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Abstract— In this paper, a minimum entropy filtering al-
gorithm is presented for a class of multivariate dynamic
stochastic systems. The concerned systems are represented
by a set of time-varying difference equations with multiple
non-Gaussian stochastic inputs, and with nonlinearity in the
measurement output. Several new concepts including hybrid
random vectors, hybrid probability and hybrid entropy are
introduced to describe the probabilistic property and random-
ness of the stochastic estimation errors. New relationships are
established between the probability density functions (PDFs)
of the multivariate stochastic input and output for different
mapping cases. Recursive algorithms are then proposed to
design the real-time optimal filters such that hybrid entropy
of the estimation error is minimized.

I. INTRODUCTION

Research on the state estimation theory has been regarded
as an very important aspect following the development of
the Kalman filtering theory, where the variance of estima-
tion error is minimized, suppose that the estimated system is
linear and the random inputs are Gaussian white noises (see,
e.g. [2], [3], [6]). For the stochastic systems with nonlin-
earities and complex disturbances, many feasible methods
such as the extended Kalman filtering (EKF) have also
been proposed for various nonlinear systems (see [1], [4],
[10], [12], [13] and references therein). The confinement
of the most EKF methods is that the investigated noises
are still supposed to be Gaussian and the properties of
Gaussian noises are used. However, it is noted that even
for a nonlinear system with Gaussian inputs, the system
output can be non-Gaussian, or even obey a multiple-peak
and asymmetric probability density function (PDF) due to
the nonlinearity. This means that the current EKF theory,
where only expectation and variance of the state estimation
error are concerned, is not efficient for nonlinear stochastic
systems with non-Gaussian noises (see also [14], [16]).

Entropy has been widely used in information, thermody-
namics, communication and control theories as a measure
for the average information contained in a given PDF of
a stochastic variable [5], [9], [15]. By minimizing the
entropy, all higher order moments (not only the second
one) can be minimized. Since generally PDFs are positive
nonlinear functions, one key task is to find the relationships
between the PDFs of input and the concerned output, and
optimize the entropy of the output PDFs. In probability
theory, the Bayesian theorem has been used to carry out the
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computation for the PDFs of non-Gaussian signals, where
several numeral algorithms such as the Monte Carlo ap-
proach are involved [2], [9]. In the statistic approaches, the
approximation for the conditional probability is generally
complicated and its accuracy and convergence are difficult
to verify. In [14], [15], B-spline expansions were used to
model the stochastic processes between the input and the
measured PDFs of the output such that the problem was
transferred to optimize the weights corresponding to the
basic functions. Indeed, for either SISO or MIMO systems
with non-Gaussian signals, less feasible synthesis methods
have been seen for the stochastic filtering problem, where
the stability and satisfactory performance of the estimation
error dynamics should be guaranteed.

In this paper, a novel approach is presented to gener-
alize the classical optimal filtering theory for a class of
multivariate stochastic systems with non-Gaussian inputs.
For this purpose, the concepts of hybrid entropy and hy-
brid probability are established to describe the multivariate
random output vectors and their randomness (Section 2).
Using these concepts, the relationships between the PDFs of
the multivariate stochastic input and output are formulated
explicitly (Section 3). Minimum entropy filters are then
designed such that the hybrid entropy of the stochastic
estimation error is minimized. In order to design the filter
with guaranteed stability, the weighting matrices in the
performance index are tuned recursively to ensure both
optimality and stability (Section 4). In the following, if not
stated, matrices and vectors are assumed to have compatible
dimensions. The identity and zero matrices are denoted by
I and 0 respectively. For a square matrix M, its inverse and
determinant are denoted by M−1 and det M respectively.
For two real vectors v1 and v2, the notation v1 � v2 is
used to denote that every element of v1 is no less than the
corresponding one of v2. For a random vector z, P{z � τ}
represents the joint probability of event {z � τ}, Fz(τ) and
γz(τ) denote that the joint probability distribution function
and PDF of z, respectively.

