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Abstract— Recently cost cumulant control has been effec-
tively applied to vibration control problems. Similarly so
have multiobjective control paradigms. In this paper the cost
cumulant control idea is used to solve the case when the
system has some structured uncertainty, with two players,
the control and disturbance, having their own performance
indices. The development at first is done for a class of nonlinear
systems, non-quadratic cost and then is later applied to the
linear, quadratic special case. The two performance indices
will be linear combinations of cumulants, in which one shall
be for the control and the other will constrain the input-
output relationship of the disturbance to a output. The control
solution is then applied to the First Generation Benchmark
for a 3-story building under seismic excitation. The results will
be compared with those of several different controllers.

I. INTRODUCTION

In recent times the k cost cumulant (kCC) and the min-
imum cost variance (MCV) control problems have gained
attention [7]-[12], [13]. These control methods generalize
the approach of minimizing the mean of a cost function that
is so prevalent in the area of control. They let the control
minimize a linear combination of the cumulants. In the
MCV problem this means minimizing a linear combination
of the mean and the variance of a cost function, whereas the
kCC goes beyond these two most well known cumulants.
These methods have been applied successfully to vibration
control problems, in particular the control of structures
excited by winds and seismic disturbances. Also, there
has been the application of multiobjective methods [5] to
this same problem. The approach taken in this paper is
to combine these two problems. The idea presented is to
allow the control to minimize a linear combination of the
first two cumulants while satisfying some constraint on
the systems induced norm. In doing this a Nash game
approach shall be taken in a manner similar to that of [6],
[3]. The development will be carried out for a class of
nonlinear systems with non-quadratic costs. It shall then
be applied to the case when the system is linear and costs
are quadratic. The Nash game shall involve two players,
a control and a disturbance. Later the disturbance will be
given as the result of some “structured” uncertainty inherent
in the system. Lastly the control will be applied to the
First Generation Structural Benchmark for buildings under
seismic excitation.

II. PRELIMINARIES

Consider the following stochastic differential equation

dx(t) = f (t,x(t),u(t),w(t))dt +σ(t,x(t))dξ (t) (1)
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where x(t0) = x0 is a random variable independent of ξ , ξ
is d-dimensional Brownian motion on the probability space
(Ω,F ,P), x(t) ∈ R

n is the state, u(t) ∈ U is the control,
w(t) ∈ W is the disturbance, and t ∈ T = [t0, t f ]. Let Q0 =
(t0, t f )×R

n and Q̄0 be its closure, that is Q̄0 = T ×R
n.

Assume the functions f and σ to be Borel measurable and
of class C1(Q̄0 ×U ×W ) and C1(Q̄0) respectively. This
means that the functions f and σ have continuous partial
derivatives of first order. Furthermore assume that f and σ
satisfy the following conditions.

(i) There exists a constant C such that

‖ f (t,x,u,w)‖ ≤C(1+‖x‖+‖u‖+‖w‖)
‖σ(t,x)‖ ≤C(1+‖x‖)

for all (t,x,u,w) ∈ Q̄0 ×U ×W , (t,x) ∈ Q̄0, and ‖ ·‖
is the Euclidean norm.

(ii) There is a constant K so that

‖ f (t, x̃, ũ, w̃)− f (t,x,u,w)‖ ≤K(‖x̃− x‖+‖ũ−u‖
+‖w̃−w‖)

‖σ(t, x̃)−σ(t,x)‖ ≤K‖x̃− x‖
for all t ∈ T ; x, x̃ ∈ R

n; u, ũ ∈ U ; w,andw̃ ∈ W .
Now we shall assume some conditions on the strategies of

the control and disturbance. First assume that the strategies
are of the form u(t) = µ(t,x(t)) and w(t) = ν(t,x(t)).
Furthermore the functions µ : Q̄0 → U and ν : Q̄0 → W
are assumed to be Borel measurable and to satisfy

(i) for some constant C̃

‖µ(t,x)‖ ≤ C̃(1+‖x‖) and ‖ν(t,x)‖ ≤ C̃(1+‖x‖)
(ii) there exists a constant K̃ such that

