems is solved in this article. The objective is to find optimal
feedforward inputs that change the system output from an initial
value y at time ti to a final value y at time tf . In such output-
transition problems, the output should be maintained at a constant
value outside the output-transition time-interval — maintaining the
output constant outside of the transition time-interval is critical
to reduce the time lost to useful operations. For example, in the
disk-drive application ([1], [2]), the goal is to move the position
of a read-write head from one data track (initial value) to the
next desired track (final value); read and write operations cannot
be performed (before and after the output-transition) if the output
position is not precisely maintained at the desired track. Similar
output-transition problems also arise in other flexible structure
applications such as: (a) positioning the endpoint of large-scale
manipulators ([3], [4], [5]) and (b) nano-scale positioning and ma-
nipulation using relatively small piezoactuators ([6], [7]). The main
contribution of this article is the solution of the optimal output-
transition problem for systems with actuator redundancy (dual-
stage systems). Additionally, we show that the use of pre- and
post-actuation inputs (outside the output-transition time-interval)
can lead to substantial reduction of the output-transition cost. In
particular, the method is applied to a dual-stage disk drive model
described in [8] and simulation results are presented. The results
show that the output-transition cost (input-energy) can be reduced
by 97% with the use of pre- and post-actuation inputs when
compared to standard methods that do not use such pre- and post-
actuation.

As opposed to the problem of changing the output-point on a
flexible structure, the problem of changing the complete configu-
ration (i.e., the state) of a flexible structure has been well studied
in literature, e.g., [1]-[5], [9], [10], [11]. These techniques, which
solve the state-to-state transition problem (referred to as the state-
transition problem), can also be used to find a solution to the
output-transition problem. In particular, output-transitions without
residual vibrations can be obtained by requiring that the flexible
system maneuver between equilibrium configurations (rigid-body

Work partially supported by Information Storage Industry Consortium
(INSIC)

rest configurations). (These rest states, x and x, are chosen to
result in the initial and final output values, y and y, respectively.)
Once the boundary states, at the beginning and end of the output-
transition, are chosen to be the rest states (i.e., x(ti) = x, and
x(tf ) = x), a solution to the output-transition problem can be
found by solving the standard, minimum-energy, state-transition
problem from the initial state (x(ti)) to the final state (x(tf ));
this is referred to as the rest-to-rest state-transition approach ([5],
[9], [11]). However, the solution found with this choice of the
rest-to-rest boundary states {x(ti) = x, x(tf ) = x} may not lead
to optimal (minimum input-energy) output-transition. On the other
hand, arbitrary choices of the boundary states {x(ti), x(tf )} are
also not acceptable; they may not allow the output to be maintained
at a constant value after the completion of the output-transition
(i.e., without residual vibrations) for any choice of bounded inputs.
Therefore, the standard optimal state-to-state transition approach
cannot be used to directly solve the optimal output-transition
problem.

The output-transition problem was previously considered in
[12], in which an inversion-based technique was used to plan an
output-transition along a prescribed output trajectory. However, the
approach in [12] requires the user to specify (a priory) the set of
acceptable output trajectories during the output-transition (using
polynomials); it is unclear how the set of output trajectories is
chosen such that it includes the optimal output trajectory. Similar
pre-specification of a desired output trajectory is also needed
in [13], which uses optimal filtering to achieve smooth transitions
between output-trajectory segments in industrial positioning sys-
tems. In contrast, our previous work [14], [15] directly solved
the optimal output-transition problem. It does not require the
pre-specification of the output trajectory; rather, the best output
trajectory is obtained as the result of the optimization procedure.

Previous solutions to the optimal output-transition problem were
restricted to square systems (same number of outputs as inputs).
In contrast, the current article solves the optimal output-transition
problem for linear systems with actuator redundancy. The method
is applied to a dual-stage disk drive model [8]. While the addition
of the second actuator leads to the 17% reduction of the output-
transition cost, we show that the significant factor in the cost
reduction is the use of the pre- and post-actuation inputs. In
general, the proposed optimal output-transition approach uses both
pre- and post-actuation inputs to reduce the output-transition cost.
(It is noted that the standard state-to-state transition approach
uses neither pre- nor post-actuation.) Pre-actuation input has to
be applied to the system before the output-transition is initiated;
therefore, it requires preview information of an impending output-
transition (the amount of required preview time is quantified
in [16]). However, pre-actuation will not be applicable if such
preview information of the desired output-transition is not avail-
able. For such cases, a modified output-transition approach is
proposed that only uses post-actuation (without pre-actuation). The
implications of using (or not using) pre-actuation are investigated
for the disk-drive seek control problem. The simulation results
show significant reduction of the output-transition cost with the use
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of the proposed optimal output-transition method (with or without
pre-actuation) when compared to the use of the standard approach
that is based on state-to-state transition (which uses neither pre-
actuation nor post-actuation). For the dual-stage example studied
in this article, we show that for the same amount of input-energy,
the use of pre- and post-actuation reduces the required transition
time by 67%. While this article considers the minimization of
input-energy, the concept of using pre- and post-actuation is
general and can be used to optimize other criteria such as output-
transition time and input magnitudes; for example the combined
minimization of transition time and energy was studied in [17].

