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control of constrained nonlinear stochastic systems 

Emanuel Todorov and Weiwei Li 

Abstract-We present an iterative Linear-Quadratic- 
Gaussian method for locally-optimal feedback control of 
nonlinear stochastic systems subject to control constraints. 
Previously, similar methods have been restricted to determin- 
istic unconstrained problems with quadratic costs. The new 
method constructs an affine feedback control law, obtained by 
minimizing a novel quadratic approximation to the optimal 
cost-to-go function. Global convergence is guaranteed through 
a Levenberg-Marquardt method; convergence in the vicinity 
of a local minimum is quadratic. Performance is illustrated 
on a limited-torque inverted pendulum problem, as well as a 
complex biomechanical control problem involving a stochastic 
model of the human arm, with 10 state dimensions and 
6 muscle actuators. A Matlab implementation of the new 
algorithm is availabe at www.cogsci.ucsd.edu/-todorov. 

I. INTRODUCTION 

Despite an intense interest in optimal control theory 
over the last 50 years, solving complex optimal control 
problems - that do not fit in the well-developed Linear- 
Quadratic-Gaussian (LQG) formalism - remains a challenge 
[17]. Most existing numerical methods fall in one of two 
categories. Global methods based on the Hamilton-Jacobi- 
Bellman (HJB) equations and the idea of dynamic program- 
ming [7], [ l ]  can yield globally-optimal feedback control 
laws for general stochastic systems. However, such methods 
involve discretizations of the state and control spaces - 
which makes them inapplicable to high-dimensional prob- 
lems, due to the curse of dimensionality. Local methods 
based on the Maximum Principle [3], [13] avoid the curse 
of dimensionality, by solving a set of ODEs - via shooting, 
relaxation, collocation, or gradient descent. But the resulting 
locally-optimal control laws are open-loop, and stochastic 
dynamics cannot be taken into account. 

An ideal blend of the advantages of local and global 
methods is provided by Differential Dynamic Programming 
(DDP) [5]. This method is still local, in the sense that 
it maintains a representation of a single trajectory and 
improves it locally. The improvement however does not rely 
on solving ODEs, but is based on dynamic programming - 
applied within a "tube" around the current trajectory. DDP 
is known to have second-order convergence [9], [ l l] ,  and 
numerically appears to be more efficient [ 101 than (efficient 
implementations of) Newton's method [ 121. We recently 
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developed a new method - iterative Linear-Quadratic Reg- 
ulator design (ILQR) - which is closely related to DDP 
but turns out to be significantly more efficient: by a factor 
of 10 on reasonably complex control problems [SI. Our 
ILQR method uses iterative linearizations of the nonlinear 
dynamics around the current trajectory, and improves that 
trajectory via modified Riccati equations. Both DDP and 
ILQR yield feedback control laws - which is a major 
advantage compared to open-loop methods. However, these 
methods are still deterministic. Another shortcoming is that, 
unlike open-loop methods, DDP and ILQR cannot deal with 
control constraints and non-quadratic cost functions. The 
goal of the present paper is to remove these limitations. 

While the new algorithm should be applicable to a range 
of problems, our specific motivation for developing it is 
the modeling of biological movement. Such modeling has 
proven extremely useful in the study of how the brain 
controls movement [ 151. Yet, progress has been impeded 
by the lack of efficient methods that can handle realis- 
tic biomechanical control problems. The characteristics of 
such problems are: high-dimensional nonlinear dynamics; 
control constraints (e.g. non-negative muscle activations); 
multiplicative noise, with standard deviation proportional to 
the control signals [4], [14]; complex performance criteria, 
that are rarely quadratic in the state variables [6]. 

Before deriving our new iterative Linear-Quadratic- 
Gaussian (ILQG) method, we give a more detailed overview 
of what is new here: 

A .  Noise 
DDP, ILQR, and the new ILQG are dynamic program- 

ming methods that use quadratic approximations to the 
optimal cost-to-go function. All such methods are "blind" to 
additive noise (see Discussion). However, in many problems 
of interest the noise is control-dependent, and such noise 
can easily be captured by quadratic approximations as we 
show below. Our new ILQG method incorporates control- 
dependent noise - which turns out to have an effect similar 
to an energy cost. 