II. PRELIMINARIES

A. Plant Model

Consider the following system{
xk+1 = Akxk + Gkwk+1

yk = H(xk) (1)

where xk ∈ Rm is the state, yk ∈ Rl is the output, wk ∈
Rn is the random disturbance. Ak and Gk are two known
time-varying system matrices. It should be pointed out that
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wk can be an arbitrary bounded independent random vector
rather than a Gaussian one used in the classical EKF theory.
The random output yk can be non-Gaussian because of the
nonlinear function H(·).

The following assumptions are required in this paper,
which can be satisfied by many practical cases (see e.g.
[14]).

Assumption A.1: The random variables wk (k =
0, 1, 2, · · ·) are bounded, stationary and mutually indepen-
dent with a known PDF as denoted by γw(τ) which is
defined on [a, b]n.

To model the PDF of wk, besides a direct measurement
using some advanced instruments (i.e., a laser particle
size distribution measure), the kernel estimation technique
based on an open loop test and other identification methods
can be used [11], [14].

Assumption A.2: H(·) is a known Borel measurable and
smooth vector-value nonlinear function of its arguments.

B. Filter and Estimation Error

For the dynamic system given by (1), a filter can be
described by

x̂k+1 = Akx̂k + Uk(yk − H(x̂k)) (2)

where Uk ∈ Rm×l is a gain to be determined. The resulting
estimation error ek = xk − x̂k satisfies

ek+1 = Akek − Uk (H(xk) − H(x̂k)) + Gkwk+1 (3)

where ek+1 ∈ [α, β]m, and α and β can also be respectively
chosen as ±∞. A desired filter should make the measure
of ek either converge to zero or be minimized. In (3),
ek+1 can be represented by a sum of two independent
random vectors Akek and Gkwk+1, as well as a measurable
term −Uk (yk − H(x̂k)) . Thus, the probability of ek+1 is a
conditional probability related to the probabilities of both ek

and wk+1 for given Ak, Gk, yk, ŷk and Uk. For simplicity,
γek

(·) is used to represent the conditional joint PDF of ek.
In this paper the system matrices are supposed to satisfy

the following condition.
Assumption A.3: There exists a matrix Pk which is

invertible at each sample time k, such that

P−1
k AkPk =

[
A1k A2k

0 A3k

]
:= Ãk,

P−1
k Gk =

[
G1k

0

]
:= G̃k

(4)

where A1k is invertible and satisfies rank condition
rank(A1k) = rank(G1k) = r(≤ n) for each sample time
k.

Denote ẽk := P−1
k ek, then (3) becomes

ẽk+1 = Ãkẽk − Ũk (H(xk) − H(x̂k)) + G̃kwk+1 (5)

where Ãk and G̃k are denoted by (4) and Ũk := P−1
k Uk.

(5) will be used instead of (3) in the following sections, for
which the operations on the joint PDFs of the estimation
errors will be simplified.

Remark 1: Although Assumption A.3 can cover a large
class of the estimated plants, including those satisfying n ≥
m in (3), it should be pointed out that the design procedures
will be more complicated technically if it is unsatisfied. For
the limitation of space, in this paper Assumption A.3 is used
to simplify the following explicit design procedure.

The purpose of filtering is to use available information
of the systems input and output to estimate xk. The criteria
that can be used to assess the accuracy of such a filtering
algorithm relies on the statistic nature of the estimation error
ek, which is comprehensively embedded in the PDF of the
estimation error vector ẽk. In this context, it is important
to formulate the PDF of the estimation error using equation
(3) or (5). From equation (5), it is shown that the first key
issue to be addressed is how to formulate the PDFs of Ãkẽk

and G̃kwk+1. To provide unified notations, at sample time
k + 1 we consider multivariate mapping

θk+1 = Dkπk+1 ∈ [α, β]m (6)

where πk+1 ∈ [a, b]n is a non-Gaussian continuous random
vector with a given joint PDF defined as γπ(·) and Dk ∈
Rm×n is a known matrix.

C. Hybrid Probability and Hybrid PDFs

In order to study the stochastic behavior of the output
of a multivariate stochastic system, the existing theory
on multivariate random vectors and their joint probability
are required to be extended. The following definitions on
hybrid random vectors and their probabilities generalize
some conventional concepts. Since a deterministic variable
can also be regarded as a special discrete random one
with only one sample point, we use the unified notation–
hybrid random vector to represent the case which contains
continuous-time, discrete-time and deterministic variables.
This leads to the following definition.

