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Abstract

Optimization problems involving strictly quadratic constraints
arise in many algorithmic developments in signal processing, ap-
plied mathematics, physics, and control theory. In this paper, a
framework is developed based on 1) incorporating diagonal matri-
ces into the cost function and/or the constraints, and 2) exploiting
the symmetry of quadratic constraints in the Lagrangian function.
Using this framework, many algorithms for true principal and mi-
nor component extraction and true principal singular component
analysis are derived from optimizing a weighted inverse Rayleigh
quotient and weighted Rayleigh quotient like criteria. The main
features of these algorithms are that they are self-stabilizing, can
compute multiple principal, minor or singular components, and
they ensure orthogonality. Additionally, using a logarithmic cost
function, fast convergent power-like methods for computing prin-
cipal components and singular vectors are developed. Three lists
for minor component analysis, principal component analysis, and
principal singular component analysis are provided.

Keywords: subspace methods, power method, bi-iteration, infor-
mation criteria, self-normalizing neural networks, Eigenvalue prob-
lem, learning algorithms, minor component analysis (MCA), princi-
pal component analysis (PCA), principal singular component analysis
(PSCA), singular value decomposition (SVD), principal singular sub-
space (PSS), gradient algorithms.

1. Introduction

Finding global minima and maxima of constrained optimization
problems is an important task in engineering applications and sci-
entific computation. For example, eigendecomposition and singu-
lar value decomposition, which are basic tools in many algorithms
can be obtained by optimization some criteria over quadratic con-
straints. In this paper, the main focus will be principal, minor
component estimation, and principal singular component analy-
sis.
The goal in minor component analysis (MCA) is to determine
the directions of smallest variance in a distribution. These direc-
tions correspond to the eigenvectors of the covariance matrix of
the data which have the smallest eigenvalues. The principal com-
ponent analysis (PCA) deals with the recovery of the eigenvectors
associated with the largest eigenvalues of the autocorrelation ma-
trix of the input data. A comprehensive study of single minor
component analysis is given in [1]. Algorithms for multiple MCA
and PCA extraction have been developed in [2]-[6]. The goal of
singular subspace analysis is to track or estimate the principal or
minor singular (left or right) subspaces of a sequence of random
vectors. Several subspace extraction algorithms for this problem
have been proposed in the literature. Gradient flows for learning
SVD are proposed in [7]-[9]. A logarithmic cost function is used
in [10] for tracking singular subspaces.

Neural network techniques for principal component analysis
(PCA) have been extensively researched, while learning rules for
minor component analysis and singular component analysis are
not fully developed. Thus the main focus is to develop MCA and
SVD learning rules derived directly from certain cost functions.

The main drawback of some MCA [5], PCA [6], and PSS al-
gorithms [10] is that these algorithms can only produce an ar-
bitrary orthonormal basis of the principal singular subspace. In
this paper, the proposed PCA, MCA and PSS algorithms deter-

mine exactly the desired eigenvectors or singular vectors and their
corresponding eigenvalues and singular values, respectively. The
key idea of this work is based on exploiting the symmetry of the
constraints when forming the Lagrangian of the problem. This ap-
proach turns out to be effective in deriving learning rules that are
similar to learning rules based on the concept of natural gradient.

2. General Problem Formulation

Consider the following minimization problem
Optimize F(z) subject to 27 Bz = D, (1)

where F' is at least twice continuously differentiable real valued
function, x € R™*", B € R"*™ is positive semidefinite, and
D a positive definite matrix is a diagonal matrix of size r. Here

tr(X) denotes the trace of a square matrix X, (.)T denotes matrix
transpose. Define the Lagrangian of (1) as

L(z,\) = F(z) — tr{(z” Bz — D)%},
2, ©)
= F(z) — tr{(«¥ Bz — D)7}7

where A is a matrix of Lagrange multipliers. The second equation
holds since the constraint function 7 Bz — D is symmetric.

The first order necessary condition for optimality is that VL =
0, where

e {THE) - {TET)

Thus for any critical point = for which VL(z,\) = 0, the La-
grange multiplier matrix A is symmetric, i.e., A = AT. If = is an
optimal solution for (1), then A may be expressed as

A=D"12TV,F(z) = Vo F(z) D1, (3b)
Substituting these expressions for A in (3a) yields
Vil = Vi F(z) — BzaTV,F(x)
= (I — BeD 2TV, F(x), (4)
=V.F(z) — BaVF(z)TzD™ L.