B. Constraints 
Quadratic approximation methods are presently restricted 

to unconstrained problems. Generally speaking, constraints 
make the optimal cost-to-go function non-quadratic. But 
since we are approximating that function anyway, we might 
as well take into account the effects of control constraints to 
the extent possible. Our new ILQG method does that - by 
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modifying the feedback gain matrix whenever an element 
of the open-loop control sequence lies on the constraint 
boundary. 

C. Convexity 
Quadratic approximation methods are based on Riccati 

equations, which are derived by setting up a quadratic 
optimization problem at time step t ,  solving it analytically, 
and obtaining a formula for the optimal cost-to-go function 
at time step t - 1. Optimizing a quadratic is only possible 
when the Hessian is positive-definite. This is of course true 
in the classic LQG setting, but when LQG methods are 
used to approximate general nonlinear dynamics with non- 
quadratic costs, the Hessian can (and in practice does) have 
zero and even negative eigenvalues. The traditional rem- 
edy is to "fix" the Hessian, using a Levenberg-Marquardt 
method, or an adaptive shift scheme [lo], or simply replace 
it with the identity matrix (which yields the steepest descent 
method). The problem is that after fixing the Hessian, the 
optimization at time step t is no longer performed exactly 
- contrary to what the derivation of Riccati equations 
assumes. Instead of making this invalid assumption, our new 
method takes the fixed Hessian into account, and constructs 
a cost-to-go approximation consistent with the resulting 
control law. This is done by modified Riccati-like equations. 

11. PROBLEM STATEMENT 

Consider the nonlinear dynamical system described by 
the stochastic differential equation 

dx = f ( x ,  u) dt + F (x ,  u) dw 

with state x E R", control u E R", and standard 
Brownian motion noise w E R P .  Let k ' ( t , x ,u )  2 0 be 
an instantaneous cost rate, h ( x  ( T ) )  2 0 a final cost, T a 
specified final time, and u = T (t ,  x )  a deterministic control 
law. Define the cost-to-go function vT (t ,  x )  as the total cost 
expected to accumulate if the system is initialized in state 
x at time t ,  and controlled until time T according to the 
control law T: 

urn ( t ,  x )  E h (x ( T ) )  + k' (7, x (T )  , 7r (7, x ( T ) ) )  d~ 

The expectation is taken over the instantiations of the 
stochastic process w.  The admissible control signals may be 
constrained: u ( t )  E U ,  where we assume that U is convex. 

The objective of optimal control is to find the control 
law T* that minimizes uT (0, X O ) .  Note that the globally- 
optimal control law 7r* ( t ,  x )  does not depend on a specific 
initial state. However, finding this control law in com- 
plex problems is unlikely. Instead, we seek locally-optimal 
control laws: we will approximate 7r* in the vicinity of 
the trajectory X* ( t )  that results from applying 7r* to the 
deterministic system k = f ( x , u ) .  Since X* depends on 
X O ,  so does our approximation to 7r*. Throughout the 
paper time is discretized as k = 1 . . . K ,  with time step 
At = T /  ( K  - 1); thus u k  u ( ( k  - 1) At), and similarly 
for all other time-varying quantities. 

1 [ JT 

111. LOCAL LQG APPROXIMATION 

The locally-optimal control law is constructed iteratively. 
Each iteration of the algorithm begins with an open-loop 
control sequence ii ( t )  and the corresponding "zero-noise'' 
trajectoly X (t) ,  obtained by applying Ti ( t )  to the determin- 
istic dynamics 2 = f (x, u) with X(0) = X O .  This can be 
done by Euler integration 

X k + l  = X k  + At f ( X k ,  EA) (1) 
or by defining a continuous ii ( t )  via interpolation, applying 
a continuous-time integrator such as Runge-Kutta, and 
discretizing the resulting X (t). 