This paper is organized in the following format. The dual-stage
optimal output-transition problem is formulated in Section II. The
optimal output-transition (OOT) solution is derived in Section III,
and the OOT solution without using the pre-actuation is presented
in Section IV. Application to the dual-stage disk drive is in Section
V. Our conclusion is in Section VI.

II. PROBLEM FORMULATION

We consider a linear, time-invariant, dynamical system in the
state-space form, described by{

ẋ(t) = Ax(t) + B1u1(t) + B2u2(t)
y(t) = Cx(t)

, ∀ t ∈ (−∞,∞) (1)

where the system state is x(t) ∈ �n. Furthermore, it is assumed
that the system is dual-input {u1(t), u2(t)} and single-output
y(t) (DISO) and controllable. Next, we consider the problem of
changing the output position from one value to another within
a finite time-interval, called the output-transition time-interval. It
is noted that the output should be maintained constant (at the
desired value) outside the output-transition time-interval. Formally,
the output-transition problem [14], [15] is defined as follows.

Definition 1: The output-transition problem is to find
bounded input-state trajectories {u1(·), u2(·), xref (·)} that satisfy
the system equations in (Eq. 1) and the following two conditions:

1. The output-transition condition: The output is transferred
from an initial value y to a final value y within the output-transition
time-interval [ti, tf ], and is maintained constant at the desired
value before and after the output-transition, i.e.,

yref (t) = y = Cx ∀ t ≤ ti

yref (t) = y = Cx ∀ t ≥ tf
(2)

where yref (t) := Cxref (t); ti and tf denote the times when the
output transition starts and completes, respectively. Furthermore,
the states x and x denote the initial and final equilibrium states
(i.e., Ax = Ax = 0), which are chosen to result in the desired
initial and final output values (y and y).

2. The delimiting-state condition: The state approaches the
equilibrium configuration as time goes to (plus or minus) infinity,
i.e.,

xref (t) → x as t → −∞; and xref (t) → x as t → ∞. (3)
For controllable systems, there exists at least one solution such

that the desired output transition is achieved, e.g. by setting the
state x(t) = x during the pre-transition time (t ≤ ti) and the
state x(t) = x during the post-transition time (t ≥ tf ) the output-
transition problem becomes a state-transition problem which can
be solved by existing techniques (see, for example, [18]). In this
article, we want to choose the input that minimizes the input-
energy performance. The optimal output-transition (OOT) problem
is stated as follows.

Definition 2: The optimal (minimum energy) output-
transition problem (OOT) is to find bounded input-state tra-
jectories {u1(·), u2(·), xref (·)} that solve the output-transition
problem (see Definition 1), and minimize the following input-
energy cost function,

J =

∫ ∞

−∞

U(t) dt :=

∫ ∞

−∞

[
R1{u1(t)}2+R2{u2(t)}2] dt (4)

=

∫ ti

−∞

U(t) dt +

∫ tf

ti

U(t) dt +

∫ ∞

tf

U(t) dt

:= Jpre + Jtran + Jpost (5)

where the positive constants R1 and R2 represent the weighting
factors between the two inputs.

III. THE OPTIMAL OUTPUT-TRANSITION (OOT) SOLUTION

A. Inverse input law

First, we derive an input law that allows the output to be
maintained at the desired value. This input is unique and is
obtained by using the dynamic inversion technique (see [19])
described as follows.

Assumption 1 (Relative degree): Throughout the rest of the ar-
ticle, we assume that the system (Eq. 1) has a relative degree r,
see [19].

From the definition of relative degree, the rth-derivative output
equation can be written explicitly in terms of the input as

y(r)(t) = CArx(t) + CAr−1B1u1(t) + CAr−1B2u2(t) (6)

where the term CAr−1B1 �= 0 and/or the term CAr−1B2 �= 0.
Without loss of generality, we assume that the term CAr−1B1 �=
0, i.e., the inverse input is described in terms of the first input
u1(t). Then the first input u1(t) given by the following inverse
input law,

u1(t) := u1,inv(t)

=
1

CAr−1B1

[
y
(r)
d (t) − CArx(t)

]
− CAr−1B2

CAr−1B1
u2(t), (7)

maintains exact output tracking where yd(t) is the desired output
trajectory. We observe that if the term CAr−1B2 �= 0, the
inverse input u1,inv will depend on the choice of the second
input u2. Assumption 1 also implies that there exists a coordinate
transformation matrix, Tξη , whose first r rows are chosen as C,
CA, CA2, . . ., CAr−1, and the remaining n− r rows are chosen
such that the matrix Tξη is invertible, i.e.,

Tξη :=

⎡
⎢⎢⎢⎢⎢⎣

C
CA

...
CAr−1

Tη

⎤
⎥⎥⎥⎥⎥⎦ . (8)

It is noted that the set {C, CA, . . . , CAr−1} is linearly
independent (see [19]), therefore we can always find Tη (in Eq. 8)
such that Tξη is invertible. The transformation Tξη partitions the
state x(t) into two components: (i) the first r terms are the output
and its derivatives up to order r − 1 (denoted by ξ), and (ii) the
remaining components are called the internal state of the system
(denoted by η), i.e.