Definition 1: If after re-arranging the sequence of ele-
ments, a random vector z̃ ∈ [α, β]m can be transferred into
z =

[
zT
1 zT

2

]T
, where z1 ∈ [α, β]m1 is a continuous

random sub-vector and z2 ∈ [α, β]m2 is a discrete random
sub-vector that takes finite values at {σ1, σ2, ..., σm2} with
m = m1 + m2, then z̃ or z is called as a hybrid random
vector. The related probability for z is referred to as the
hybrid probability and defined by P{z1 � δ, z2 = σi},
where δ ∈ [α, β]m1 , σi ∈ [α, β]m2 , i = 1, 2, · · · ,M.
Similarly, its hybrid probability distribution function is
defined by

Fz1(δ, z2 = σi) = P{z1 � δ, z2 = σi}, i = 1, 2, · · · ,M
(7)

and hybrid probability density function (hybrid PDF) is
defined as

γ(δ, z2 = σi) =
∂Fz1(δ, z2 = σi)

∂δ
, i = 1, 2, · · · ,M (8)

For hybrid random vector z we still denote

Fz(η) = Fz1(δ, z2 = σi), γz(η) = γz1(δ, z2 = σi) (9)

316



where η =
[

δT σT
]T ∈ [α, β]m, σ = σi, i =

1, 2, · · · ,M.
Remark 2: It is noted that the hybrid random vector

described in Definition 1 differ from either the so-called
mixed type random variables (see Chapter 4.2 of [9]), or
the ones studied in [8], where the measures of uncertainty
for fuzzy variables and stochastic ones are compared and
combined.

Definition 2: If after re-arranging the sequence of el-
ements, a random vector z̃ ∈ [α, β]m can be transferred
into z =

[
zT
1 zT

2

]T ∈ [α, β]m, where z1 ∈ [α, β]m1

is a continuous random sub-vector and z2 ∈ [α, β]m2 is
a deterministic sub-vector with m = m1 + m2, then z̃
or z is called a system-output-type hybrid random vector
(SOTH random vector). If two SOTH random vectors with
the same dimensions have the same length of continuous
random variables at same locations, then we say that they
have the same structure.

Definition 3: For a multivariate continuous random vec-
tor z0 ∈ Ω := [α, β]m1 , the joint entropy is defined by

En(z0) =
{ − ∫

Ω
γz0(τ) ln (γz0(τ)) dτ γz0(τ) > 0

0 γz0(τ) = 0
(10)

Definition 4: For a hybrid random vector z =[
zT
1 zT

2

]T ∈ [α, β]m, where z1 ∈ Ω := [α, β]m1

is a continuous random sub-vector and z2 ∈ [α, β]m2 is
a discrete random sub-vector that takes finite values at
{σ1, σ2, ..., σm2} with m = m1 + m2, the hybrid entropy
is defined by

En(z) =
{

−∑M
i=1

∫
Ω

γz1 ln (γz1) dτ γz1 > 0
0 γz1 = 0

, (11)

where γz1 := γz1(τ, z2 = σi).
Remark 3: Definition 3 is a natural generalization of

entropy for a multivariate random variable z0 (see [9]),
while Definition 4 is a generalization of Definition 3 cor-
responding to hybrid PDFs, which will play an important
role in the concerned multivariate filtering problem.

III. FORMULATION FOR THE ERROR PDFS

Under Assumptions A.1, A.2 and A.3, from (5) it can be
shown that

ẽk+1 = vk + sk − Ũk (H(xk) − H(x̂k)) (12)

where
sk = G̃kwk+1, vk = Ãkẽk (13)

The third term (yk − H(x̂k)) can be measured on-line at
sample time k. Under Assumption A.3, it can be guaranteed
that at every sample time k, if m > n(≥ r), Ãkek and
G̃kwk+1 are two SOTH random vectors. The next task is to
calculate the joint PDF of ẽk+1 in terms of those of ẽk and
wk+1, where the PDF of sk and vk will be formulated firstly.
To provide unified notations, we consider the mapping
θk+1 = Dkπk+1 denoted in (6), where πk+1 ∈ [a, b]n is
a non-Gaussian continuous random vector with given joint

PDF γπ(·), and Dk ∈ Rm×n is a known matrix. The proofs
are omitted to save space.