Next we linearize the system dynamics and quadratize 
the cost functions around X,U, to obtain a discrete-time 
linear dynamical system with quadratic cost. Importantly, 
the linearized dynamics and quadratized cost are expressed 
not in terms of the actual state and control variables, but in 
terms of the state and control deviations b X k  a X k  - K k ,  

b u k  a u k  - i i k .  Writing the discrete-time dynamics as 

d x k + l  + x k + l  = b x k  + K k  -k At f ( 6 x k  + X k ,  b U k  + U k )  

expanding f around X k ,  u k  up to first order, and subtracting 
(l), our original optimal control problem is approximated 
locally by the following modified LQG problem: 

b x k + l  = A k b X k  f B k b U k  -k c k  ( b u k )  < k  (2) 
A = 

c k  ( b u k )  [ C l , k  + C l , k b U k  ' ' ' Cp,k  + C p , k b U k ]  

T 1  c o s t k  = q k  + b X k  q k  + - b X Z Q k b X k  2 
1 

+ b U Z r k  + 5 b U : R k b U k  + b U ; P k b X k  

where bxl = 0, <k - N (0; I p ) ,  and the last time step is 
K.  The quantities that define this modified LQG problem 
are A k ,  B k ,  C i , k ,  C i , k ,  q k ,  q k ,  Q k ,  r k ,  R k ,  p k ,  K .  At each 
( X k ,  & ) ,  these quantities are obtained from the original 
problem as: 

A k  = I+At d f / d x ;  B k  =At  d f / d u  ( 3 )  
C i , k  = 6 F[Z1; C i , k  = 6 d F [ i l / d u  

q k  = At f?; q k  =At  de/& 
Q k  = At d2k/dxdx; P k  = At d2f?/dudx 
r k  = At df?/du;  R k  = At d2e/dudu 

where F[i]  denotes the ith column of the matrix F .  At 
the final time step IC = K the cost model is qK = h; 
q K  = ah/&; Q K  = d2h/dxdx,  and the control-related 
cost terms r K ,  R K ,  PK do not affect the optimization. The a term appears because the covariance of Brownian 
motion grows linearly with time. The ith column of the 
matrix C k  ( h k )  is ci + C i 6 u k .  Thus the noise covariance 
is 

P 

i=l 
cov [ck ( b u k )  < k ]  = ( C i , k  + C i , k h u k )  ( c i , k  + C i , k f i U k ) '  

Note that we are using a simplified noise model, where 
F (x, u) is only linearized with respect to b u .  This is 
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sufficient to capture noise that is multiplicative in the control 
signal - which is what we are mainly interested in. It is 
straightforward to include state-dependent noise as well, and 
repeat the derivation that follows. 

Now that we have an LQG approximation to our original 
optimal control problem, we can proceed with computing 
an approximately-optima1 control law. This is done in the 
following two sections. We then describe the main iteration 
of the algorithm, which constructs a convergent sequence 
of LQG approximations. 

Iv .  COMPUTING THE COST-TO-GO FUNCTION 

The approximately-optima1 control law for the LQG 
approximation will be affine, in the form 6u = r k  (6x)  = 
lk  + L k 6 x .  The unusual open-loop component l k  (letter 'el') 
arises because we are dealing with state and control devi- 
ations, and is needed to make the algorithm iterative (see 
below). The control law is approximately-optimal because 
we may have control constraints and non-convex costs. 

Suppose the control law r has already been designed 
for time steps k . . . K  - 1. Then the cost-to-go function 
u k  (6x) is well-defined - as the cost expected to accumulate 
if system (2) is initialized in state bx at time step k ,  and 
controlled according to r for the remaining time steps. 
We will show by induction (backwards in time) that if the 
control law is affine, the corresponding cost-to-go function 
remains in the quadratic form 

u k  (6x)  = Sk + 6 X T S k  f i 6 x T S k 6 x  (4) 
for all k.  At the last time step this holds, because the final 
cost is a quadratic that does not depend on the control 
signal. Now suppose that 2) is in the above form for time 
steps k + 1 . . .  K .  Using the shortcut r in place of the 
control signal l k  + L k 6 X  that our control law generates, the 
Bellman equation for the cost-to-go function is 

Uk (6x) = immediate cost + E [ u k + l  (next state)] 
= q k  + 6 X T  ( q k  + a Q k 6 x )  + rT ( r k  + i R k r )  

+ r T P , 6 X  + E [Uk+l ( A k d x  + B k r  + C k t k ) ]  