Tξη · x(t) =

[
ξ(t)
η(t)

]
, (9)
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where ξ(t) :=
[
y(t), ẏ(t), . . . , y(r−1)(t)

]T

. Conversely, let the
inverse of the transformation Tξη be defined by

x(t) = T−1
ξη

[
ξ(t)
η(t)

]
:= [Φξ | Φη]

[
ξ(t)
η(t)

]
. (10)

B. Post-actuation (t ≥ tf )

During post-transition interval, the output needs to be main-
tained at a constant value (i.e., y(t) = y, ∀ t ≥ tf ), see (Eq. 2).
In order to achieve this output-tracking requirement, the first input
u1(t), during the post-transition interval, must be chosen as the
inverse input given by (Eq. 7). However, the second input u2(t)
can be chosen arbitrarily, therefore, it can be optimally chosen to
minimize the cost. We derive the optimal output-transition solution
during the post-transition interval by the following steps.

First, to simplify the derivation, the system state is shifted as
x̂(t) := x(t) − x where the state x is the final equilibrium state;
consequently, the transformed components (ξ, η) in the shifted
coordinates become[

ξ̂(t)
η̂(t)

]
= Tξηx̂(t) = Tξη {x(t) − x} =

[
ξ(t)
η(t)

]
− Tξηx

:=

[
ξ(t)
η(t)

]
−
[

ξ
η

]
. (11)

Since the output along the post-transition interval is constant, i.e.
y(t) = y, ∀t ∈ [tf , ∞), the component ξ(t) = ξ, ∀t ∈ [tf ,∞).
In other word, the shifted component ξ̂(t) = 0 during the post-
transition interval. Furthermore, the state in the shifted coordinates
becomes (from Eq. 10)

x̂(t) = [Φξ | Φη]

[
ξ̂(t)
η̂(t)

]
= Φη η̂(t). (12)

Second, we rewrite the inverse input (Eq. 7) in terms of the
shifted state x̂(t) as

û1,inv(t) =
y
(r)
d (t) − CArx(t)

CAr−1B1
− CAr−1B2

CAr−1B1
u2(t)

=
y
(r)
d (t) − CAr {x̂(t) + x}

CAr−1B1
− CAr−1B2

CAr−1B1
u2(t).

Note that (i) the rth-derivative of the output y
(r)
d (t) = 0 since the

output is constant during the post-transition interval, (ii) the term
CArx = 0 since the state x is an equilibrium state, and (iii) the
shifted state x̂(t) = Φη η̂(t) as derived in (Eq. 12). So the above
inverse input becomes

û1, inv(t) = − CArΦη

CAr−1B1
η̂(t) − CAr−1B2

CAr−1B1
u2(t). (13)

Third, we rewrite the system equation (Eq. 1) in terms of the
shifted state x̂ = x(t) − x as

˙̂x(t) = ẋ(t) = A {x̂(t) + x} + B1u1(t) + B2u2(t)

= Ax̂(t) + B1u1(t) + B2u2(t)

where the term Ax = 0 since the state x is an equilibrium state.
Then, apply the coordinate transformation Tξη (Eq. 9) and apply
the inverse input law given by (Eq. 13) as the first input, to the

above system equation, we have[
˙̂
ξ(t)
˙̂η(t)

]
= TξηAT−1

ξη

[
ξ̂(t)
η̂(t)

]
+ TξηB1u1(t) + TξηB2u2(t)

= TξηAT−1
ξη

[
ξ̂(t)
η̂(t)

]
+ TξηB2u2(t)

+ TξηB1

(
− CArΦη

CAr−1B1
η̂(t) − CAr−1B2

CAr−1B1
u2(t)

)

=

(
TξηAT−1

ξη − TξηB1CArT−1
ξη

CAr−1B1

)[
ξ̂(t)
η̂(t)

]

+ Tξη

(
B2 − B1CAr−1B2

CAr−1B1

)
u2(t)

:=

[
Aξ 0

Aηξ Aη

][
ξ̂(t)
η̂(t)

]
+

[
0

B2η

]
u2(t). (14)

It is observed that the above system equation has a lower-triangular
structure as a result of the coordinated transformation Tξη and the
inverse input law. Since the component ξ̂(t) = 0 during the post-
transition interval, the system equation (Eq. 14) is then reduced
to the internal dynamics given by

˙̂η(t) = Aη η̂(t) + B2ηu2(t). (15)

Fourth, rewrite the post-transition cost from (Eq. 5) in terms of
the shifted coordinate, by substituting the first input u1(t) from
(Eq. 13), i.e.

Jpost =

∫ ∞

tf

U(t) dt =

∫ ∞

tf

[
R1{u1(t)}2+R2{u2(t)}2] dt

=

∫ ∞

tf

[
η̂T ΦT

η

{
(Ar)T CT R1CAr

(CAr−1B1)2

}
Φη η̂

+ u2

{
R2 +

BT
2 (Ar−1)T CT R1CAr−1B2

(CAr−1B1)2

}
u2

+ 2u2

{
BT

2 (Ar−1)T CT R1CAr

(CAr−1B1)2

}
Φη η̂

]
dt

:=

∫ ∞

tf

[
η̂T Qη̂ + u2Nu2 + 2u2Sη̂

]
dt. (16)

Now the optimal output-transition problem during the post-
transition interval becomes a standard linear-quadratic (LQ) opti-
mal control problem in terms of the internal state. In particular, the
problem is reduced to find the input u2(t) that minimizes the post-
transition cost given by (Eq. 16) subject to the internal dynamics
(Eq. 15). The following assumption is to ensure the existence of
a bounded solution to the LQ optimal control problem.