If B=1and D = I, where I is an identity matrix of appropri-
ate dimension, then the expression VL = Vg F', where Vg F
represents the natural gradient of F' over the orthogonality con-
straint Tz = I [11]-[12]. Note that if V£ = 0, and A is non-
singular, then 27VoL = (I — 2T BzD~1)2TVF(z). This implies
that 27 Bx = D. Consequently, if Vo £ = (I—BxD 'zT)V,F(z)
is forced to be zero by a gradient method, then the resulting
solution z satisfies the constraints 7Bz = D. The matrix
P = I—BxD~ 12T defines a projection onto the region defined by
the constraint z7 Bz = D in that 27 P = 27 for any z satisfying
zTBx = D.

3. Principal & Minor Component Analysis
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In this section we develop gradient flows that are capable of ex-
tracting the principal and minor subspace and the minor eigen-
vectors from the optimization of a weighted Rayleigh quotient
(WRQ) and a weighted inverse Rayleigh quotient (WIRQ). WRQ
and WIRQ has several attractive properties that can be exploited
for deriving MCA and PCA algorithms. These include bounded-
ness, homogeneity and some orthogonality properties. Addition-
ally, as will be shown later, under mild conditions each of WRQ
and WIRQ has only one minima and one maxima.

Suppose that the input vector sequence zj € IR"™ is a sta-
tionary stochastic process with zero mean and covariance ma-
trix B = E(xxT) with the eigenvalues 0 < A1 < --- < Ay and
the corresponding orthonormal eigenvectors zi,:--,z,. Let p be
an integer such that 1 < r» < n and let the eigendecomposi-
tion of B be given as B = Z1A1Z;‘r + ZoA2ZT | where Z1 =
(21, -, 2r], A1 = diag{\1,- -, A\r}, A2 = diag{Ar41, -+, An},
and Z> = [zr41, -+, 2n]. The main objective is to compute the
true MCA and PCA of dimension r, i.e., true MCA is to find the
r (1 < r < n) smallest eigenvalues A1,---,Ar, and correspond-
ing eigenvectors z1,---,z,. Similarly, true PCA is to find the r
largest eigenvalues Ay,—r41,: -+, An, and corresponding eigenvec-
tors zp—r41," ", 2n.

The PCA and MCA development will start with the basic un-
constrained optimization of weighted Rayleigh quotient WRQ and
weighted inverse Rayleigh quotient WIRQ. The WRQ is given by

Trn St T T >t
Gi(U)=tr{(U'U)Z U BUWU"U)= D}, (5)
while the WIRQ is defined as

Ga(U) = tr{(UT BU) = UTU(UT BU) = D}. (6)

A closed form for the gradient of these criteria may not be easy to
determine. Thus we will consider the following criteria for WRQ
and WIRQ), respectively:

Optimize{F1 (U) = tr{(UT BU)(UTU)~' D}, (7)
nd
! Optimize{ Fo(U) = tr{(UTU)(UT BU)~ ! D}, (8)

over all full rank matrices U € R™*". Here D is a diagonal matrix
of size r having distinct positive eigenvalues. It will be assumed
that D = diag(di1,---,dr) and that dy > da > -+ > d, > 0.

The gradient of F; and Fy are

VF =BUUTU) 'D+BUDWTU)! - BUWUTU)!
x DUTBUWTUY ' - BUUTU) 'UvTBUDWUTU) !,
VR =UUTBU) 'D+UDWTBU)"! - BUUTBU)™?

x DUTUWTBU)! — BUWUTBU) " 'uTuDpWTBU)™ L.
(10)
The following proposition deals with the critical points of WRQ
and WIRQ.