A. Case I: m = n, rank(Dk) = m

If Dk is an invertible matrix, it is relatively simple to de-
termine γθk+1(τ) based on γπk+1(τ). This case corresponds
to an invertible G̃k in (13).

Lemma 1: If Dk is invertible, then the following rela-
tionship holds

γθk+1(τ) = γπk+1

(
D−1

k τ
) ∣∣det D−1

k

∣∣ (14)

B. Case II: m < n, rank(Dk) = m

In this case, we can assume that Dk is with a full row
rank at sample time k, and its first m columns have full
rank (through their re-arrangement). Thus, there exist a low-
triangle invertible matrix T1 and an upper-triangle invertible
matrix T2 such that

T1DkT2 =
[

Im 0
]

(15)

where In represents an m−dimensional identical matrix and
T2 can be selected as

T−1
2 :=

[
T21 T22

0 T23

]
To simplify the presentation, we denote

τ̃ := T1τ =
[

τ̃ (1)

τ̃ (2)

]
, θ̃k+1 :=

[
θ̃
(1)
k+1

θ̃
(2)
k+1

]
= T1θk+1,

(16)
and

π̃k+1 := T−1
2 πk+1 =

[
π̃

(1)
k+1

π̃
(2)
k+1

]
with compatible dimensions. This implies

θ̃k+1 =
[

I m 0
]
π̃k+1 = π̃

(1)
k+1 (17)

Lemma 2: If Dk is full row rank at its first n columns,
then the following relationship holds

γθk+1(τ) =

[∫ b

a

· · ·
∫ b

a

γπk+1(η) |det T1| |det T2| dτ̃ (2)

]
(18)

with η := T2τ̃
(2) and τ̃ := T1τ .

C. Case III: m > n, rank(Dk) = n

It is noted that m > n occurs in many practical cases.
Based on Assumption A.3, we only need consider the special
case of Dk =

[
DT

1k 0
]T

, where D1k ∈ Rr×n (r ≤ n)
is supposed to have full row rank.

Denote τ =
[

τ (1)

τ (2)

]
and

π̃k+1 := D1kπk+1, θk+1 :=

[
θ
(1)
k+1

θ
(2)
k+1

]
=

[
π̃k+1

0

]
.

(19)
It is noted that different from Subsection 3.2, in this case
τ ∈ [a, b]m, τ (1) ∈ [a, b]r.
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Lemma 3: If Dk =
[

DT
1k 0

]T
and D1k is full row

rank, then the following relationship holds

γθk+1(τ) =
{

γ
π̃k+1

(
τ (1)

)
τ (2) � 0

0 otherwise
(20)

where π̃k+1 is denoted by (19) and γ
π̃k+1

(
τ (1)

)
can be

computed in terms of γπk+1

(
τ (1)

)
based on Lemma 2.

Remark 4: P
{

θ
(1)
k+1 � τ (1), θ

(2)
k+1 = 0

}
can be consid-

ered as the probability of a hybrid vector defined in Section
2 with M = 1 for given τ. In this case, θk+1 is exactly an
SOTH random vector and Lemma 3 implies that the hybrid
entropy of θk+1 is equal to the entropy of π̃k+1.

D. PDFs of the Sum of Two Hybrid Random Vectors

Based on Lemmas 1 ∼ 3, we can formulate the PDFs
of vk and sk in terms of the PDFs of ẽk and wk+1 if ẽk

and wk+1 are both continuous random vectors with known
PDFs. To discuss the algebraic sum operation vk+sk, where
vk and sk are possible hybrid random vectors, Definitions
1 ∼ 3 and Assumption A.3 will be applied in the following
formulation.

Initially we suppose x(0) and x̂(0) are given, then ẽ0 can
be regarded as a deterministic vector. In most cases, we can
suppose ẽ0 = 0 and v0 = 0. Thus, (3) can be reduced to

ẽ1 = s0 = G̃0w1 =
[

GT
10 0

]T
w1, γẽ1

(τ) = γs0 (τ)
(21)

where s0 or ẽ1 can be considered as SOTH random vectors
and γ

ẽ1
(τ) or γs0(τ) can be obtained by Lemmas 1 ∼ 3.