‖µ(t, x̃)−µ(t,x)‖ ≤ K̃(‖x̃− x‖)
‖ν(t, x̃)−ν(t,x)‖ ≤ K̃(‖x̃− x‖)

where t ∈ T and x, x̃ ∈ R
n. Often we will suppress the

dependence on t and x and refer to the strategies as µ and
ν . If the strategies µ and ν satisfy these conditions, then
they are admissible strategies. We can rewrite the stochastic
differential equation as

dx(t) = f̃ (t,x(t))dt +σ(t,x(t))dξ (t) x(t0) = x0 (2)

where the strategy (µ,ν) has been substituted into f and
now called f̃ . The conditions of Theorem V4.1 of [4]
are now satisfied and we see that if E‖x(t0)‖2 < ∞, then
a solution of (1) exists. Furthermore the solution x(t) is
unique in the sense that if there exists another solution x̃(t)
with x̃(t0) = x0, then the two solutions have the same sample
paths with probability 1. The resulting process is a Markov
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diffusion process ([4] pg. 123) and the moments of x(t) are
bounded.

Let C1,2(Q̄0) be the class of functions Φ that have
continuous first partial derivatives with respect to t and
continuous second partial derivatives with respect to x:
Φt ,Φxi ,Φxix j for i, j = 1,2, · · · ,n. Now let C1,2

p (Q̄0) be
the class of functions Φ(t,x) that are of class C1,2(Q̄0)
but where Φ,Φt ,Φxi ,Φxi,x j satisfy a polynomial growth
condition. A polynomial growth condition for a function
Φ is such that there exist constants c1 and c2 so that
‖Φ(t,x)‖ ≤ c1(1+‖x‖c2) for all (t,x) ∈ Q̄0. This yields the
Dynkin formula

Φ(t,x) =E

{∫ t f

t
−Oµ ,ν Φ(s,x(s))ds|x(t) = x

}
+E

{
Φ(t f ,x(t f ))|x(t) = x

} (3)

where Oµ,ν is the backward evolution operator given by

Oµ ,ν =
∂
∂ t

+ f ′(t,x,u,w)
∂
∂x

+
1
2

tr

(
σ(t,x)W (t)σ ′(t,x)

∂ 2

∂x2

) (4)

with E{dξ (t)dξ ′(t)} = W (t), superscript ′ denotes trans-
pose, and tr refers to the trace operator. The expectation in
(3) will now be referred to as Etx.

III. PROBLEM DEFINITION

The game described by (1) has with it two cost functions.
The first cost function, J1, is to be associated with the
control u and the second, J2, is for the disturbance w. Both
players wish to minimize their respective cost functions.
When the arguments of the state, control, or disturbance
w are missing, it should be assumed that they are just
suppressed. The players’ cost functions are given by

J1(t,x,u,w) =
∫ t f

t
L1(τ,x,u,w)dτ +ψ1(x f ) (5)

J2(t,x,u,w) =
∫ t f

t
L2(τ,x,u,w)dτ +ψ2(x f ) (6)

where L1,L2 are the running cost functions, ψ1,ψ2 are
the terminal cost functions for each player respectively,
and x(t f ) = x f . Assume the running cost Li satisfies a
polynomial growth condition ‖Li(t,x,u,w)‖ ≤ k(1+‖x‖c +
‖u‖c +‖w‖c) and the terminal cost ψi satisfies a polynomial
growth condition ‖ψi(t,x)‖ ≤ k(1 + ‖x‖c), where k,c are
some constants and for i = 1,2. The game to be considered
here is one in which the first player, the control u, wishes
to minimize a performance index consisting of a linear
combination of cumulants given by

φ1(t,x,u,w) = Etx{J1(t,x,u,w)}+ γVartx{J1(t,x,u,w)}
(7)

where γ is some positive constant and Vartx is the normal
definition of variance only using the condition expectation.
On the other hand, the second player, the disturbance w,
wishes to minimize the mean of its cost function. That is
the disturbance has

φ2(t,x,u,w) = Etx{J2(t,x,u,w)} (8)

as its own performance index.
Since both players will be assumed to have feedback

information available to them, UF will be the information
pattern for the control and WF will be the information
pattern for the disturbance. Thus, UF is the class of all
feedback strategies µ already described, and similarly for
WF . Now we define what is meant by a Nash equilibrium
solution to the game.