Proposition 1 (Stationarity). Let D be a diagonal matrix such
that the diagonal entries of D are positive, distinct, and arranged
in descending order and let B be a real symmetric n-dimensional
matrix with eigenvalues 0 < A1 < -+ < Ap < Apy1 < -+ < Apy
and the corresponding orthonormal eigenvectors z1,- -+, zn. Then

)

max{Fy (U)} = de,\n_kﬂ, min{Fy (U)} = deAk, (11a)
k=1 k=1

T

™
di, . dg,
max{F2(U)} = —, min{F2(U)} = _ 11b
(RO} =3 55w} =) —=—. (1)
k=1 k=1

Moreover, the global minimum and the global maximum of F; are
attained if and only if U = Z1111 and U = Z3Ila, respectively,
where Z1 = [zn—r+41-+-2n] and Za = [z1--- 2zr] and 111,11y are
permutation matrices. Similarly, the global minimum and the
global maximum of Fy are attained if and only if U = Z3Ily and
U = Z1114, respectively. All other critical points are saddles.

Outline of Proof: Let U = ZFE, where Z is any matrix consisting
of r eigenvectors, and E is a nonsingular matrix, then

F(ZE) =tr(ETE)(ETAE)™1D)

(12
=tr(ETATYE~TD), )

where A = diag(X;, --- A,.) and (i1,--- A,.) is a permutation of
{1,---,n}. The possible maximum or minimum of F(U) occurs
when Vgtr(WIRQ(ZE,B,D)) = VF(ZE) = 0. It can be
shown that

VeF(ZE)=—-E TDETA'E"T + A7'E~TD. (13)

This implies that ETA"1E-TD = DETA-1E-T. Since D is
diagonal with distinct eigenvalues, it follows from Proposition 4
(see Appendix) that ETA 'E~T is diagonal. Thus the only pos-
sible solution of Vgtr(F(ZE)) = 0 is that E = D1 P, where Dy
is diagonal, and P is a permutation matrix. Now, at stationarity
points the objective function is given by

F(E) = F(D1P) = tr(PA~'PTD). (14)

Clearly, since the diagonal entries of D are in descending order,
then among all possible A and all possible permutations P, the
maximum of F1(U) occurs at A = diag(An—r+1, -+, An) and P =
I. Similarly, the minimum occurs at A = A; and P = J, where
J is the interchange matrix given by J = [er,er—1---e1] where
e; is the ith column of an r X r identity matrix. To examine the
critical points for maxima and minima, we have to show that the
T
Hessian matrix defined as Ho(U) = W (%) , where
o(U) = tr(F(U)), is positive semi-definite at U = Z; and negative
semi-definite at U = Z2. Here vec stands for the operation of
stacking the columns of a matrix into one column. It is non definite
at any other critical points.
Q. E. D.
Proposition 1 indicates that with a properly chosen D, F1(U)
and F»(U) have exactly one global minima and one global maxima.

3.1 Gradient Flows

The ordinary differential equation (ODE) associated with the gra-
dient systems (9) and (10) are:

U =VF=U{(UTBU) D+ DWTBU)" 1}

(16
- BUWTBU)"HDUTU + UTUDYWUTBU)™ !, )
U =vVF =BU{(UTU)"'D + D(W0TU)"1} 1
- BUWTU)"YYDUTBU +UTBUD}YUTU)!,
_ dU®)
where U'(t) = =~

To alleviate matrix inversion, the quadratic constraint
UTBU = T is imposed in (16) so that for any U satisfying
UTBU = I we have

U'=VF =2UD - BU{DUTU + UTUD}. (18a)

Similarly, the quadratic constraint UTU = I is imposed in (17) to
obtain:

U’ = VF, =2BUD — U{DUT BU + UT BUD}. (18b)

In the next proposition, we show that under a mild condition,
the gradient ascent with sufficiently small step-size converges to
the true MCA.

Proposition 2. Let D and B be as in Proposition 1 and let Us
be the solution of the difference equation

1
Uptr1=Up + a{UpD — QBU;C(DU,CTU,C +Ur'U, DY, (19)

for some learning step size a € (0, 1). Assume that DUL Uso +
Ug;UooD is non-singular. Then the limiting solution Us of the
gradient ascent iteration (19) satisfies the following:

1. ULBUs = I, and ULUso = AT!

—1
= d
2. Uso = Z1A;7 and F(Uso) = ) 7| 5&
Proof: Since there is only one maxima, then for any initial
matrix Uy satisfying UL BUy = I the gradient ascent (19) con-
verges globally to system’s equilibrium point. Assume that Uso
is the limiting solution of the gradient ascent iteration (19),
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then UL UsoD = UL BUsc H, where H = UL U D + DUL Uso.
Clearly,

