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Abstract— Instantaneously Random Probabilistic Boolean
Networks (PBN’s) have been recently introduced as a rule-
based paradigm for modeling gene regulatory networks. Fur-
thermore, it has been shown how ideas from optimal control
of Markov decision processes can be used to desirably affect
the dynamic evolution of the state of such a network. This
paper considers the problem of optimal intervention in context
sensitive PBNs, i.e. PBNs in which the state evolves over
one or more time steps as a Boolean network with a fixed
set of predictor functions until a random event such as an
external stimulus (or a novel context) causes the network to
switch to a new Boolean one. In addition, the paper seeks to
accomodate random gene perturbations such as one or more
gene flippings provided, at a given time step, the state either
evolves according to the predictor functions or undergoes
random perturbations but both do not occur simultaneously.
Another novelty of the results reported in this paper is that
the example PBN used for control is derived from steady-state
(long run) considerations and the concept of influence is used
to choose the intervention gene. For a PBN with n genes and
k possible predictor sets, two possible solutions to the control
problem are presented. In the first, the dimension of the state
space is artificially increased to 2nk while in the second, it is
shrunk back to 2n, the usual state dimension encountered in
earlier work with instantaneously random PBNs.

I. INTRODUCTION

Instantaneously Random Probabilistic Boolean Networks
(PBNs), which form a subclass of Markovian Genetic Reg-
ulatory Networks, have been recently introduced as a rule-
based paradigm for modeling gene regulatory networks [1],
[2]. In these networks, the predictor function for updating
each gene is randomly chosen at each time step from
among several possible predictor functions in accordance
with a fixed probability distribution. In other words, for
an instantaneously random PBN, the wiring diagram of the
network randomly changes from one time step to the next.
This represents one end of the spectrum. At the other end
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of the spectrum are Boolean networks [3] where each gene
is associated with a fixed Boolean predictor for all time.

For modeling biological reality, perhaps a more appropri-
ate paradigm is provided by the so called context sensitive
PBNs which represent an intermediate scenario between
these two extremes. In such a PBN, the Boolean function
and the predictor set for each gene can remain fixed at
a specific selection for several time points before another
selection takes place, possibly in response to some random
event, such as an external stimulus, or a novel context. In
this paper, we will study the problem of intervention in
context sensitive PBNs.

The problem of intervention using instantaneously ran-
dom PBNs has been quite well studied in the recent past.
Three different approaches have been proposed to date:
(i) resetting the state of the PBN, as necessary, to a
more desirable initial state and letting the network evolve
from there [4]; (ii) changing the steady-state (long run)
probability distribution of the network by minimally altering
its rule based structure [5]; and (iii) manipulating external
(control) variables that affect the transition probabilities of
the network and can, therefore, be used to desirably affect
its dynamic evolution over a finite time horizon [6], [7]. All
of the above results were obtained by exploiting the fact
that the dynamic behaviour of an instantaneously random
PBN could be modeled using a Markov Chain [1], thereby
making them amenable to the theory of Markov Chains and
Markov Decision Prcesses.

In this paper, we significantly extend the results of [6]
in several directions. First, instead of an instantaneously
random PBN, we consider a context sensitive PBN where
at each time step, the state transitions as that of a Boolean
network, following which the Boolean network is altered
only if a certain random event occurs with a probability q.
In other words, most of the time, the context sensitive PBN
evolves as a standard Boolean network until the occurrence
of a random event causes a new set of predictors to be
randomly chosen for the subsequent evolution. Second, we
allow the possibility that each gene may randomly change
value with a small perturbation probability p, thereby
ensuring that all the possible states communicate. Third,
we use the concept of gene influence, introduced in [1],
to choose the particular gene with which to intervene and
demonstrate that intervening with a higher influence gene
results in better performance. Finally, the example PBN
used for control is derived from steady-state (long run)
considerations which makes the intervention result much
more biologically appealing.
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Regarding the final point above, it is appropriate to note
that most microarray-based gene-expression studies do not
involve controlled time series experimental data; rather, it
is assumed that data result from sampling from the steady
state. Thus, under the assumption that we are sampling from
the steady state, a key criterion for checking the validity of
a designed network is that much of its steady-state mass lies
in the states observed in the sample. In the Boolean network
framework, this signifies a close resemblance between the
observed data samples and the attractors of the designed
Boolean Networks. We can use the Bayesian Connectivity
based approach [9] to construct Probabilistic Boolean Net-
works with the expectation of generating networks having
few, very strong attractors, highly similar to the original
observations, mimicing biological state stability and deter-
minism. This approach gives us a number of highly probable
Boolean Networks and Bayesian scores for each one of
them. These networks can be combined with probabilities
proportional to their scores to form a PBN. In this paper, we
derive expressions for the state transition probabilities of a
PBN formed from a number of such Boolean Networks and
devise a strategy to shift the state vector from undesirable
states towards more desirable ones using genomic control.