Evaluating the expectation term E [.] above yields 

s k + l  + ( A k 6 x  + B k r ) T  S k + l  + 
3 ( A k b x  f B k r ) T  s k + l ( A k 6 x  + B k r )  f 
3 1 trace (E:=, ( c z , k  + c z , k r )  ( c z , k  + C ~ , k r ) ~  SI;+]) 

Using the fact that trace(UV) = trace(VU), the 
i trace (.) term above becomes 

$rT (E, c : k s k + l c z , k )  Tf 

rT (c, C z k S k + l C t , k )  + i (E, C : k S k + l C z , k )  

Combining the results and grouping terms, the cost-to-go is 

"Jk (6x)  = 4 k  + s k + l  + E, c T s k + l c z  ( 5 )  
f 6 X T  ( q k  + A L S k + i )  

+$biT ( Q k  + A l S k + i A k )  6 X  

+rT ( g  + Gbx) + i x T H x  

The shortcuts g ,  G ,  H appearing on the last line of (5) are 
defined at each time step as 

( 6 )  
A 

g = r k  + B L s k + l +  ci C : k S k + l C i , k  

G P k + B l S k + l A k  

H ' R k  + B , T S k + l B k  f C : k S k + l C i , k  

At this point one may notice that the expression for 
u k  (6x)  is a quadratic function of r, and set the control 
signal to the value of r which makes the gradient vanish: 
b u k  = - H - l g k  - H - l G G x .  But we will not assume this 
specific form of the control law here, because H may have 
negative eigenvalues (in which case the above 6u is not 
a minimum), and also because some control constraints 
may be violated. Instead we will defer the computation 
of the control law to the next section. All we assume for 
now is that the control law computed later will be in the 
general form 6u = l k  + L k 6 X .  With this assumption we 
can complete the computation of the cost-to-go function. 
Replacing r with l k  + & 6 X ,  and noting that the square 
matrix s k  is symmetric, the 7r-dependent expression in the 
last line of (5) becomes 

1;g + i 1 L H l k  + 6 X T  ( G T l k  + L:g + L i H l k )  
+ i 6 X T  ( L L H L k  + LlG 4- G T L k )  6 X  

We now see that the cost-to-go function remains quadratic 
in bx, which completes the induction proof. Thus we have 

Lemma (ILQG) For any affine control law in the form 
6u ( k ,  6x) = 1k + L k 6 x ,  the cost-to-go for problem (2)  is 
in the form (4) for all k.  At the final time step K ,  the cost- 
to-go parameters are SK = Q x ,  S K  = q K ,  S K  = q K .  For 
k < K the parameters can be computed recursively as 

s k  

s k  

s k  

= 

= 

= q k  + s k + l  + i c i  C [ k S k + l C i , k  + i l L H l k  f c g  

Qk f A ; S k + l A k  + L l H L k  + LiG + G T L k  (7) 
q k  + A k S k + l  + L h H l k  + L l g  + G T l k  

T 

where g, G ,  H are defined in (6). The total cost is sl. 

If we are not concerned with negative eigenvalues of H 
or violations of control constraints, and set 1k = -H- 'g ,  
L k  = -H-% as mentioned above, a number of terms 
cancel and (7) reduces to 

s k  = + A l S k + l A k  - G T H - l G  

Sk = q k  + A l S k + l  - G T H - l g  

Sk = q k  + S k + l  + 3 X i  C : k S k + l C i , k  - 2 g  g 1 T H - 1  

If we further remove the control-dependent noise (by setting 
c i , k  = 0) and the linear terms in the cost function (by 
setting q k  = r k  = 0), we see that g = l k  = Sk = 0 and the 
first line of (7) reduces to the familiar LQR discrete-time 
Riccati equation 

s k  = Qk + A : S k + i A k  

- A l S k + i B k  ( R k  + B : S k + i B k ) - '  B : S k + i A k  
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Thus our method can be reduced to familiar methods in 
special cases, but has the added flexibility of keeping the 
quadratic cost-to-go calculation consistent regardless of how 
the affine feedback control law is computed. 