From

v1 = Ã1ẽ1, Ã1 =
[

A11 A21

0 A31

]
, ẽ1 =

[
G10w1

0

]
it can be seen that v1 is also an SOTH random vector with
the same structure as s1. At the sample time k = 2, (5)
reduces to

ẽ2 = (v1 + s1) − Ũ1 ((H(x1) − H(x̂1))) (22)

Based on Definition 1, we can claim that γv1(τ) or γs1(τ)
also can be represented by γ

ẽ1
(τ) or γw1(τ), respectively,

where v1 and s1 may be SOTH random vectors. At this
stage, the task is to formulate the PDF of the sum of SOTH
random vectors recursively. The following result can be
given.

Lemma 4: Under Assumptions A.1 ∼ A.3, at every
sample time k + 1 (k = 1, 2, · · ·), the hybrid PDF of
ẽk+1(τ |yk, ŷk, Uk) can be formulated recursively by∫ β

α

· · ·
∫ β

α

γvk
(σ) γsk+1

(
τ − σ + Ũk(yk − ŷk)

)
dσ

(23)
where γvk

(σ) and γvk
(σ) can be calculated using Lemmas

1–3.

IV. MINIMUM ENTROPY FILTERING

A. Problem Formulation

Since Ũk is an m× l matrix, in order to use conventional
optimization techniques, we denote

Ũk =
[

UT
k1 · · · UT

km

]T
, uk =

[
Uk1, · · · , Ukm

]T

(24)
where uk ∈ Rml×1 is a stretched column vector and Uki is
the ith row vector of Ũk.

Based on Definitions 1 ∼ 4, the (hybrid) en-
tropy En(ẽk+1) of a (hybrid) random vector ẽk+1

with (hybrid) PDF γ
ẽk+1

(τ) can be represented as

− ∫ β

α
· · · ∫ β

α
φk+1(τ)dτ , where τ ∈ [α, β]n and

φk+1(τ) := R1γẽk+1
(τ |yk, ŷk, uk) ln

[
γ

ẽk+1
(τ |yk, ŷk, uk)

]
.

Definition 5: If there exists a filter such that En(ek) is
minimized for every sample time k, then it is called to be
a minimum entropy (ME) filter.

To design the ME filter, the performance index JN is
desired, where

JN =
N∑

k=0

[
−

∫ β

α

· · ·
∫ β

α

R1φk(τ)dτ +
1
2
uT

k R2uk

]
(25)

and R1 > 0 and R2 ≥ 0 are weighting matrices. In (25),
the first term is the hybrid entropy of the estimation errors
and the second term means that we want the elements of
Uk to be small.

Remark 5: If m > n, based on (5), (13) and (23) it can
be claimed that only the first n rows of Ũk are related to
En(ẽk+1) while the last m − n rows are irrelevant to the
hybrid entropy. It means that in this case, Uk,n+1, · · · , Uk,m

in (24) are redundant vectors for the optimization, where
Uk,n+1 = · · · = Uk,m = 0 can be selected under this
circumstance. To simplify the presentation, we will still use
notations (24) and (23) in the following design procedures.

B. Optimal Filter Design Strategy

Equation (25) can be rewritten as (k =
0, 1, 2, · · · , N, · · · , +∞)

Jk = Jk−1+

[∫ β

α

· · ·
∫ β

α

Ψ(τ, yk, ŷk, uk)dτ +
1
2
uT

k R2uk

]
,

(26)
where Ψ(τ, yk, ŷk, uk) = Ψ(τ, uk) = −R1φk(τ). In order
to provide the filters with simple structure, the instantaneous
cost function is considered for the design strategy. Based on

∂
[∫ β

α
· · · ∫ β

α
Ψ(τ, yk, ŷk, uk)dτ + 1

2uT
k R2uk

]
∂uk

= 0 (27)

an explicit function for uk will be determined in the
following. To simplify the filter structure, it is denoted that

uk = uk−1 + ∆uk, k = 1, 2, · · · , N, · · · ,+∞ (28)
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which should be a function of yk, ŷk, uk and τ . It can be
approximated to give

Ψ(τ, yk, ŷk, uk) = hk0(τ) + hk1(τ)∆uk

+ 1
2∆uT

k hk2(τ)∆uk + o(∆uT
k ∆uk)

(29)
where

hk0(τ) = Ψ(τ, uk)|uk=uk−1
, hk1(τ) =

∂Ψ(τ, uk)
∂uk

∣∣∣∣
uk=uk−1

,

(30)

hk2(τ) =
∂2Ψ(τ, uk)

∂u2
k

∣∣∣∣
uk=uk−1

.