Assumption 2 (Necessary conditions for LQ optimal control):
Throughout the rest of the article, we assume that the internal
dynamics (Eq. 15) is controllable under the input u2(t), i.e.,
the pair (Aη, B2η), as described in (Eq. 15), is controllable.
Furthermore, we assume that the the pair (Aη,

√
Q) is observable.

Remark 1 (On the necessary condition assumption): The
above controllability and observability of the internal dynamics
are assumed in order to simplify the derivation of the solution. In
general, the pair (Aη, B2η) may not be controllable or the pair
(Aη,

√
Q) may not be observable. In such systems, additional

procedures are required to take the account of the uncontrollable
and the unobservable subspace of the internal state. This treatment
of the subspaces of the internal state is similar to procedures
found in Refs. [14], [15].

Lemma 1 (Post-actuation): Given an internal state η(tf )
at the final transition time tf , the post-actuation inputs
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{u1,post(t), u2,post(t)} that satisfy the output-transition condi-
tions (Eqs. 2 and 3) and minimize the post-transition cost (Eq. 16)
are given by

u1,post(t)=− CArΦη

CAr−1B1

{
η(t)−η

}
− CAr−1B2

CAr−1B1
u2,post(t)(17)

u2,post(t)=−N−1
(
BT

2ηWpost + ST
){

η(t) − η
}

(18)

where the symmetric matrix Wpost is the solution to the algebraic
Riccati equation (ARE) given by

AT
η Wpost + WpostAη + Q

− (WpostB2η + ST )N−1(BT
2ηWpost + S) = 0. (19)

Furthermore, the cost associated with these post-actuation inputs
is uniquely specified in terms of the choice of the internal state
η(tf ) at the completion of the output-transition and is given by

Jpost{η(tf )} =
{

η(tf ) − η
}T

Wpost

{
η(tf ) − η

}
. (20)

Proof: By applying the first input u1(t) to the system as
the inverse input (Eq. 13), for any choice of the second input
u2(t) that is bounded, the output is maintained constant at the
final value y during the post-transition interval, thus the output-
transition condition (Eq. 2) is satisfied. It is also observed that the
system equation which is reduced to the internal dynamics (Eq. 15)
and the post-transition cost (Eq. 16) becomes solely dependent on
the choice of the second input u2(t).

The derivation of the optimal second input u2,post(t) in (Eq. 18)
that minimizes the post-transition cost Jpost (Eq. 16) subject to
the internal dynamics (Eq. 15) and the derivation of the associated
cost (Eq. 20) can be found in many standard optimal control
textbooks, e.g. in Ref. [18], and is omitted in this proof for brevity.
We also note that in the expressions for the post-actuation inputs
(Eqs. 17 and 18), the shifted internal state η̂(t) is replaced by the
component in the original coordinate using (Eq. 11), i.e. replace
η̂(t) by η(t) − η.

Assumption 2 implies that the optimal LQ input will result in
the strictly-stable closed-loop system. In other words, by applying
the optimal second input u2,post(t) into the internal dynamics
(Eq. 15), the shifted internal state η̂(t) will asymptotically ap-
proach zero, i.e. limt→∞ η̂(t) = 0 or limt→∞ η(t) = η. In
addition, the first input (Eq. 17) enforces the output to be at the
final value y, so the component ξ(t) = ξ during the post-transition
interval. Thus, the state approaches the final equilibrium state as
time goes to infinity since the component {ξ(t), η(t)} asymptot-
ically approach the equilibrium configuration {ξ, η}. Therefore,
the post-actuation inputs (Eqs. 17 and 18) satisfy the delimiting
state condition (Eq. 3).

Remark 2 (Post-transition internal state): The internal state
η(t) that appears in the expressions for the post-actuation inputs
(Eqs. 17 and 18) is uniquely specified in terms of the choice of
the internal state η(tf ) at the completion of the output-transition,
and can be obtained from off-line simulation of the closed-loop
internal dynamics:

η̇(t) = ˙̂η(t) = Aη η̂(t) + B2ηu2,post(t)

= Aηη(t) − Aηη + B2ηu2,post(t)

=
{

Aη − B2ηN−1
(
BT

2ηWpost + ST
)}

η(t) +{
B2ηN−1

(
BT

2ηWpost + ST
)
− Aη

}
η

:= Acl
η,post η(t) + Bcl

η,post η (21)

with the initial condition η(tf ) at the time tf , for all time t ≥ tf .

C. Pre-actuation (t ≤ ti)

The pre-actuation input is obtained by using procedures similar
to that used in the previous subsection for finding the post-
actuation input. We begin by shifting the system state as x̌(t) :=
x(t) − x where the state x is the initial equilibrium state;
consequently, the transformed components (ξ, η) in this shifted
coordinate become[

ξ̌(t)
η̌(t)

]
= Tξηx̌(t) = Tξη {x(t) − x} =

[
ξ(t)
η(t)

]
− Tξηx

:=

[
ξ(t)
η(t)

]
−
[

ξ

η

]
. (22)

Since the output along the pre-transition interval (t ≤ ti) is
constant, i.e. y(t) = y, the component ξ(t) = ξ, ∀t ∈ (∞, ti].
In other words, the shifted component ξ̌(t) = 0 during the pre-
transition interval. Similarly, the inverse input (Eq. 7) during the
pre-transition interval becomes

ǔ1,inv(t) = − CArΦη

CAr−1B1
η̌(t) − CAr−1B2

CAr−1B1
u2(t). (23)

By applying the coordinate transformation Tξη and the above
inverse input law to the system equation (Eq. 1), the system
equation during the pre-transition interval is reduced to the internal
dynamics given by

˙̌η(t) = Aη η̌(t) + B2ηu2(t) (24)

where the matrices Aη and B2η are the same as described in
(Eq. 14) for the post-transition interval.