Definition 1: The pair (µ∗,ν∗) is a Nash equilibrium
solution if it satisfies the inequalities

φ1(0,x,µ∗,ν∗) ≤ φ1(0,x,µ,ν∗)

φ2(0,x,µ∗,ν∗) ≤ φ2(0,x,µ∗,ν)

∀µ ∈ UF and ∀ν ∈ WF .
Now let V1(t,x; µ,ν) = Etx{J1(t,x,u,w)} and

V2(t,x; µ ,ν) = Etx{J2
1 (t,x,u,w)} be the first and second

moments of the cost function J1(t,x,u,w).
Definition 2: A function M : Q̄0 → R

+ is an admissible
mean cost function if there exists an admissible strategy µ
such that M(t,x) = V1(t,x; µ ,ν∗) for t ∈ T,x ∈ R

n.
From now on we shall assume that M is an admissible

mean cost function.
Definition 3: M defines a class of admissible strategies

UM such that µ ∈ UM if and only if the strategy µ is
admissible and satisfies Definition 2.

Definition 4: An MCV control strategy µ∗ ∈ UM is one
that minimizes the second moment, i.e. V2(t,x,µ∗,ν∗) =
V2(t,x) ≤ V2(t,x,µ,ν∗) for t ∈ T,x ∈ R

n,ν∗ ∈ WF , where
µ ∈ UM . Furthermore the variance is found through
V (t,x) = V2(t,x)−M2(t,x).

IV. NONLINEAR NASH SOLUTION

We shall begin this section by giving several lemmas that
will be used in the proof of the control’s Nash equilibrium
strategy. The first lemma will help by providing a necessary
condition for the mean of the cost function.

Lemma 1: Let M ∈C1,2
p (Q̄0) be an admissible mean cost

function and µ be an admissible control strategy such
that it satisfies Definition 2. Under these assumptions the
admissible mean cost function M satisfies

Oµ ,ν∗
M(t,x)+L1(t,x,µ,ν∗) = 0 (9)

where M(t f ,x f ) = ψ1(x f ).
Now we have the following Verification Lemma for the

mean of the cost function. It provides sufficient conditions
for the mean value function. Here the set Q is to be an open
subset of Q0.

Lemma 2 (Verification Lemma): Let M ∈C1,2
p (Q)∩C(Q̄)

be a solution to

Oµ,ν∗
M(t,x)+L1(t,x,µ ,ν∗) = 0 (10)

with boundary condition M(t f ,x f )= ψ1(x f ). Then M(t,x)=
V1(t,x; µ,ν∗) for all µ ∈ UM .

Now that we have the results for the mean of the cost,
we have the following Verification Lemma for the second
moment of the cost.
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Lemma 3 (Verification Lemma): Let V2 ∈ C1,2
p (Q) ∩

C(Q̄) be a nonnegative solution to the partial differential
equation

min
µ∈UM

{
Oµ ,ν∗

V2(t,x)+2M(t,x)L1(t,x,µ ,ν∗)
}

= 0 (11)

with boundary condition V2(t f ,x f ) = ψ2
1 (x f ). Then

V2(t,x) ≤ V2(t,x; µ,ν∗) for every µ ∈ UM , and (t,x) ∈ Q̄0.
If µ also satisfies

min
µ̃∈UM

{
O µ̃ ,ν∗

V2(t,x)+2M(t,x)L1(t,x, µ̃,ν∗)
}

= Oµ,ν∗
V2(t,x)+2M(t,x)L1(t,x,µ,ν∗)

(12)

for all (t,x) ∈ Q̄0, then V2(t,x) = V2(t,x; µ ,ν∗).
Proof. The proof follows closely that of Theorem 4.2 of

[13]. �
From these lemmas, we can begin to discuss the Nash

equilibrium solution. The following theorem provides suf-
ficient conditions for the Nash equilibrium solution.

Theorem 1: Consider the two player game described
by (1), (7), and (8). Let M be an admissible mean cost
function, M ∈C1,2

p (Q)∩C(Q̄), with an associated UM . Also
consider the function V ∈C1,2

p (Q)∩C(Q̄) that is a solution
to

min
µ∈UM

{
∂V
∂ t

(t,x)+ f ′(t,x,µ,ν∗)
∂V
∂x

(t,x)

+
1
2

tr

(
σ(t,x)W (t)σ ′(t,x)

∂ 2V
∂x2 (t,x)

)

+
∣∣∣∣∂M

∂x
(t,x)

∣∣∣∣
2

σ(t,x)W (t)σ ′(t,x)

}
= 0

(13)

with V (t f ,x f ) = 0 and the function P ∈C1,2
p (Q)∩C(Q̄) that

satisfies

min
ν∈WF

{
∂P
∂ t

(t,x)+ f ′(t,x,µ∗,ν)
∂P
∂x

(t,x)

+
1
2

tr

(
σ(t,x)W (t)σ ′(t,x)

∂ 2P
∂x2 (t,x)

)

+L2(t,x,µ∗,ν)
}

= 0

(14)

with P(t f ,x f ) = ψ2(x f ). If the strategies µ∗ and ν∗ are
the minimizing arguments of (13) and (14), then the pair
(µ∗,ν∗) constitutes a Nash equilibrium solution.