2H = HUL BUo + UL BU. H. (20)
We show next that each eigenvalue of UL BUs is equal to 1. Let
A be an eigenvalue of UL BUo with corresponding eigenvector
z, then UT BUz = Az. By post-multiplying and pre-multiplying
both sides of (20) by = and z”, respectively we obtain 227 Hx =
XeT Ha 4+ Aa™T He and thus (1 — M\)zT Hz = 0. The nonsingularity
of H implies that A = 1. Since UL BU is symmetric then B = I.
Consequently, Ug;UooD = DUg;Uoo. Since D is diagonal with
distinct eigenvalues, we have from Proposition 4 (see Appendix) it
follows that U(Z;UOo is diagonal. This shows that Ug; Uso = Al_1
and BUL = Usc(ULUs)™" = UsoA7 .

=L
ZiIAZ .

Consequently, Uss =

Q. E. D.
The gradient flow (18b) can be analyzed analogously.

3.2 Constrained Optimization

The unconstrained optimization problem (7) can be converted to
the following constrained optimization problems:

Optimize tr(UTUD) subject to UTBU =1, (21a)
Optimize tr(UTU) subject to UTBU = D, (21b)

Optimize tr(UTUD;) subject to UTBU = D, D1Ds = D,

(21¢)
Optimize tr(UT BU)™! subject to UTU = D71, (21d)
Optimize tr((UT BU)™!D) subject to UTU = I, (21e)

Optimize tr((UT BU) ™! Dy) subject to UTU = Dy, D1Dy = D.
(21f)

The constrained optimization method developed in Section 2
will be applied to the above problems. The resulting MCA and
PCA flows are given in the following algorithms:

3.2.1 MCA Algorithms

U1 = U + a(UxD — BU,DUT'U}) (22a)
U1 = Ug + a(Uy — BULUT U DY) (22b)
Ukt1 = Ui + a(Uxy D1 — BUyD U U, Dy ") (22¢)
Upt1 = U + a(—BU, (U BU,) ™2 + Up(UT BU,)™'D)  (22d)
Ugy1=Ur +
a(—BUL(UF BU,) ' D(UT BU,) ™! + Up(UF BU,)™1D)  (22¢)
Ukt1 = Ug + a(=BU (UL BU) ' D1 (UL BU,,) !

+U, (UL BUy)"*D1D; ") (22f)

Similarly, the unconstrained optimization problem (8) can be
converted to the following constrained problems:

Optimize tr(UT BUD) subject to UTU =1, (23a)
Optimize tr(UT BU) subject to UTU = D, (23b)

Optimize tr(UT BUD1) subject to UTU = Dy, D1D2 = D

(23¢)

Optimize tr(UTU) ™! subject to UTBU = D1, (23d)
Optimize tr((UTU) ™! D) subject to UTBU = I, (23e)
Optimize tr((UTU) ™1 Dy) subject to UTBU = Da,  (23f)

The constrained optimization techniques of Section 2 yield the
following PCA flows:

3.2.2 PCA Algorithms

Ug+41 = U + a(BU,D — U, DUI BU},) (24a)
Ug+41 = U + a(BU, — U U BU, D7) (24b)
Ug+41 = Ug + a(BU, D1 — U D1U BU, D2) (24c)
U1 = U + a(=Up (UL Ur) =2 + BU,(UT'Uz) "' D) (24d)

Uy1 = Uy + a(=Up (UL U) " DU U) ™1

+BUL(ULU,) D) (24e)
Uy1 = Uk + a(=Up (UL U,) 1D (UL UR) 7
+BU(UFUy)"*D1D; ") (24f)

Simulations showed that many of these iterations such as (22a,
22b) and (24a, 24b) respectively converge to diagonal MCA and
PCA with or without normalization using a positive learning rate,
i.e., they are self-normalizing neural networks. However, if nega-
tive learning rate is used, these algorithms converge to PCA and
MCA, respectively only if normalization is used.