Next, rewrite the pre-transition cost from (Eq. 5) in terms of
the shifted coordinate, by substituting the first input u1(t) from
(Eq. 23), i.e.,

Jpre =

∫ ti

−∞

U(t) dt =

∫ ti

−∞

[
R1{u1(t)}2+R2{u2(t)}2] dt

=

∫ ti

−∞

[
η̌T ΦT

η

{
(Ar)T CT R1CAr

(CAr−1B1)2

}
Φη η̌

+ u2

{
R2 +

BT
2 (Ar−1)T CT R1CAr−1B2

(CAr−1B1)2

}
u2

+ 2u2

{
BT

2 (Ar−1)T CT R1CAr

(CAr−1B1)2

}
Φη η̌

]
dt

:=

∫ ∞

tf

[
η̌T Qη̌ + u2Nu2 + 2u2Sη̌

]
dt. (25)

Assumption 2 is also assumed on the internal dynamics (Eq. 24),
i.e. the pair (Aη, B2η) is controllable and the pair (Aη,

√
Q) is

observable, in order to ensure the existence of a bounded solution
to the LQ optimal control problem.

Lemma 2 (Pre-actuation): Given an internal state η(ti) at
the initial transition time ti, then the pre-actuation inputs
{u1,pre(t), u2,pre(t)} that satisfy the output-transition conditions
(Eqs. 2 and 3) and minimize the pre-transition cost (Eq. 25) are
given by

u1,pre = − CArΦη

CAr−1B1

{
η(t) − η

}
− CAr−1B2

CAr−1B1
u2,pre(t) (26)

u2,pre = −N−1
(
BT

2ηWpre + ST
){

η(t) − η
}

(27)
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where the symmetric matrix Wpre is the solution to the algebraic
Riccati equation (ARE) given by

−AT
η Wpre − WpreAη + Q

− (−WpreB2η + ST )N−1(−BT
2ηWpre + S) = 0. (28)

Furthermore, the cost associated with these pre-actuation inputs is
uniquely specified in terms of the choice of the internal state η(ti)
at the initiation of the output-transition and is given by

Jpre{η(ti)} =
{

η(ti) − η
}T

Wpre

{
η(ti) − η

}
. (29)

Proof: Note that the optimal input u2,pre(t) that minimizes
the pre-transition cost Jpre in (Eq. 25) subject to the internal
dynamics in (Eq. 24) can be derived by reversing the time
direction. Specifically, it is equivalent to find the input u2(t) that
minimizes the reversed pre-transition cost

Jpre =

∫ ∞

ti

[
η̌T Qη̌ + u2Nu2 + 2u2Sη̌

]
dt

subject to the reversed internal dynamics

˙̌η(t) = −Aη η̌(t) − B2ηu2(t).

The rest of the proof follows similar arguments as described in
the post-actuation case (Lemma 1), thus is omitted for brevity.

Remark 3 (Pre-transition internal state): The internal state
η(t) that appears in the expressions for the pre-actuation inputs
(Eqs. 26 and 27) is uniquely specified in terms of the choice of
the internal state η(ti) at the initiation of the output-transition,
and can be obtained from off-line simulation of the closed-loop
reversed internal dynamics:

η̇(t) = ˙̌η(t) = − Aη η̌(t) − B2ηu2,pre(t)

= −Aηη(t) + Aηη − B2ηu2,pre(t)

= −
{

Aη − B2ηN−1
(
BT

2ηWpre + ST
)}

η(t) −{
B2ηN−1

(
BT

2ηWpre + ST
)
− Aη

}
η

:= −Acl
η,pre η(t) − Bcl

η,pre η (30)

backward in time with the initial condition η(ti) at the time ti,
for all time t ≤ ti.

D. Transition interval (ti ≤ t ≤ tf )

Since the output is required to be maintained constant at the
initial value y before the initiation of output-transition, it implies
that the state component ξ(t) must be maintained constant at the
initial equilibrium configuration ξ. So the only component of the
state x(ti) at the initiation of the output-transition that can be
varied while satisfying the output-transition conditions (Eqs. 2 and
3) is the internal state component η(ti). Similarly, the state com-
ponent ξ(t) must be maintained constant at the final equilibrium
configuration ξ after the completion of the output-transition. So the
only component of the state x(tf ) at the completion of the output-
transition that can be varied while satisfying the output-transition
conditions (Eqs. 2 and 3) is the internal state component η(tf ).
Therefore, the acceptable boundary states {x(ti), x(tf )} of the
output-transition must be chosen as

x(ti) = T−1
ξη

[
ξT | η(ti)

T
]T

and x(tf ) = T−1
ξη

[
ξ

T | η(tf )T
]T

(31)

Furthermore, we define the boundary condition Ψ which is the
components of the state, at the initiation and completion of the

output transition, that can be freely varied while satisfying the
conditions for the output-transition problem, i.e.