Theorem 1: Under Assumptions A.1∼A.3, the gain ma-
trix of the ME filtering strategy for J∞ subjected to
nonlinear error model (5) is given by

∆u∗
k = −

[∫ β

α
· · · ∫ β

α
hk2(τ)dτ + R2

]−1[∫ β

α
· · · ∫ β

α
hk1(τ)dτ + R2uk−1

]
,

(31)

for a weight matrix R2 satisfying(∫ β

α

· · ·
∫ β

α

hk2(τ)dτ + R2

)
> 0 (32)

Proof: From (28) we have

uT
k R2uk = uT

k−1R2uk−1 + 2uT
k−1R2∆uk + ∆uT

k R2∆uk

(33)
Substituting (29) and (33) into (27) yields recursive strategy
(31) for all k = 0, 1, 2, · · · , N, · · · , +∞, under (32). To
guarantee its sufficiency, the following condition on the
second-order derivative should also be satisfied

∂2
[∫ β

α
· · · ∫ β

α
Ψ(τ, uk)dx + 1

2uT
k R2uk

]
∂∆u2

k

> 0

which is equivalent to (32), and holds if R2 is selected
sufficiently large.

The real-time suboptimal ME filtering algorithm can be
summarized.

C. Optimal Stabilization Filtering Strategy

Stability of stochastic systems is used to focus on mean
or variance of the output, which is also insufficient for non-
Gaussian variables (see [7], [10] and references therein). In
this subsection, an improved suboptimal filtering strategy is
proposed, with which the error system can be guaranteed to
be locally stable. In this context, system (1) is approximated
to read

ẽk+1 = Ãkẽk + ŨkBkẽk + G̃kwk+1 (34)

where Bk :=
[

∂H(·)
∂xk

∣∣∣
xk=x̂k

]
. Denote

∆ek = ẽk − ẽk−1, ∆Uk = Ũk − Ũk−1, ∆wk = wk − wk−1

then (34) can be further linearized to give

∆ek+1 = Ãk∆ek+Ũk−1Bk∆ek+∆UkBkẽk−1+G̃k∆wk+1

(35)

Different from (29), here ∆uk is a function of ẽk, as such
we shall consider the following expansion

Ψ(τ, uk) = αk + αk1∆uk + αk2∆ek

+
1
2
∆uT

k δk1∆uk + ∆eT
k δk2∆uk

+
1
2
∆eT

k δk3∆ek + o(∆u2
k, ∆ek) (36)

To enhance the flexibility of the algorithm design, we
replace the term uT

k R2uk in cost function JN (·) by a time
varying term uT

k R2kuk here, where R2k is tuned at k step.
Substituting (36) into (27) and removing the higher order
terms lead to

∆uk = Λk1∆ek + Λk2 (37)

Corresponding to (24), it can be verified that

∆Uk =

⎡⎣ ∆eT
k ΛT

k11

· · ·
∆eT

k ΛT
k1m

⎤⎦ +

⎡⎣ ΛT
k21

· · ·
ΛT

k2m

⎤⎦
In this equation Λkij ∈ Rl×m is denoted as the sub-matrix
of Λki which includes the (mj + 1)th ∼ [m(j + 1)]th
columns of Λki, i = 1, 2, j = 1, 2, · · · , l. Since