3.2.3 Logarithmic Cost Functions

True PCA and MCA algorithms can also be derived using loga-
rithmic cost functions. We will consider the following optimization
problems:

Optimize tr(log(U? BU + D) subject to UTU =1,  (25a)

Optimize tr(log(UTU + D)) subject to UTBU = D.  (25b)

Since the constraint functions are symmetric, the theory of Section
2 can be applied to obtain the following flows:

U'=BUWUWTBU+ D) ' +UWTBU+D)"'D-U, (25¢)

U'=UWUTU+D)"'+BUWUTU+D)"'D—-BU.  (25d)
Numerical simulations showed that the flows of (26a) and (26b)
converge to the actual MCA and PCA respectively using a positive
learning rate. Analogous learning rules which are slightly different
from those in (26) were derived in [6], [13] where unconstrained
logarithmic functions of the form tr(log(UT BU) — tr(UTU) [6]
or tr(log(UTU) — tr(UT BU) [13] were considered. The main dif-
ference is that the learning rules in [6] and [13] find principal or
minor subspaces but not the actual eigenvectors. One can also
consider the following unconstrained optimization problems:

Optimize tr(log(UT BU + D) — tr(UTU), (26a)

Optimize tr(log(UTU + D)) — tr(UT BU). (26b)

The gradient flows corresponding to the cost functions (26a) and
(26b) are

U' = BUWUTBU + D)~! — U, PCAFlow (26¢)

U'=UWUTU + D)~! — BU, MCA Flow. (26d)

3.2.4 Power-Like PCA Algorithm

The learning rules (26) can be slightly modified to obtain the
following power like iterations:

Uyy1 = BUR(UT BU, + D)1, (27a)

U1 = BUR(UT U, + D)7, (27b)
It can be shown that in the limit both U]?Uk and UEBUk converge
to diagonal matrices as k — oco. Let P = ULUs and Q
UL BUs, then P = Q(Q + D)~ ! or P(Q + D) = Q. Since
and P are symmetric, if follows that QP = PQ and P(Q + D)
(Q+D)P. This implies that PD = DP and hence P (Proposition

4 see Appendix) is diagonal matrix. Therefore, @ is diagonal
provided that all eigenvalues of P are distinct.

[N

4. Principal Singular Component Analysis

Let A € R™*" be a rectangular matrix. The SVD of the matrix
A is written as

P
A=FSGT = orfrgl,
k=1
where p = min{m,n}, and o1 > o2 > --- > o0p. The sin-

gular vectors corresponding to the null space of A are not in-
cluded in this decomposition. Here F' = [f1, f2,---, fp] and V =
lg1, 92, - -, gp| are orthogonal matrices (FTF = I,GTG = I), and
Y = diag(o1, 02, -, 0p) is a diagonal matrix.
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The matrices F' and G may also be obtained from the eigen-
decomposition (EVD) of ATA and AAT, respectively. In this
case, AAT = F¥X2FT and AT A = GX2G7T. However, the matri-
ces AT A and AAT are in general numerically ill-conditioned and
thus the operation of computing the SVD of A from the EVD of
AT A or AAT is numerically unstable and should be avoided.

The principal left singular subspace (L-PSS) of dimension r is
the subspace spanned by the left singular vectors corresponding
to the largest r singular values. Similarly, the principal right sin-
gular subspace (R-PSS) of dimension r is the subspace spanned
by the right singular vectors corresponding to the largest r sin-
gular values. Methods for extracting principal singular subspace
are proposed in [10]. Alternating power method and Bi-iteration
SVD for tracking singular subspaces are developed in [14]-[15]. In
this section, gradient flows for extracting the principal singular
component analysis (PSCA) are derived.

4.1 Unconstrained Optimization

The principal singular subspaces can be obtained by maximizing
the following Rayleigh quotient like function:
Trry = 77T T\ =
FUV)=tr{(U'U)Z U AV(V'V)=Z .} (28a)
To avoid the algebra
and calculus of matrix square root, we consider the optimization
problem G3(U, V) = tr(F3(U, V)F3(U,V)T), where

Ga3(U, V) =tr{(UTU)LUTAV(VTV)"vTATU}.  (28b)

It can be easily seen that G3(U,V) = G3(UP,VQ) for any non-
singular matrices P and Q. Therefore, maximizing G3(U, V) or
F3(U, V) will only produce an arbitrary basis of the principal sin-
gular subspace. Since our main purpose in this work is to de-
velop algorithms for computing the actual left and right singular
vectors, the cost functions of (28a) and (28b) are modified by in-
corporating a diagonal matrix D. Thus the goal is to maximize
G4(U,V) = tr(F3(U,V)D), where

Ga(U, V) =tr{(UTU) L uTAV(VTV)"'vTATUD}.  (29)

It will be assumed that D = diag(di,---,dr) and that d1 > d2 >
coe>dpr > 0.