Proof. To start out the proof, assume that the con-
trol’s Nash equilibrium solution has been played and P ∈
C1,2

p (Q)∩C(Q̄). Then we have a minimal mean of the cost
problem for the disturbance w. Assume the disturbance
plays the strategy ν(t,x(t)), which may or may not min-
imize (14). This yields

Oµ∗,ν P(t,x)+L2(t,x,µ∗,ν) ≥ 0. (15)

But by the Dynkin formula and (15) we have

P(t,x) = Etx

{∫ t f

t
−Oµ∗,ν P(s,x)ds+ψ2(x f )

}
≤ Etx{J2(t,x,µ∗,ν)}

(16)

where Etx is as previously defined. Notice that if the
disturbance plays a strategy ν∗ that minimizes (14), we have
P(t,x) = Etx{J2(t,x,µ∗,ν∗)}, and thus if µ∗ is the control’s
Nash equilibrium solution, then Definition 1 is satisfied and
ν∗ is the disturbance’s Nash equilibrium strategy.

For the second part of the proof, let the disturbance play
its Nash equilibrium strategy ν∗. Now assume M is an
admissible mean cost function such that M2 ∈ C1,2

p (Q)∩
C(Q̄) and assume V ∈ C1,2

p (Q)∩C(Q̄) satisfies (13). Now
let µ ∈ UM be an admissible control strategy which may
or may not be the minimal strategy in (13). Recall that if
the control strategy µ is in the class of admissible mean
strategies UM , then it is such that

Oµ,ν∗
M(t,x)+L1(t,x,µ ,ν∗) = 0 (17)

where M(t f ,x f ) = ψ1(x f ). Since µ may or may not be
optimal we have

Oµ ,ν∗
V (t,x)+

∣∣∣∣∂M
∂x

(t,x)
∣∣∣∣
2

σ(t,x)W (t)σ ′(t,x)
≥ 0 (18)

where V (t f ,x f ) = 0. Manipulating the above equation yields

V (t,x) = Etx

{∫ t f

t
−Oµ ,ν∗

V (s,x)ds

}

≤ Etx

{∫ t f

t

∣∣∣∣∂M
∂x

(s,x)
∣∣∣∣
2

σ(s,x)W (s)σ ′(s,x)
ds

} (19)

where once again the Dynkin formula is used. Recall that
in order for V (t,x) to be a value function for the variance,
it must be such that V (t,x) = V2(t,x)−M2(t,x). But since
M2 ∈C1,2

p (Q)∩C(Q̄), then V2 ∈C1,2
p (Q)∩C(Q̄). Using the

definition of variance we have

V2(t,x)−M2(t,x) ≤ Etx

{∫ t f

t

∣∣∣∣∂M
∂x

(s,x)
∣∣∣∣
2

σWσ ′
ds

}
(20)

which yields

V2(t,x) ≤ Etx

{∫ t f

t

∣∣∣∣∂M
∂x

(s,x)
∣∣∣∣
2

σWσ ′
ds

}

−Etx

{∫ t f

t
Oµ ,ν∗

M2(s,x)ds

}
+Etx{ψ2

1 (x f )}
(21)

by the application of the Dynkin formula to the function
M2(t,x). From Lemma 3 we also have

V2(t,x) ≤Etx

{∫ t f

t
2M(s,x)L1(s,x,µ,ν∗)ds

}
+Etx{ψ2

1 (x f )}
(22)

with another usage of the Dynkin formula. If we can show
that the right members of (21) and (22) are equal, then we
can employ the techniques of Lemma 3 to obtain the desired
result. To do so, we examine the equality

Oµ ,ν∗
M2(t,x)+2M(t,x)L1(t,x,µ,ν∗)

=
∣∣∣∣∂M

∂x
(t,x)