It can be seen from the above equations that in the 
absence of control-dependent noise (i.e. when C = 0), 
additive noise has no effect on the control law. However, 
when C > 0, increasing the additive noise magnitude c 
results in changes of the control law. 

v. COMPUTING THE CONTROL LAW 

As we saw in ( 5 ) ,  the cost-to-go function VI ,  (6x) depends 
on the control 6Uk = 7Fk (6x) through the term 

a (bu,bx) = 6uT ( g  + GSx) + ;SuTH6u (8) 

where we have suppressed the time index k. Ideally we 
would choose the 6u that minimizes a for every 6x, subject 
to whatever control constraints are present. However, this 
is not always possible within the family of affine control 
laws b u  = 1 + LSx that wc arc considering. Since the goal 
of the LQG stage is to approximate the optimal controller 
for the nonlinear system in the vicinity of X, we will give 
preference to linear control laws that are optimaVfeasible 
for small 6x, even if that (unavoidably) makes them sub- 
optimalhnfeasible for larger 6x. In particular we need to 
make sure that for 6x  = 0, the new open-loop control 
6 u  = 1 performs no worse than the current open-loop 
control 6 u  = 0. Since a (0,6x) = 0, this holds if a ( 1 , O )  = 
lTg++lTHl  5 0. The latter is always achievable by setting 
1 = -  Eg for a small enough E 2 0. 

A. First-order and second-order methods 
The gradient Vdua (6u,Sx) evaluated at Su = 0 is g + 

GSx. Therefore we can make an improvement along the 
gradient of a by setting Su = - E ( g  + G6x). If we are only 
interested in open-loop control, we can use 6 u  = - ~ g .  If the 
new control signal (for the nonlinear system) E--Eg violates 
the constraints, we have to reduce E until the constraints 
are satisfied. Note that ii is by definition a feasible control 
signal, so unless it lies on the constraint boundary (and g 
points inside the feasible set) we can find an E > 0 for which 
ii - Eg is also feasible. This gives a first-order method. 

To obtain a second-order method we use the Hessian 
H .  If H is positive semi-definite we can compute the 
unconstrained optimal control law 6 u  = -H-' ( g  + G ~ x ) ,  
and deal with the control constraints as described below. 
But when H has negative eigenvalues, there exist bu's that 
make a (and therefore v) arbitrarily negative. Note that the 
cost-to-go function for the nonlinear problem is always non- 
negative, but since we are using an approximation to the 
true cost we may (and in practice do) encounter situations 
where a does not have a minimum. In that case the gradient 
V6"a = g + GSx is still correct, and so the true cost-to-go 
decreases in the direction -X-' ( g  + G6x) for any positive 
definite matrix 'H. Thus we use a matrix 'FI that "resembles" 
H ,  but is positive definite. We have experimented with 

several choices of 71, and found the best convergence using 
a method related to Levenberg-Marquardt: (1) compute the 
eigenvalue decomposition [V, D]  = eig ( H ) ;  ( 2 )  replace all 
negative elements of the diagonal matrix D with 0; (3) 
add a positive constant X to the diagonal of D; (4) set 
71 = VDVT, using the modified D from steps (2) and 
(3). The constant X is set and adapted in the main iteration 
of the algorithm, as described below. Note that 71-1 can be 
efficiently computed as VDP1VT. 

B. Constrained second-order methods 
The problem here is to find the affine control law 6u = 

1 + Lbx  minimizing (8) subject to constraints 6 u  + ii E U ,  
assuming that H has already been replaced with a positive 
definite 'FI. We first optimize the open-loop component 1 
for 6x  = 0, and then deal with the feedback term LSx. The 
unconstrained minimum is bu' = -'FI-'g. If it satisfies 
SU* +Ti E U we are done. Otherwise we have two options. 
The more efficient but less accurate method is to backtrack 
once, i.e. to find the maximal E E [O; 11 such that ~Su*+ii E 
U .  This is appropriate in the early phase of the iterative 
algorithm when X is still far away from X'; in that phase 
it makes more sense to quickly improve the control law 
rather than refine the solution to an LQG problem that is 
an inaccurate approximation to the original problem. But in 
the final phase of the iterative algorithm we want to obtain 
the best control law possible for the given LQG problem. 
In that phase we use quadratic programming. 