For Tcomputational convenience and to avoid lengthy calcula-
tion of matrix square root derivatives, we will consider the modi-
fied doubly weighted Rayleigh quotient expression:

Gs(U, V) =tr{(UTU)LUT AVD, (VTV)~vTATUDy}. (30)

Note that this function satisfies G5(UD3,V D4) = G5(U,V) for
any nonsingular diagonal matrices D3, Dy4.
The critical points of G5 are solutions of VG5 = 0, where

VuGs = AVD(VIV)"WWTATU Dy, (UTU) L
—UWTU) 0T AVD, (VIV) VT ATU Dy (UTU) !

—UWTU) ' DUTAV(VT VY VT ATU Dy (UTU) ! (31a)
+AV(VTWVY D vTATUWTU) 1 Ds,

and
VvGs = ATUDy(UTU)'UT AV D (VTV) L
—vVTV)y"WTATUDy(UTU) ' UTAVD, (VT V)~! (316)

+ATUWTU) ' DUTAV(VTVY D,y
—vivTwipywwvTaATuwTu)y-'uTAvD,(vTv)~—L

If it is assumed that UTU = I and VTV = I, then the above
gradients reduce to

VuGs = 24AVD1VTATUD, —U{UT AVD VT ATU D,
+ D2UTAVD VT ATUY,

VyvGs =24TUDUT AVD, — V{VTATUD,UT AV D,
+D1VTATUD,UT AV},

(32)

If the cost function
Gs(U, V) =tr{(UTU)LUTAVD, (VTV)" VT ATUD,}. (33)

is considered, then the following gradient flows are obtained
U =24vDiVTATUD, D — U{DUT AVD VT ATUDD,
+ DDUT AVD1 VT ATU D},
V' =2ATUDDUT AVD, — V{D:VTATUDDUT AV D,

+ D1 VTATUD,DUT AV D, Y.
(34)
Numerical experiments indicated that the gradient descent rules
based on (32) and (34) are very slow convergent and are com-
putationally demanding. Thus, in the next section we consider
constrained problems with symmetric constraints so that the tech-
niqies of Section 2 can be applied.

4.2 Constrained Optimization

For convenience of analysis we define the following set:

Q={U,V):UeR"™P,VecR™? .UTU >0,VTV >0},
(35)
where the notation X > 0 stands for X being positive definite. To
derive algorithms for true principal singular component analysis,
the following optimization problem will be considered:

— =1
Maximize 7. vyeq tr{Gs(U, V) = (UTU) T UTAV(VTV)Z D.}
(36)
It can be shown that maximizing ¢r(Ge¢(U,V)) of (36) can be
transformed into the following constrained optimization problems:

Maximize tr(UT AV D) subject to UTU = I, VTV =1, (37a)
Maximize tr(UT AV) subject to UTU = D?, VTV =1, (37b)
Maximize tr(UT AV) subject to UTU = D, VIV =D, (37¢)
Maximize tr(UT AV) subject to UTU =1, VTV = D2, (37d)

Maximize tr(UT AV)
(87e)

subject to UTU = D1, VTV = Dy, D1 Dy = D?,

where [ is an identity matrix, D1, D2 are diagonal matrices of
appropriate dimension. By forming the Lagrangian of each of
these problems and applying the techniques of Section 2, we obtain
Algorithms 1-6 listed in Section 4.4. Other learning rules may be
obtained using the cost function:

Maximize tr(UT AVD1 VT ATU D)

(38a)
subject to UTU = D;', VIV = DTt
This yields the following PSCA flow:
U' = AVDVTATUD, — UDUTAVD VT ATU D, (385)

v = ATvuTAvD, —vDi VT ATUUT AV D,.