∣∣∣∣
2

σWσ ′

(23)
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for (t,x) ∈ Q. The first step in this pursuit is to let Oµ,ν =
Oµ ,ν

1 +O2 where

Oµ ,ν
1 =

∂
∂ t

+ f ′(t,x,µ(t,x),ν(t,x))
∂
∂x

O2 =
1
2

tr

(
σ(t,x)W (t)σ ′(t,x)

∂ 2

∂x2

)

and with this definition we have for Oµ ,ν∗
M2(t,x)

Oµ,ν∗
M2(t,x) = 2M(t,x)Oµ ,ν∗

1 M(t,x)+O2M2(t,x).

Recall that M is an admissible mean cost function, therefore
−Oµ,ν∗

M(t,x) = L1(t,x,µ ,ν∗). With these two observa-
tions, (23) reduces to

O2M2(t,x)−2M(t,x)O2M(t,x) =
∣∣∣∣∂M

∂x
(t,x)

∣∣∣∣
2

σWσ ′
. (24)

We wish to show that (24) holds. Recall that

∂ 2M2

∂x2 =
∂
∂x

(
∂M2

∂x

)′

so that the left members of (24) becomes

1
2

tr

(
σWσ ′

[
∂ 2M2

∂x2 −2M(t,x)
∂ 2M
∂x2

])

= tr

(
σWσ ′

(
∂M
∂x

)(
∂M
∂x

)′) (25)

where the arguments are suppressed. But notice that the
right members in (25) equals the right members of (24).
Therefore the equality (23) is established. This results
in (21) and (22) being equivalent, which in turn says that
V2(t,x)≤V2(t,x; µ,ν∗) for all µ ∈UM and (t,x) ∈ Q. With
another application of Definition 4 we see that V (t,x) ≤
V (t,x; µ,ν∗) for all µ ∈ UM and (t,x) ∈ Q and therefore
we have reached the desired result. Note that if indeed
µ = µ∗, the inequalities in the second part of the proof
become equalities and therefore V (t,x) = V (t,x; µ∗,ν∗). �
V. APPLICATION TO THE LINEAR QUADRATIC SPECIAL

CASE

Now we consider the case when the system given is
linear. The system will be described by

dx(t) =(A(t)x(t)+B(t)u(t)+D(t)w(t))dt +E(t)dξ (t)
z1(t) =H1(t)x(t)+G1(t)u(t)
z2(t) =H2(t)x(t)+G2(t)u(t)

where x(t0) = x0 and z1,z2 are the regulated outputs of the
system. It also will be assumed that H ′

i Hi = Qi, G′
iHi = 0,

and G′
iGi = Ri for i = 1,2, where Qi is positive semidefinite

and Ri is positive definite. Furthermore the costs will be
assumed to be quadratic;

J1 =
∫ t f

t0
z′1(t)z1(t)dt

J2 =
∫ t f

t0
(δ 2w′(t)w(t)− z′2(t)z2(t))dt

where Q1
f = Q2

f = 0.

K

G

∆

�
w

�ξ �
u

�

�

� z1

z2

y

Fig. 1. Block Diagram

Notice that minimizing the performance index of the
disturbance will then be imposing a constraint on the input
output properties of the disturbance w to the regulated
output z2. To see this consider that for the performance
index E{J2} ≥ 0 we have

E

{∫ t f

t0
(δ 2w′(t)w(t)− z′2(t)z2(t))dt

}
≥ 0

but this is the same as∫ t f

t0
E

{||z2(t)||2
}

dt ≤ δ 2
∫ t f

t0
E

{||w(t)||2}dt

which says that δ is a constraint on the H∞ norm of the
system. The problem can be viewed by Fig. 1 where G
is the plant transfer function and ∆ is a structured plant
uncertainty. That is the interesting part of this problem.
The cost cumulant control problem involves the first two
cumulants, but also has the ability to incorporate some
uncertainty into our control designing equations. Notice
that if we let γ = 0, then we have the H2/H∞ control
problem. This suggests that the multiobjective cumulant
control is a generalization of H2/H∞ control. We now apply
the previous results to the linear quadratic cost cumulant
problem.