Once 1 is determined, we have to compute the feedback 
gain matrix L. Given that 6x is unconstrained, the only 
general way to enforce the constraints U is to set L = 0. In 
practice we do not want to be that conservative, since we 
are looking for an approximation to the nonlinear problem 
that is valid around Sx = 0. If 1 + ii is inside U ,  small 
changes Lbx will not cause constraint violations and so we 
can use the optimal L = -71-'G. But if 1 + ti lies on 
the constraint boundary dU, we have to modify L so that 
L6x can only cause changes along the boundary. Modifying 
L is straightforward in the typical case when the range of 
each element of u is specified independently. In that case 
we simply set to 0 the rows of -'FI-'G corresponding to 
elements of 1 + ii that have reached their limits. 

VI. MAIN ITERATION 

Each iteration of ILQG starts with an open-loop con- 
trol sequence ( t ) ,  and a corresponding state trajectory 
di) ( t )  computed as in (1). As described in the previous 
sections, we then build a local LQG approximation around 
di), and design an affine control law for the linearized 
system, in the form 6uk = 1k + LkbXk. This control 
law is applied forward in time to the linearized system 
d X k + l  = Akbxk + Bkbuk, initialized at 6x1 = 0. The new 
open-loop controls Uk = Et i )+6uk  are computed along the 
way, enforcing U E ZA if necessary. If the sequences idi) 
and U are sufficiently close, the iteration ends. Note that in 
the absence of the 11, term we would have 6uk = 0 and 
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B. A model of the human arm 
The second model we study is rather complex, and we 

lack the space to describe it in detail - see [8]. We model 
the nonlinear dynamics of a 2-link 6-muscle human arm 
moving in the horizontal plane (Fig lB), using standard 
equations of motion in the form 

M(8)8 + C(e,  e) + I38 = T ,  

where 0 E R2 is the joint angle vector (shoulder: 81, elbow: 
e,), M(B) E R2x2 is the inertia matrix, C(0,e) E R2 
is the vector of centripetal and Coriolis forces, I3 is the 
joint friction matrix, and T E R2 is the joint torque that 
the muscles generate. The muscles are partitioned into 6 
actuator groups. The joint torques produced by a muscle 
are a function of its posture-dependent moment arm, length- 
velocity-tension curve, and activation level. Muscles act 
like first-order nonlinear low-pass filters, and thus have 
activations states a. Each muscle receives control ui that 
is polluted with multiplicative noise, and has activation 
dynamics ui = (u, - ui)/t(ui,ui). Thus the state x = PI; e 2 ;  81; e a ;  a l ;  a2; as;  a4; as; a61 is 10-dimensional. 

The task we study is reaching: the arm has to start at 
some initial position and move to a target in a specified 
time interval. It also has to stop at the target, and do all that 
with minimal energy consumption. There are good reasons 
to believe that such costs are indeed relevant to the neural 
control of movement [14]. The cost function is defined as 

2 
JO = Ile (qq) - e*1I2 + 0.001 j/i: ( e p ) ,  B(T) )  1 1  

+: l T O . O O O l  l l ~ 1 1 ~  d t  

where e ( e )  is the forward kinematics transformation from 
joint coordinates to end-point coordinates, and the target e* 
is defined in end-point coordinates. 

VIII. NUMERICAL RESULTS 

Since the pendulum has a two-dimensional state space, 
we can discretize it with a dense grid and solve the time- 
varying Hamilton-Jacobi-Bellman PDE numerically. We 
used a 100x100 grid, and 400 time step (4 sec interval, 
10 msec time step). 

Fig 2 shows the optimal trajectories of the pendulum, 
according to the HJB solution, in gray. The best solutions 
found by our iterative method, after 3 restarts (with constant 
initial control sequences u ( t )  = 0,1, -1 ) are shown in 
black. Note the close correspondence. In the only case 
where we saw a mismatch, running the algorithm with 
additional initial conditions found a better local minimum 
(dotted line) that agrees with the HJB solution. 