II. DEFINITIONS, NOTATIONS AND PROBLEM
FORMULATION

A Boolean Network (BN) B = (V,F) on n genes is defined
by a set of nodes/genes V = {x1, ...,xn}, xi ∈ {0,1}, i =
1, ...,n, and a list of Boolean predictor functions F =
( f1, ..., fn), fi : {0,1}n → {0,1}, i = 1, ...,n. Each node xi

represents the state/expression of the gene xi, where xi = 0
means that the gene i is OFF and xi = 1 means that the gene
i is ON. The function fi is the predictor function for that
gene. Updating the states of all of the genes in B is done
synchronously at every time step according to their predictor
functions. A Probabilistic Boolean Network (PBN) consists
of a set of n genes, g1,g2, ...,gn, each taking values in a
finite set V = {0,1}, and a set of vector-valued network
functions, f1, f2, ..., fk, governing the state transitions of the
genes. The choice of which network function f j to apply
is governed by a selection procedure. Specifically, at each
time point a random decision is made as to whether to
switch the network function for the next transition, with
the probability q of a switch being a system parameter. If
a decision is made to switch the network function, then
a new function is chosen from among f1, f2, ..., fk, with the
probability of choosing f j being the selection probability c j.
In other words, each network function f j determines a BN
and the PBN behaves as a fixed BN until a random decision
(with probability q) is made to change the network func-
tion according to the probabilities c1,c2, ...,ck from among
f1, f2, ..., fk. The PBN that we have just introduced is called
a context sensitive PBN, and such a PBN switches between
the BNs defined by the network functions according to the
switching probability q. In the special case when q = 1, i.e.
at each time point the network function is switched, the

resulting PBN is called an instantaneously random PBN
and this is the first class of PBNs to be considered in the
literature [1]. For the context sensitive PBNs of this paper,
we also assume that at each time point there is a probability
p of any gene changing its value uniformly randomly among
the other possible values in V . Since there are n genes,
the probability of there being a random perturbation at any
time point is 1− (1− p)n. The state space S of the network
together with the set of network functions, in conjunction
with transitions between the states and network functions,
determine a Markov chain. The random perturbation makes
the Markov chain ergodic, meaning that it has the possibility
of reaching any state from any other state and that it
possesses a long-run (steady-state) distribution.

The state vector x(t) at any time step t is essentially an
n-digit binary number [x1x2 · · ·xn] whose decimal equivalent
is given by

z(t) =
n

∑
j=1

2n− jx j(t). (1)

As x(t) ranges from 000 · · ·0 to 111 · · ·1, z(t) takes on
all values from 0 to 2n − 1. For a context sensitive PBN,
the state z(t) at time t could be originating from any
one of the k possible networks. In order to keep track of
the network emitting a particular state let us redefine the
states by incorporating the network number inside the state
label. Since we have k different BNs forming the PBN, the
total number of states becomes 2nk and let us label these
states as S0, S1, · · · ,S2nk−1 where for each r = 1,2, · · · ,k,
states S2n(r−1),S2n(r−1)+1, ...,S2nr−1 belong to network r.
Equivalently S2n(r−1)+i corresponds to zri where zri is the
decimal representation of the ith state in the network r. Let
the redefined state at time t be denoted by w(t).

III. COMPUTATION OF TRANSITION
PROBABILITIES FOR A CONTEXT SENSITIVE
PBN SUBJECT TO RANDOM PERTURBATIONS

In this section, we derive expressions for the transition
probabilities in a context sensitive PBN subject to perturba-
tions. To do so, we note that in such a PBN, the following
mutually exclusive sequence of events can occur at any time
point t

(1)The current network function is applied, the PBN
transitions accordingly, and the network function remains
the same for the next transition.

(2)The current network function is applied, the PBN
transitions accordingly, and a new network function is
selected for the next transition.