Let us assume that the costs are quadratic. That is
M(t,x) = x′M (t)x + m(t) and similarly with V (t,x) and
P(t,x) where M ,V ,P are matrix functions of time and
m,v, p are scalar functions of time. Now consider the HJB
equation for the disturbance. We obtain

min
ν∈WF

{
x′Ṗx+ ṗ+2(Ax+Bµ∗ +Dν)′Px

+ tr(EWE ′P)+δ 2ν ′ν − x′Q2x−µ∗′R2µ∗
}

= 0

and now performing the minimization

w∗(t) = ν∗(t,x(t)) = − 1
δ 2 D′(t)P(t)x(t) (26)

which is the form of the disturbance’s Nash equilibrium
solution. Now for the control. The control’s performance
index was a linear combination of the mean and variance.
This yields

min
µ∈UM

{
x′Ṁ x+ ṁ+2(Ax+Bµ +Dν∗)′M x

+ tr(EWE ′(M + γV ))+ x′Q1x+ µ ′R1µ + γ[x′V̇ x+ v̇

+2(Ax+Bµ +Dν∗)′V x+4M EWE ′M ]
}

= 0
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and minimizing this gives

u∗(t) = µ∗(t,x(t)) = −R−1
1 B′(t)(M (t)+ γV (t))x(t) (27)

which is the form of the controller’s Nash equilibrium
solution. Using this Nash equilibrium solution (µ∗,ν∗), we
can determine three Riccati equations by substitution. First
consider the mean of the control’s cost function

Ṁ +A′M +M A+Q1 −M BR−1
1 B′M

− 1
δ 2 PDD′M − 1

δ 2 M DD′P

+ γ2V BR−1
1 B′V = 0

(28)

where M (t f ) = Q1
f . Next we derive an expression for the

variance. In a similar way use (µ∗,ν∗) to give the equation

V̇ +A′V +V A− γM BR−1
1 B′V − γV BR−1

1 B′M

− 1
δ 2 PDD′V − 1

δ 2 V DD′P −2γV BR−1
1 B′V

+4M EWE ′M = 0

(29)

with V (t f ) = 0. Finally an expression for the mean of the
disturbance’s cost is given by

Ṗ +A′P +PA− (M + γV )BR−1
1 B′P

−PBR−1
1 B′(M + γV )− 1

δ 2 PDD′P

−Q2 −M BR−1
1 R2R−1

1 B′M
− γM BR−1

1 R2R−1
1 B′V − γV BR−1

1 R2R−1
1 B′M

− γ2V BR−1
1 R2R−1

1 B′V = 0

(30)

where P(t f ) = Q2
f . Notice that if these Riccati equations

are satisfied then we know the strategy (µ∗,ν∗) given
in (26) and (27). This leads to the following theorem.

Theorem 2: Consider the stochastic game in which the
system is linear and the costs are quadratic. Suppose the
M (t),V (t),P(t) are unique solutions to the coupled Ric-
cati equations (28), (29), (30), then the Nash equilibrium so-
lution (µ∗(t,x),ν∗(t,x)) is given by (27) and (26). M(t,x),
V (t,x), and P(t,x) are then constructed with the aid of

ṁ(t) =− tr(E(t)W (t)E ′(t)M (t))
v̇(t) =− tr(E(t)W (t)E ′(t)V (t))
ṗ(t) =− tr(E(t)W (t)E ′(t)P(t))

where m(t f ) = 0,v(t f ) = 0, p(t f ) = 0.
Now that we have the linear quadratic problem solved,

the solution will be used to determine a controller for the
First Generation Benchmark for buildings under earthquake
excitation.

VI. STRUCTURAL CONTROL BENCHMARK

The benchmark problem of controlling a three-story
building with an active mass damper is described in [14].
For the evaluation of this benchmark there is a 28 state
model given by

ẋ(t) =Ax(t)+Bu(t)+Eẍg(t)
y(t) =Cyx(t)+Dyu(t)+Fyẍg(t)+ v

z(t) =Czx(t)+Dzu(t)+Fzẍg(t)
(31)

Fig. 2. Test Structure

where ẍg is the earthquake ground acceleration, v is the
sensor noise, y = [xm, ẍa1, ẍa2, ẍa3, ẍam, ẍg]′ is the output,
and z = [x1,x2,x3,xm, ẋ1, ẋ2, ẋ3, ẋm, ẍa1, ẍa2, ẍa3, ẍam]′ is the
regulated output. The test structure for this benchmark is
shown in Fig. 2.