We also applied ILQG to the human arm model described 
above. Note that this model is stochastic: we include 
multiplicative noise in the muscle activations, with standard 
deviation equal to 20% of the control signal. Fig 3 shows av- 
erage behavior: hand paths in (A), tangential speed profiles 

Fig. 1 .  Illustration of the control problems being studied. In (B), we have 
elbow flexors (EF), elbow extensors (EX), shoulder flexors (SF), shoulder 
extensors (SX), biarticulate flexors (BF), and biarticulate extensors (BX). 

6xk = 0 for all k ,  and so the reference trajectory used to 
center the LQG approximation will never improve. 

If U results in better performance than idi), we set 
idi+') = U and decrease the Levenberg-Marquardt constant 
A. Otherwise we increase X and recompute U. When X = 0 
we have a Newton method using the true Hessian. When 
X is large the Hessian is effectively replaced by XI, and 
so the algorithm takes very small steps in the direction of 
the gradient. We have found empirically that using such 
an adaptive method make a difference - in terms of both 
robustness and speed of convergence. 

VII. OPTIMAL CONTROL PROBLEMS TO BE STUDIED 

We have thus far tested the method on two problems, 
both of which have nonlinear dynamics, non-quadratic 
costs, control constraints, and (for the second problem) 
multiplicative noise. 

A. An inverted pendulum 
We use the popular inverted pendulum problem (Fig lA), 

with a limit on the torque that the motor can generate, 
and also a quadratic cost on the torque. Thus the optimal 
solutions are not always in the form of bang-bang control 
(which is the case when the control cost is absent) but 
exhibit both torque saturation and continuous transitions 
between torque limits. The dynamics are 

il = 2 2  

x2 = u-4sinx1 

where the state variables are 21 = 8, 5 2  = 8. The goal is 
to make the pendulum swing up (corresponding to a 180 
deg angle) and also make it stop - at the final time T. The 
control objective is to find the control u(t)  that minimizes 
the performance index 

T 
.To= ( l + c o ~ z ~ ( T ) ) ~ + O . l  ~ ~ ( T ) ~ + 0 . 0 1 1  ~ ( t ) ~ d t  

We use a time step of 10 msec, T = 4sec, and the maximum 
control torque that can be generated is IuI 5 2. 
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Fig. 2. State-control trajectories for the inverted pendulum, found by 
ILQG (black) and a global method (gray). Circles mark the starting state, 
crosses mark the target (repeated every 360 deg). 

in (B), and muscle activations in (C). Both the movement 
kinematics and the muscle activations share many features 
with experimental data on human arm movements - but 
a detailed discussion of the relevance to Motor Control is 
beyond the scope of this paper. 

Fig 4 illustrates the robustness to noise: open-loop control 
in (A), closed-loop control in (B), and closed-loop control 
optimized for a deterministic system in (C). Closed-loop 
control is based on the time-varying feedback gain matrix 
L generated by the ILQG method, while open-loop control 
only uses the final ii constructed by the algorithm. As the 
endpoint error ellipses show, the feedback control scheme 
substantially reduces the effects of the noise, and benefits 
from being optimized for the correct multiplicative noise 
model. 

Another encouraging result is that in terms of CPU 
time, the complex arm model does not require much more 
computation than the pendulum. Fig 5A shows how the total 
cost (for the arm control problem) decreased over iterations 
of the algorithm, for reaching in 8 different directions. 
On average, ILQG found a locally-optimal time-varying 
feedback control law in about 5 seconds (on a 3.2GHz 
Pentium 4 machine, in Matlab). It should be noted that while 
the pendulum dynamics could be linearized analytically, the 
arm dynamics is too complex and so we had to resort to a 
centered finite difference approximation (which turned out 
to be the computational bottleneck). 

Finally, we explored the issue of local minima for the 
arm control problem (Fig 5B). We initialized the open- 
loop controls to random sequences, whose elements were 
uniformly sampled between 0 and 0.1 (the allowed range of 
muscle control signals was between 0 and 1). The resulting 
initial trajectories are shown as an inset in Fig 5B. Note 
that they all go in roughly the same direction, because 
some arm muscle are stronger than others. We used 10 
different initialization, for each of 8 movement directions. 