(3)There is a random perturbation and the network func-
tion remains the same for the next transition.

(4) There is a random perturbation and a new network
function is selected for the next transition.

Let p denote the probability that the value of any
particular gene undergoes a random perturbation and let
us assume that the individual genes perturb independently.
In addition, let q denote the probability that the network
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function switches at any given time point. Then we can
proceed as follows to determine the transition probability
of going from state a to state b. There are two possible
cases to consider:
Case 1. [a/2n] and [b/2n] are the same (i.e. (2n(r− 1)) ≤
a,b≤ 2nr−1 for the same r). This corresponds to the events
(1) and (3) above and the transition probabilities are given
by

Pr(w(t +1) = b/w(t) = a) = (1−q)(1− p)n fr,a,b+

(1−q)(1− p)n−h phs(h)
(2)

where h = the Hamming Distance between mod(a,2n)
and mod(b,2n), i.e. the number of genes which differ
between the two states ;
ci= the probability of selecting network i;
mod(x,y) = the remainder left over when x is divided by y;

fr,a,b =
{

1 if a transitions to b in 1 step in network r
0 otherwise;

s(h) =
{

0 if h = 0
1 otherwise.

The first term in Equation 2 corresponds to event (1)
above where (1-q) is the probability that the network
selection does not change and (1− p)n is the probability
that none of the n genes undergoes a perturbation. Here we
have made the assumption that the network selection and
random gene perturbation are independent events. The fr,a,b

term is 1 if that particular transition is possible in the rth
Boolean Network. The second term corresponds to event
(3) where h genes have to be perturbed to go from state a
to state b.
Case 2. (2n(r1 −1)) ≤ a ≤ 2nr1 −1 and (2n(r2 −1)) ≤ b ≤
2nr2 −1 where r1 and r2 are different. This corresponds to
events (2) and (4) above and the transition probabilities are
given by

Pr(w(t +1) = b/w(t) = a) = q
cr2

∑k
i=1,i �=r1

ci
(1− p)n fr1,a,b+

q
cr2

∑k
i=1,i �=r1

ci
(1− p)n−h phs(h).

(3)

Define

g(a,b) =
{

1 if [a/2n]− [b/2n] =0
0 otherwise.

Then a unified transition probability expression encom-
passing the two cases considered is given by

Pr(w(t +1) = b/w(t) = a) =
[(1−q)(1− p)n fr,a,b +(1−q)(1− p)n−h phs(h)]g(a,b)

+[q
cr2

∑k
i=1,i �=r1

ci
(1− p)n fr1,a,b +q

cr2

∑k
i=1,i�=r1

ci
(1− p)n−h

phs(h)](1−g(a,b)). (4)

By letting a and b range over all integers from 0 to 2nk−1
and using Equation (4), we can determine all the entries of
the 2nk×2nk matrix of transition probabilities.

From a practical point of view, it may not be possible to
detect the Boolean Network from which the current gene
activity profile is being emitted. In most cases, we will be
having knowledge of only the states of the individual genes.
To handle such situations, we can proceed as follows to
derive an expression for the transition probability from state
s2 to state s1 where these states run from 0 to 2n − 1 and
reflect only the expression status of the n gene state vector
. Clearly,

Pr[z(t +1) = s1/z(t) = s2]

=
k

∑
i=1

Pr[z(t +1) = s1,s2 belongs to network i/

z(t) = s2]

=
k

∑
i=1

Pr[z(t +1) = s1/z(t) = s2,s2 belongs to

network i].Pr[s2 belongs to network i]

=
k

∑
i=1

Pr[z(t +1) = s1/w(t) = s2 +2n(i−1)].ci

=
k

∑
i=1

k

∑
j=1

ci.Pr[w(t +1) = s1 +2n( j−1)/

w(t) = s2 +2n(i−1)] (5)

where s1 and s2 run from 0 to 2n −1. Note that here the
state s1 is equivalent to the distinct states s1,s1 +2n, .....s1 +
(k−1)2n in the previous 2nk formulation. Similarly s2 here
is equivalent to s2,s2 + 2n, .....s2 +(k− 1)2n in the earlier
formulation. By letting s1 and s2 range from 0 to 2n − 1
and using Equation (5), we can derive the 2n×2n transition
probability matrix A corresponding to the context sensitive
PBN.