Ψ :=
[
η(tf )T η(ti)

T
]T

. (32)

Given a pair of acceptable boundary state {x(ti), x(tf )} at
the initial transition time ti and at the final transition time tf ,
respectively, the minimum-energy input that transfer the system
(Eq. 1) from the initial state x(ti) to the final state x(tf ) within
the output-transition time Ttran = tf −ti is given by (see Chapter
3 in Ref. [18])

u1,tran(t) = R−1
1 BT

1 eAT (tf−t)G−1dx (33)

u2,tran(t) = R−1
2 BT

2 eAT (tf−t)G−1dx (34)

where the matrix G is the invertible controllability grammian,
defined by

G =

∫ tf

ti

eA(tf−τ) [B1 B2]

[
R1 0
0 R2

][
BT

1

BT
2

]
eAT (tf−τ)dτ, (35)

and dx denotes the transition-state difference, given by

dx = x(tf ) − eA(tf−ti)x(ti).

The state difference dx can be partitioned in terms of the boundary
condition (Ψ) defined in (Eq. 32) which is the components that
can be freely chosen and the fixed component (f̂ ) which must be
chosen as the equilibrium configuration , i.e.

dx := H1f̂ + H2Ψ (36)

where H1 := [Φξ | −Γξ] , H2 := [Φη | −Γη] ,

[Γξ | Γη] := eA(tf−ti)[Φξ | Φη], and f̂ :=
[
ξ

T | ξT
]T

.

The transition cost when using these optimal inputs (Eqs. 33 and
34) during the transition interval is equal to

Jtran =dT
x G−1dx =

(
H1f̂+H2Ψ

)T

G−1
(
H1f̂+H2Ψ

)
. (37)

E. Optimal output-transition solution

The input-energy needed for output-transition with a specified
output-transition boundary condition Ψ (Eq. 32) can be obtained
by substituting the pre-transition cost (Eq. 29), the post-transition
cost (Eq. 20), and the transition cost (Eq. 37) into the total cost
(Eq. 5) as follows.

J = Jpre + Jtran + Jpost := ΨT ΛΨ − 2ΨT b + c (38)

where Λ :=

[
Wpost 0

0 Wpre

]
+ HT

2 G−1H2,

b :=

[
Wpostη
Wpreη

]
− HT

2 G−1H1f̂ , and

c := ηT Wpostη + ηT Wpreη + f̂T HT
1 G−1H1f̂ .

Note that the input-energy (Eq. 38) needed for output-transition
is quadratic in terms of the specified output-transition boundary
condition Ψ. The optimal value for the output-transition boundary
condition Ψ is found in the next Theorem, which solves the
optimal output-transition (OOT) problem.

Theorem 1 (OOT): Let Assumptions 1 and 2 be true. Then, we
obtain the following results.
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I) The minimum-energy output-transition problem (Definition
2) always has a solution where the optimal boundary condition
Ψ∗ that minimizes the cost function (Eq. 38) is given by

Ψ∗ =

[
η∗

f

η∗
i

]
=

{
Λ−1b , if Λ is invertible
Λ†b , otherwise

(39)

where Λ† is the pseudo (generalized) inverse of Λ (see [20]).
II) The optimal inputs for the optimal output-transition problem

is given by

u∗
1,oot

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= CAr−1B2

CAr−1B1

N−1
(
BT

2ηWpre + ST
) {

η∗
pre(t) − η

}
− CArΦη

CAr−1B1

{
η∗

pre(t) − η
}

if t < ti

= CAr−1B2

CAr−1B1

N−1
(
BT

2ηWpost + ST
) {

η∗
post(t) − η

}
− CArΦη

CAr−1B1

{
η∗

post(t) − η
}

if t > tf

= R−1
1 BT

1 eAT (tf−t)G−1
[
x∗

f − eA(tf−ti)x∗
i

]
if ti ≤ t ≤ tf

(40)
and

u∗
2,oot

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

= −N−1
(
BT

2ηWpre + ST
) {

η∗
pre(t) − η

}
if t < ti

= −N−1
(
BT

2ηWpost + ST
) {

η∗
post(t) − η

}
if t > tf

= R−1
2 BT

2 eAT (tf−t)G−1
[
x∗

f − eA(tf−ti)x∗
i

]
if ti ≤ t ≤ tf

(41)
where the optimal boundary states are given by

x∗
i = T−1

ξη

[
ξT η∗

i
T
]T

, and x∗
f = T−1

ξη

[
ξ

T
η∗

f
T
]T

.

The optimal internal state η∗
post(t) during the post-transition

interval is obtained by solving the closed-loop internal dynamics
(Eq. 21) where the initial condition is chosen to be η∗

f given
by (Eq. 39), see Remark 2. Similarly, the optimal internal state
η∗

pre(t) during the post-transition interval is obtained by solving
the closed-loop internal dynamics (Eq. 30) backward in time where
the initial condition is chosen to be η∗

i given by (Eq. 39), see
Remark 3.