Fig. 3. Average behavior of the ILQG controller for reaching movements, 
using a 2-link 6-muscle model of the human arm. (A) Hand paths for 
movement in 16 directions; (B) Speed profiles; (C) Muscle activations. 

Fig. 4. Effects of control-dependent noise on hand reaching trajectories, 
under different control laws. (A) open-loop control; (B) closed-loop 
control; (C) closed-loop controller optimized for deterministic system. 

Fig. 5. (A) Cost over iterations of ILQG. (B) Hand paths for random 
initial conrol laws (inset) and optimized paths (black) to 8 targets. Poor 
local minima (7 out of 80) are shown in cyan. 
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Over 90% of the optimization runs (73 out of 80) converged 
to a solution very similar to the best solution we found for 
the corresponding target direction. The final trajectories are 
shown in black in Fig 5B. The remaining 7 runs found 
local minima (shown in cyan). Therefore, a small number 
of restarts of ILQG are sufficient to discover what appears 
to be the global minimum in a relatively complex control 
problem. 

I x .  DISCUSSION AND EXTENSIONS 

Here we presented a new local method for optimal 
control of stochastic nonlinear systems subject to control 
constraints, and applied it to two test problems - a simple 
pendulum and a high-dimensional biomechanical model of 
the human arm. In the inverted pendulum problem we 
demonstrated numerically that the ILQG solutions are close 
to the global minimum. Additional work is needed to 
ascertain the properties of the algorithm in more complex 
problems, where we cannot use global methods for vali- 
dation. One possibility that we are considering is to take 
the solution of the ILQG method, apply a stochastic policy 
gradient algorithm to it (which can be very inefficient, but in 
the limit of large sample size avoids approximation errors), 
and see if the ILQG solution is a minimum of gradient 
descent in the space of feedback control laws. We are also 
in the process of implementing a very detailed model of the 
human arm, including 10 degrees of freedom and around 
50 muscles; it will be interesting to see if ILQG can handle 
such a complex system in a reasonable amount of time. 

Finally, there are several possible extensions to the work 
we presented here: 

(1) We assumed implicitly that the control system can 
directly observe the plant state x, while in reality feedback 
is based on delayed and noisy sensors that may not measure 
all state variables. It should be possible to extend the 
algorithm to the partially observable case by combining 
it with an extended Kalman filter. This will result in a 
coupled estimation-control problem, which is complicated 
in the presence of multiplicative noise. However, we have 
recently solved such a problem for linear systems [16], and 
are now working on adapting that methodology to the ILQG 
framework. 

(2) As with all second-order methods, convergence is fast 
near a local minimum but can be slow far away from it. The 
question then arises, how can we make the algorithm faster 
at the beginning of the iteration? A very promising idea is to 
use a multi-resolution method in time: start with a large time 
step, and gradually reduce it (possibly alternating). With this 
in mind, we showed explicitly how the LQG approximation 
depends on the time step At - so that the algorithm can 
be applied without modification with a At that varies from 
one iteration to the next. 

(3) While we assumed a specified final time T ,  the 
algorithm can be applied in model-predictive mode, using 
a fixed time horizon rather than a fixed final time. The final 
cost h (x) will have to be replaced with some approximation 

to the optimal cost-to-go, but that has to be done whenever 
fixed-horizon model-predictive control is used. 

(4) For deterministic systems ILQG converges to ex- 
tremal trajectories, just like ODE methods based on Pon- 
tryagin’s Maximum principle (with the advantage of yield- 
ing a feedback controller). In that case the linear-quadratic 
approximation does not lead to suboptimality of the solu- 
tion (modulo local minima problems). But for stochastic 
problems we have no such guarantees, and in fact we know 
that second-order methods are insensitive to additive noise 
- suggesting that higher-order approximations to the cost- 
to-go may be needed. There is a simple way to increase 
accuracy, by augmenting the state with some nonlinear 
functions of the state: z = [x; y], where y = h (x). Then 
9 = dh (x) /& k, and so the augmented system has well- 
defined dynamics. In the reaching problem, for example, 
the cost is a complex trigonometric function in the joint 
angles but a simple quadratic in the endpoint coordinates. 
Augmenting the state with those coordinates may therefore 
increase performance for stochastic problems. 
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