IV. CONTROL IN CONTEXT SENSITIVE PBNS

In this section, we consider the problem of external con-
trol in a context sensitive PBN. Towards this end, suppose
that a probabilistic Boolean network with n genes has m
control inputs u1, u2, · · · ,um, each of which can take on only
the binary values zero or one. Then at any given time step t,
the row vector u(t) ∆= [u1(t),u2(t), · · · ,um(t)] describes the
complete status of all the control inputs. Clearly, u(t) can
take on all binary values from [0,0, · · · ,0] to [1,1, · · · ,1].

One can equivalently represent the control input status
using the decimal number

v(t) =
m

∑
i=1

2m−iui(t). (6)

As u(t) takes on binary values from [0,0 · · · ,0] to
[1,1, · · · ,1], the variable v(t) ranges from 0 to 2m −1. We
can equivalently use v(t) as an indicator of the complete
control input status of the probabilistic Boolean network at
time step t.

If a control action is applied, then the transition prob-
ability expressions will change. Suppose that our control
action consists of forcibly altering the value of a single
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gene (say the gene at position g) from 0 to 1 or from 1 to
0. Thus, m = 1 here. Then the new transition probabilities
with control (Prc1) are given by

Prc1(w(t +1) = b/w(t) = a) =
Pr(w(t +1) = b/w(t) = a+2n−g) f unc(a)+
Pr(w(t +1) = b/w(t) = a−2n−g)(1− f unc(a)) (7)

where f unc(a) =
{

1 if state of gene g is 0 for a
0 if state of gene g is 1 for a

and the transition probabilities Pr without control are given
by Equation (4).

Here a and b range over 0 through 2nk−1. As before we
can reduce the dimension of the state space by replacing
the w’s in (7) by z’s and using Equation (5) to determine
the transition probabilities without the control action:

Prc1(z(t +1) = b/z(t) = a) =
Pr(z(t +1) = b/z(t) = a+2n−g) f unc(a)+
Pr(z(t +1) = b/z(t) = a−2n−g)(1− f unc(a)). (8)

By letting a and b vary over 0 to 2n −1 and making use of
(8), we can determine the 2n×2n matrix A(v(t)) of control-
dependent transition probabilities.

In the rest of this section, we formulate and solve the
control problem assuming 2n states and the availability of
full state information. The same development can be carried
out for the 2nk state formulation if we simultaneously have
the gene state information and the network labels. As shown
in [6], the one-step evolution of the probability distribution
vector in the case of a PBN containing 2n states with control
inputs takes place according to the equation:

pd(t +1) = pd(t)A(v(t)) (9)

where pd(t) is the 2n dimensional state probability dis-
tribution vector and A(v(t)) is the 2n×2n matrix of control-
dependent transition probabilities determined using (8).

Since the transition probability matrix here is a function
of the control input v(t), the evolution of the probability
distribution vector of the PBN with control, now depends
not only on the initial distribution vector but also on
the values of the control input at different time steps.
Furthermore, intuitively it appears that it may be possible to
make the states of the network evolve in a desirable fashion
by appropriately choosing the control input at each time
step.

These ideas were formalized in [6] to arrive at the
following finite horizon optimization problem, Given an
initial state z0,

min
µ0,µ1,··· ,µM−1

E

[
M−1

∑
t=0

Ct(zt ,µt(zt))+CM(zM)

]
(10)

subject to
Pr(z(t +1) = j|z(t) = i,v(t)) given by equation (8),

where

• M represents the treatment/intervention window;
• µt : [0,1,2, · · · ,2n −1] → [0,1,2, · · · ,2m −1],

t = 0,1,2, · · · ,M − 1 are functions mapping the state
space into the control space;

• Ct(zt ,vt) is the one step cost of applying the control vt

at state zt ;
• and CM(zM) is the terminal cost associated with the

state zM .

As discussed in [6], the consideration of such an op-
timization problem could be naturally motivated in the
context of cancer treatment applications where one must
choose between a number of alternative treatments to be
applied over a finite horizon of time. Once input from
biologists/clinicians has been used to select an appropriate
cost function and an appropriate treatment window, the
control problem is essentially reduced to that of controlling
a Markov Chain over a finite horizon.

The dynamic programming solution to (10) is given by
[8], [6]:

JM(zM) = CM(zM) (11)

Jt(zt) = min
vt∈{0,1,··· ,2m−1}

[
Ct(zt ,vt)+

2n−1

∑
j=0

Pr(zt/ j,vt).Jt+1( j)

]

t = 0,1, · · · ,M−1. (12)

Furthermore, if v∗t = µ∗
t (zt) minimizes the right hand

side of (12) for each zt and t, the control law π∗ ={
µ∗

0 ,µ∗
1 , · · · ,µ∗

N−1

}
is optimal.