III) The optimal output-transition cost using the optimal inputs
(Eqs. 40 and 41) is equal to

J∗
oot = Ψ∗T

ΛΨ∗ − 2Ψ∗T
b + c. (42)

Proof: The output-transition cost function (Eq. 38) is
quadratic in terms of the boundary condition Ψ; therefore, the
optimal value for the boundary condition Ψ follows from the
minimization of quadratic forms, see Theorem 1 in [14] and
Theorem 4.2.1 in [20]. The optimal inputs during the post-
transition interval and during the pre-transition intervals follows
from Lemmas 1 and 2, respectively. The optimal inputs during the
transition interval are given by (Eqs. 33 and 34) where the optimal
boundary states are obtained by substituting the optimal boundary
condition Ψ∗ in the expressions for the acceptable boundary states
(Eq. 31). The optimal cost is obtained by substituting the optimal
boundary condition Ψ∗ into the output-transition cost function
(Eq. 38).

IV. OPTIMAL OUTPUT-TRANSITION WITHOUT PRE-ACTUATION

In general, the proposed optimal output-transition approach uses
both pre- and post-actuation inputs to reduce the output-transition
cost. Pre-actuation input has to be applied to the system before the
output-transition is initiated; therefore, it requires preview informa-
tion of the impending output-transition. However, the pre-actuation
may not be applicable if such preview information of the desired

output-transition is not available (e.g., when immediate output-
transition is desired). For such cases, we require that the output-
transition begin with the initial transition state at the equilibrium
state, i.e. x(ti) = x. Then, the optimal output-transition approach
can be constrained to only use post-actuation, i.e. by optimally
choosing the component of the internal dynamics at the completion
of the output-transition η(tf ). Therefore, the output-transition cost
function (Eq. 38) can be rewritten as

J̃ := η(tf )T Λ̃ η(tf ) − 2η(tf )T b̃ + c̃ (43)

where

Λ̃ := Wpost + H̃T
2 G−1H̃2; b̃ := Wpostη − H̃T

2 G−1H̃1f̃ ;

c̃ := ηT Wpostη + f̃T H̃T
1 G−1H̃1f̃ ; f̃ :=

[
ξ

T
ξT ηT

]T

;

H̃1 :=
[
Φξ | − Γ̃

]
; H̃2 := Φη; Γ̃ := eA(tf−ti)T−1

ξη .

Next, the solution to optimal output-transition (OOT) problem
without pre-actuation is provided in the following Lemma.

Lemma 3: The optimal internal state η(tf ) that minimizes the
output-transition cost without pre-actuation (Eq. 43) is then given
by

η̃∗(tf ) =

{
Λ̃−1b̃ , if Λ̃ is invertible
Λ̃†b̃ , otherwise

(44)

where Λ̃† is the pseudo (generalized) inverse of Λ̃. The optimal
control inputs, for the output-transition problem without pre-
actuation, are given by

u∗
1,nopre

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

= 0 if t < ti

= CAr−1B2

CAr−1B1

N−1
(
BT

2ηWpost + ST
) {

η̃∗(tf ) − η
}

− CArΦη

CAr−1B1

{
η̃∗(tf ) − η

}
if t > tf

= R−1
1 BT

1 eAT (tf−t)G−1
[
x̃∗

f − eA(tf−ti)x
]

if ti ≤ t ≤ tf

(45)
and

u∗
2,nopre

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

= 0 if t < ti

= −N−1
(
BT

2ηWpost + ST
) {

η̃∗(tf ) − η
}

if t > tf

= R−1
2 BT

2 eAT (tf−t)G−1
[
x̃∗

f − eA(tf−ti)x
]

if ti ≤ t ≤ tf

(46)
where the optimal final transition states are computed from
x̃∗

f = T−1
ξη

{[
ξ η̃∗

post(tf )
]}T

.

Proof: This follows from arguments similar to those in the proof
of Theorem 1 because the cost without pre-actuation (Eq. 43) has
the same quadratic form as in Theorem 1 (Eq. 38).

Remark 4 (OOT without both pre- and post-actuation): In
some cases when both pre- and post-actuation are not allowed
or are not applicable, e.g. in such systems that have no internal
dynamics, the optimal output-transition (OOT) solution (Eqs. 40
and 41) is equivalent to the standard state-transition (SST)
solution where the inputs are only applied during the transition
interval. In the SST approach, the state before and after the
output-transition is maintained at the equilibrium configuration,
i.e. x(t) = x for t ≤ ti and x(t) = x for t ≥ tf in order to
satisfy the output-transition conditions (Eqs. 2 and 3). The optimal
inputs during the transition interval can be found by finding the
minimum-energy input to achieve the state transition from the
initial equilibrium state [x(ti) = x] to the final equilibrium state
[x(tf ) = x]. These optimal inputs has the same form as the
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transition inputs given in (Eqs. 33 and 34) where the transition
state difference dx is chosen as

dx = x(tf ) − eA(tf−ti)x(ti) = x − eA(tf−ti)x

It is noted that the optimal OOT cost that using both pre- and
post-actuation is always less than or equal the SST cost because
the OOT input minimizes the cost over all possible solutions to
the output-transition problem (Definition 1), which includes the
solution from the SST approach.