∆eT
k ΛT

k11Bkẽk−1 = ẽT
k−1BkΛk11∆ek,

it can be obtained that

∆UkBkẽk−1 = Θ1(R2k, uk−1, ẽk−1)∆ek

+Θ2(R2k, uk−1, ẽk−1)
(38)

where

Θ1(R2k, uk−1, ẽk−1) :=

⎡⎣ ẽT
k−1BkΛk11

· · ·
ẽT
k−1BkΛk1m

⎤⎦ ,

Θ2(R2k, uk−1, ẽk−1) :=

⎡⎣ Λk21Bkẽk−1

· · ·
Λk2mBkẽk−1

⎤⎦
Theorem 2: Under Assumptions A.1∼A.3, if there exits

R2k > 0 such that the following inequality(∫ β

α

· · ·
∫ β

α

δk1dτ + R2k

)
> 0

holds and the matrix

Ξ(k) = Ak + Ũk−1Bk + Θ1(R2k, uk−1, ẽk−1)

is Schur stable at each sample time k, then the ME filtering
strategy for JN subjected to nonlinear error model (5)
is given by (31), with which the local stability of the
estimation error system can be guaranteed.

Proof: is omitted for simplicity.
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V. SIMULATION RESULTS

To demonstrate the obtained filtering algorithm, we con-
sider the simple model described by[

x1,k+1

x2,k+2

]
=

[
0.7 0.3
0 a0(k)

] [
x1,k

x2,k

]
+

[
1

b0(k)

]
wk+1

(39)
with the measurement equation yk = x1,k+x1,kx2,k, where
a0(k) = 0.7 + 0.03 arctan(1 + k)−1 and b0(k) = 0.2((k +
1)−1/2 + 1). Random variables wk (k = 0, 1, 2, · · ·) are
assumed to be mutually independent, and their PDFs are
defined by

γw(x) =
{ − 3000

4 (x2 − 0.01), x ∈ [−0.1, 0.1]
0, x ∈ (−∞,−0.1) ∪ (0.1, +∞)

which is a triangular Kernel function. The filter can be
conducted by the following format[

x̂1,k+1

x̂2,k+2

]
=

[
0.7 0.3
0 a0(k)

] [
x̂1,k

x̂2,k

]
+(yk−ŷk)

[
uk

0

]
(40)

where ŷk = x̂1,k + x̂1,kx̂2,k.
At first we can transform the error system to the form

of (5). Without further confusions, we also use ek instead

of ẽk in the following. Denote ek :=
[

e
(1)
k e

(2)
k

]T

, then

for sample value τ :=
[

τ (1) τ (2)
]T

, based on Lemmas
1 ∼ 4 it can be shown that

γek+1(τ
(1)) =

∫ β

α
10
7 γ

e
(1)
k

(
10
7 σ(1)

)×
γwk+1

(
τ (1) − σ(1) + uk(yk − ŷk)

)
dσ(1)

To compute the required filter gain, according to (30) and
(31), we have

hk1(τ) = −
⎡⎣∂γ

e
(1)
k+1

(τ (1))

∂uk

(
ln γ

e
(1)
k+1

(τ (1)) + 1
)⎤⎦

uk=uk−1

and

hk2(τ) = −
[

∂2γ
e
(1)
k+1

(τ(1))

∂u2
k

(
ln γ

e
(1)
k+1

(τ (1)) + 1
)]

uk=uk−1

+

⎡⎣(
∂γ

e
(1)
k+1

(τ(1))

∂uk

)2 (
γ

e
(1)
k+1

(τ (1))
)−1

⎤⎦
uk=uk−1

with which (31) can be used to provide suboptimal filtering
laws. In the simulation, it has been selected that R1 = 1
and R2 = 100. Figures can be provided to demonstrate the
dynamical responses of estimation errors.

VI. CONCLUSIONS

In this paper, a new solution is presented for the optimal
filtering design of multivariate stochastic systems subjected
to non-Gaussian noises. To effectively characterize the
stochastic property of the system output, the concepts of
hybrid random vectors, hybrid random probabilities and
hybrid entropies are introduced. The relationships between
the PDFs of multivariate stochastic input and output are

firstly established, with which the PDFs and its hybrid
entropy of the estimation errors are represented in terms of
known information including the measurement output and
the PDFs of the stochastic input. Using the formulations
for the error PDFs and the minimum entropy performance
index, we established an optimal algorithm recursively for
the filter gain such that the hybrid entropy of the estimation
errors is minimized. Furthermore, an improved method is
provided to guarantee the local stability by tuning the
weighting matrices.
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