Remark 1: Note that the optimal control problem (10)
and its solution (11), (12) are from a very general setting.
However, in our case, the class of allowable controls is
severely constrained since our control action consists of
forcibly altering the expression status of only one single
gene. This is dictated primarily by the kind of interventions
that are biologically feasible at the current time.

V. SELECTING THE GENE USED TO ACHIEVE
THE CONTROL

Given a particular target gene, there may be several genes
that are good predictors for it. Among a set of predictors
for a particular gene, some of them may have more impact
on the value of the target gene than the others. For instance,
in many cancer studies it has been shown that p53 has a
much more profound effect on the cell cycle regulator gene
WAF1/p21 than other predictors of WAF1 like AP2,BRCA1
[10]. In view of this, one can define ([1]) the influence of
the variable x j on the Boolean function f . To do so, let
D be the probability mass distribution over the states of a
Boolean network and let ∂ f (x)

∂x j
be the partial derivative of

the Boolean function f with respect to the argument x j [1].

Then I j( f ) = ED[ ∂ f (x)
∂x j

]
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= Pr{ ∂ f (x)
∂x j

= 1} =Pr{ f (x) �= f (x( j))} where x( j) is the same

as x except that the jth component is toggled. In this paper,
we will assume that the distibution D is uniform.
The main idea behind the influence definition is to quantify
the amount by which the gene x j affects the value of
the function f . If the value of the function f changes on
toggling the value of gene x j for most gene activity profiles
x, then the influence of the jth gene on f is high. For the
case of PBNs, let Fi be the set of predictors for gene xi

with corresponding probabilities c(i)
1 , .....,c(i)

l(i). Let Ik( f (i)
j )

be the influence of variable xk on the predictor f (i)
j , then

the influence of gene xk on gene xi is given by [1]
Ik(xi) = ∑l(i)

j=1 Ik( f (i)
j ).c(i)

j
We can use the influence of genes to select the control

gene. As an example, say we have drugs d1,d2.....dr which
can affect genes g1,g2......gr respectively. Biological and
economic considerations may constrain us to use only one
drug at a time. Then we can use the gene which has the
highest influence on the target gene gt . The influence can be
directly calculated from the PBN as given by the previous
formula or it can be approximated from the observed gene
activity profiles. The hope is that by selecting a gene with
high influence as the control gene, we will be able to
carry out a more cost-effective intervention. The simulation
results presented in the next section show that such an
expectation is met.

VI. EXAMPLE USING GENE EXPRESSION DATA

In this section, we apply the results of this paper to a
context sensitive PBN derived from gene expression data
collected in a study of metastatic melanoma [11]. In this
expression profiling study, the abundance of mRNA for
the gene WNT5A was found to be highly discriminating
between cells with properties typically associated with high
metastatic competence versus those with low metastatic
competence. These findings were validated and expanded
in a second study [12] in which experimentally increasing
the levels of the Wnt5a protein secreted by a melanoma
cell line via genetic engineering methods directly altered
the metastatic competence of that cell as measured by the
standard in vitro assays for metastasis. Furthermore, it was
found that an intervention that blocked the Wnt5a protein
from activating its receptor, the use of an antibody that binds
Wnt5a protein, could substantially reduce Wnt5a’s ability to
induce a metastatic phenotype. This suggests that a reason-
able control strategy would be to use an intervention that
reduces the WNT5A gene’s action in affecting biological
regulation, since the available data suggests that disruption
of this influence could reduce the chance of a melanoma
metastasizing, a desirable outcome. Instantaneously random
PBNs derived from the same expression data have been used
in [6], [7] for demonstrating earlier intervention strategies.

Here, we consider a 7 gene network containing the genes
WNT5a, pirin, S100P, RET1, MART1, HADHB and STC2.
To obtain the PBN, we used the Bayesian connectivity based

approach of [9] to construct a number of highly probable
boolean networks which were then combined in the ratio
of their Bayesian scores. One of the generated networks
with high score is shown in Figure 1 where the states
are labeled from 0 to 127 (i.e. 27 − 1). The figures for
the other three BNs used to generate the PBN is available
at http://gsp.tamu.edu/Publications/Control/figures.htm. The
networks are derived from the steady state gene expression
data and the attractor states and the level sets are clearly
shown. Furthermore, observe that in each of these networks,
the state enters an attractor cycle in a small number of steps
(at most nine). This is consistent with current biological
thought.