Along with this model there are ten different evalu-
ation criteria J1 − J10 that are given in [14]. The first
five evaluation criteria are based on the rms response of
the building excited by a random process ẍg with specral
density characterized by the Kanai-Tajimi spectrum. The
first two performance criteria help describe the effect of
the controller on the vibration of the building, while the
next three help account for the performance of the actuator
itself. The last five performance criteria are characterized in
terms of the peak response of the building. In this case the
excitation ẍg takes the form of two historical earthquakes,
the 1940 El Centro earthquake or the 1968 Hachinohe
earthquake. The first two of these are again used to account
for the performance of the building whereas the last three
help to evaluate the control resources being used.

For the control design a reduced order model is to be
used. This is given by

ẋr(t) =Arxr(t)+Bru(t)+Erẍg(t)
yr(t) =Cyrx(t)+Dyru(t)+Fyrẍg(t)+ vr

(32)

where xr is a 10-dimensional state and yr =
[ẍa1, ẍa2, ẍa3, ẍam]′. From the LQG design in [14], we
obtain H1 = (C′

yrQ,0′)′ and G1 = (D′
yrQ, G̃′)′ where

R = 50, Q = diag(1,1,1,0), and G̃′G̃ = R.
To account for some unmodeled dynamics in the system

a weighting function shall be used. In particular from [5]
we see that the weighting function

Wz2(s) =
3s2 +90s+600

s2 +300s+30000
(33)

can be used to accommodate a multiplicative uncertainty.
This can be seen in more detail in Fig. 3.

Along with the ten performance criteria J1-J10 there
are control and actuator constraints. These constraints are
maxt |u(t)| ≤ 3 V, σu ≤ 1 V, maxt |xm(t)| ≤ 9 cm, σxm ≤ 3
cm, maxt |ẍam(t)| ≤ 6 g’s, and σẍam ≤ 2 g’s.

The results from the simulation for the LQG, MCV, and
the Multiobjective controllers may be found in Table I.
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For the MCV controller the parameter is set to γ = 10−5.
Similarly for the Multiobjective Cost Cumulant controller
the parameter for the weight on the variance is γ = 10−5

and also the parameter for the disturbance is set to δ = 3.0.
As one might expect there is a significant reduction from
the LQG results in J1, J2, J6, and J7 in the Multiobjective
case. Since these quantities correspond to the vibration
of the building this makes sense. Likewise the rest of
the performance criteria are worse for the Multiobjective
Cost Cumulant controller. This too make sense since these
criteria correspond to how much action is required from the
actuator. Also from these simulation results one can notice
that the switch to the two cost cumulant case results in
a large reduction in the first several performance criteria
from the LQG case. Also note that the reduction in J1 and
J2 for the multiobjective cost cumulant controller is roughly
36% less than that from the LQG controller. Similarly it is
roughly 18% less than the peak response J6 for the LQG
case.

VII. CONCLUSION

In this paper a Nash Game approach was taken to solve
the case when there are two players, a control and a
disturbance, which wish to minimize their own performance
index, namely two different linear combinations of cost
cumulants. The problem was developed for a class of
nonlinear systems and non-quadratic costs. Later the case

LQG 2CC MCC
J1 0.2898 0.2073 0.1846
J2 0.4439 0.3127 0.2814
J3 0.4843 0.7263 0.8236
J4 0.4856 0.7199 0.8130
J5 0.5976 0.7452 0.8223
J6 0.4559 0.3847 0.3742
J7 0.7096 0.6683 0.6448
J8 0.6695 1.3295 1.6989
J9 0.7807 1.3252 1.6525
J10 1.3142 1.5146 1.6947
σu 0.1441 0.2345 0.2722
σxm 0.6341 0.9508 1.0782
σẍam 1.0696 1.3339 1.4720

maxt |u| 0.5259 1.0063 1.1924
maxt |xm| 2.0060 3.6012 4.2715
maxt |ẍam| 4.7454 5.5398 5.9663

TABLE I

BENCHMARK RESULTS

of a linear system and quadratic cost was examined, and
in particular the case when the system has some structured
uncertainty present. Also a connection with multiobjective
control was established, in particular a connection with the
H2/H∞ control method.

Once the linear case was established, the theory was
applied to the First Generation Benchmark for seismic
excited buildings. With a multiplicative uncertainty the
controller was designed and the response was simulated.
The results of the simulation were examined and found
that the multiobjective cost cumulant control performed well
compared to other different controller types.
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