V. DUAL-STAGE HARD DISK DRIVE EXAMPLE

In this section, the optimal output-transition (OOT) approach
is demonstrated by using the dual-stage hard disk drive system.
The tip position (the output) of the read/write head in the dual-
stage disk drive is controlled by two input signals – the first input
controls the voice coil motor (VCM) and the second input controls
the piezo-actuated (PZT) suspension. The model and the plant
parameters used in the the following simulations are given in [8].
The objective of the output-transition is to move the read/write
head from an original data track at y to the next adjacent track
on the disk where the head displacement is y in the prescribed
time-interval. This time-interval is referred to as the track-to-track
seek time. In the the following simulations, the track-to-track seek
time is chosen to be 0.3 ms. We exploit the advantage of using
piezoactuator which can tolerate a relatively high input (typically
up to 50V) by choosing the weighting factor on the first input
(VCM input) as R1 = 1 and the weighting factor on the second
input (PZT input) as R2 = 0.0001.

TABLE I
COST COMPARISON BETWEEN USING AND NOT USING THE PRE- AND

POST-ACTUATION FOR THE DISK DRIVE WITH SINGLE-STAGE

CONTROLLER (SISO) AND DUAL-STAGE CONTROLLER (DISO)†

Costs (×10−1)
(% Cost Reduction) SISO DISO

Not using pre- 4.1 3.4
and post-actuation (0%) (17%)
Using only post- 2.7 0.38

actuation (34%) (91%)
Using both pre- and 1.6 0.12

post-actuation (61%) (97%)

†For the 0.3 ms track-to-track seek time.

A. Effects of pre- and post-actuation inputs

First, we consider the optimal output-transition approach that
uses both pre- and post-actuation inputs as described in Section III,
see Theorem 1. The input and output trajectories, when the OOT
inputs (Eqs. 40 and 41) were applied, are presented in Figures 1
and 2, respectively. It is noted that, in Figures 1 and 2, the output-
transition started at time ti = 2 ms and was completed at time tf

= 2.3 ms (i.e., the length of the output-transition time-interval was
0.3 ms). Furthermore, the input-energy cost (Eq. 42) when using
the OOT approach with both pre- and post-actuation is equal to
Joot = 0.012.

When the pre-actuation is not allowed, the optimal output-
transition inputs are given by (Eqs. 45 and 46), and the input-
energy to achieve the output-transition without using the pre-
actuation input is equal to Jnopre = 0.038 which is 22% higher
than the output-transition that using both the pre and post-actuation
inputs.
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Fig. 1. Comparison of the applied inputs to the dual-stage disk drive
system between using both pre- and post-actuation (OOT), using only post-
actuation (OOT No Pre), and not using pre- and post-actuation (SST).

Finally, we consider the case when both pre- and post-actuation
are not allowed or are not applicable. In this case, the opti-
mal output-transition (OOT) solution becomes the standard state-
transition (SST) solution, see Remark 4. The comparisons of the
input and the output trajectories between using the SST approach
and the OOT approach are shown in Figures 1 and 2. The input-
energy cost when using the SST approach is equal to Jsst = 0.34
which is an order of magnitude higher than the input-energy
required to achieve the same output-transition when using the OOT
approach (with or without the pre-actuation).

It is noted that the similar results in cost reduction when
using pre- and post-actuation are obtained for the case of the
conventional disk drive which has a single-stage controller (i.e., the
tip position of the read/write head is controlled solely by the VCM
input). The cost comparisons between using and not using the pre-
and post-actuation for the disk drive with single-stage controller
(SISO) and dual-stage controller (DISO) are summarized in Table
I, which also shows the percentage in cost reduction compared
to the default case of single-stage controller without using pre-
and post-actuation inputs. In Table I, we observed that the input-
energy required to perform the output-transition in the dual-
stage system is less than the required input-energy in the single-
stage system when using the same control approach. However,
the substantial cost reduction (97%) is obtained when using the
proposed approach with pre- and post-actuation inputs.

B. Effect of varying the output-transition time-interval

The proposed approach can be used to investigate the fastest
achievable output-transition time for a given limit on the input-
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Fig. 2. Comparison of the output trajectories between using both pre-
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Fig. 3. Comparison of of the input-energy cost between the SST and
OOT approach where the transition time is varied.

energy. For the dual-stage disk drive example, the input-energy
is plotted against the output-transition time (with the OOT and
SST approaches) in Figure 3. As shown in the Figure 3, the
input-energy (for both SST and OOT approaches) increases as
the output-transition time decreases. The simulation results show
that, for a given output-transition time, the cost for OOT input is
always lower than the cost for SST input as shown in Figure 3; this
is expected, see Remark 4. It implies that the OOT approach can
achieve faster output-transition than the SST approach with the
same amount of input-energy. For example, in the dual-stage disk
drive system, the cost required for 0.3-ms track-to-track seek time
is J∗

oot = 0.012 when using the OOT approach, however with the
same amount of input-energy the output-transition using the SST
approach requires 0.9-ms to achieve the same output transition.
Thus the required transition time to achieve the output transition
is reduced by 67% by using the OOT approach compared to the
SST approach which does not use the pre- and post-actuation.

VI. CONCLUSION

The direct solution to the minimum input-energy output transi-
tion for dual-stage linear systems is presented in this paper. It was

shown that the proposed approach of using pre- and post-actuation
inputs can substantially reduce the overall cost of the output-
transition when compared to the approach based on the state-
transition, that does not use pre- and post-actuation. Furthermore,
when consider the same amount of input-energy, the proposed
approach can achieve significantly faster output-transitions when
compared to the SST approach.
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