440 121

12 14 20 28 30 32 35 38 43 48 51 54 56 59 66 82 97 98 104 105 113 114 120

0 2 8 10 16 18 24 26 34 36 39 42 44 46 50 52 55 58 60 62 65 70 72 73 76 81 86 88 89 92 102108118124

1 9 17253337414547495357616364676869717475777879808384858790919394959699100101103106107109110111112115116117119122123125126127

5 6 13 15 21 22 29 31

3 7 11 19 23 27

Attractor Level

Level 1

Level 2

Level 3

Level 4

Level 5

Fig. 1. Network 2

Next, the control strategy of the last section was applied
to this network with Pirin chosen as the control gene and
p = q = 0.01. Figure 2 shows the expected cost for a finite
horizon problem of length 5 originating from each of the
128 states. In these simulations, the problem formulation for
2n states was used. The cost of control was assumed to be
0.5 and the states were assigned a terminal penalty of 5 if
WNT5a was 1 and 0 if WNT5a was 0. The control objective,
of course, was to try and down-regulate the WNT5a gene.
From Figure 2, it is clear that the expected cost with control
is much lower than that without control, which is intuitively
appealing. If the length of the control horizon is increased,
Figure 3 shows that all the initial states start yielding almost
the same expected cost. This may be due to the fact that
the maximum level of the BNs forming the PBN is 9 and
the Markov chain is also ergodic. If, on the other hand, the
2n ∗ k formulation is used, the expected costs for different
initial states become almost equal after a larger number of
time steps (data not shown). This is possibly due to the fact
that no averaging is used in that formulation.

Next we studied the relationship between the influence
of a control gene and its effectiveness in carrying out
the intervention. The influences of the other six genes
on wnt5a are as follows: pirin=1; s100p=0.75; ret1=0;
mart1=0; hadhb=1; stc2=1 . The influence was calculated
from the influences of those genes in the individual boolean
networks (here four in number), assuming equal probabil-
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ities for each network. These influence values (GIn) are
tabulated along side the control genes (C Gene) in Table I.
The perturbation probability p was not taken into account
for influence calculations as it had a very low value here.
If the starting GAP is pirin=0; s100p=0; ret1=0; mart1=0;
hadhb=1; stc2=0; wnt5a=1 then the expected costs for finite
horizon control problems of lengths (len) 5 and 30 are
shown in Table I. Here Ec1 represents the expected cost
when the 2n state formulation is used and Ec2 represents
the expected cost when the 2nk state formulation is used, the
suffix wc denotes with control and the suffix woc denotes
without control. The table shows that the expected cost is
much lower (0.35, 0.39) when high influence genes pirin,
hadhb are used as compared to the expected cost (0.56)
obtained when a low influence gene mart1 is used to control
the network.

VII. CONCLUSIONS

In this paper, we have extended our earlier results on
intervention in instantaneously random PBNs to the domain
of context sensitive PBNs. This is a significant extension
as the latter class of networks is probably a much closer
approximation to modeling biological reality. In addition,
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Fig. 2. Expected Cost for a Finite Horizon Problem of Length 5
Originating from the Different Initial States
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Fig. 3. Expected Cost for a Finite Horizon Problem of Length 30
Originating from the Different Initial States

C Gene GIn Len Ec1wc Ec1woc Ec2wc Ec2woc
pirin 1 30 .355352 .5784 .566017 .949586
mart1 0 30 .568611 .5784 .743938 .949586
hadhb 1 30 .398291 .5784 .300602 .949586
stc2 1 30 .413105 .5784 .569817 .949586
pirin 1 5 .652455 .974544 .396288 .61994
mart1 0 5 .963684 .974544 .53374 .61994
hadhb 1 5 .762097 .974544 .304567 .61994
stc2 1 5 .830185 .974544 .398155 .61994

TABLE I

EXPECTED COST TABLE

we have allowed random gene perturbations in our problem
formulation. The results show that even with the new
formulation, the expected cost with control is much lower
than that without control. In addition, we have shown that
we can achieve a much better control outcome if a gene
with high influence is selected as the control gene.
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