Similarly, the differential equations associated with the opti-
mization problem
Maximize tr(UT AVDVT ATU) (30a)
subject to UTU = D', VIV = D!,
are
U' =AVDVTATU —vUTAVDVT ATUD, (395)
V' = ATuUTAVD — vDVTATUUT AV D>.

Several experiments were conducted to examine the perfor-
mance of the SVD flows of (38b) and (39b). We noted that they
are fast to converge to a permutation of the left and right prin-
cipal singular vectors provided U and V are normalized at each
iteration, however, it is very slow to converge otherwise.

4.3 Logarithmic Cost Functions

In addition to the Rayleigh quotient approaches, SVD algorithms
can also be developed using logarithmic cost functions. We will
consider the following optimization problems:

Maximizeq G7(U, V) = tr{log(UT AV+D)-UTU-VTV,} (40)
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where D is a positive definite diagonal matrix. An algorithm
which is based on the gradient flow of G7(U, V) is given in Algo-
rithm 7 (see Section 4.4). A power method can also be developed
as given in Algorithm 10 below.

4.4 Learning SVD Algorithms

Below is a list of several diagonal SVD algorithms. These are
obtained by solving various optimization problems as indicated
in the previous sections. Although numerous experiments were
conducted to evaluate their performance, further analytical and
experimental studies are needed to fully explain their convergence
behavior. For most of the cost functions involved, we computed
the Hessian matrix (not shown here) evaluated at desired critical
points and they seem to be negative definite or negative semidef-
inite. All algorithms in this list appear to be new, although some
of them reduce to known algorithms if D is an identity matrix or
D is a null matrix. The parameter « is a positive learning rate
and is usually a function of A and the initial matrices Uy and Vjp.
The initial matrices Up and V{ are assumed to be given and are
full rank. A detailed analysis of these algorithms will be reported
in a separate paper.

Algorithm 1

Up+1 = U + a(AVy D — U, DVT AT UY)
Vit1 = Vi + «(ATU,D — Vi, DUT AV,)

Algorithm 2

Upt1 = Ui + a(AV), — Uy VT ATU, D?)
Vit1 = Vi + o(ATU, — VRLUT AV,,)

Algorithm 3

Ukt1 = Ui + a(AV, = Uy VT ATUY)
Vit1 = Vi + (ATU, — VLUT AV, D?)

Algorithm 4

Ukt1 = Uk + a(AVy, — Uy VT ATU, D)
Vit1 = Vi + o(ATU, — VLUT AV, D)
Algorithm 5
Ukt1 = Ui + a(AVy, — UpV,T ATU, D1), D; : diagonal
Virr = Vi + a(ATU, — VR,UT AV}, D3), D1D2 = D
Algorithm 6
U1 = Uy + a(AVi D1 — UpV;T ATUL Do)
Vit1 = Vi + (ATU, D3 — VUL AV, Dy),
provided that D; D;l or D3D471 has distinct eigenvalues.
Algorithm 7
Uit1 = Ug + a(AVi (UL AV + D)1 = Uy)
Vig1 = Vi + a(ATUL(V,T AU, + D)1 = Vg)
Algorithm 8
Upt1 = Ur + a(AVDWUF AVy,) =1 = Uy)
Vigr = Vi + «(ATULD(VTATUL) ™! — W)
Algorithm 9
Upt1 = Uk + a(AVRTri((Uf AVy) ™) = Ug)
Vig1 = Vi + a(ATURTri((ViF AT UR) ™) = Vi)

Here the notation Tri(X) represents the upper or lower triangular
part of X.

Algorithm 10
Ups1 = AV (UF AV, + D)1
Viyr = ATUR (VT ATUy, + D)7!

Algorithm 11
Upy1 = AV Tri((UF AV)™Y)
Vi1 = ATURTri(VT ATUR) ™)

Algorithm 12
Upi1 = Uy, + a(AVy D — U, D(UT AV, + VT ATUY,)
Vi1 = Vi + «(ATULD — V,, D(UT AV, + VT ATUY,)

Remark 1: We should note that Algorithm 10 and 11 have very
attractive properties. They are power methods and are globally
convergent starting from any full rank initial matrices provided
that the first r largest singular values of A are greater that the
remaining singular values of A. Since they only require inversion
of an r X r matrix, they are very efficient for computing a few
singular values of large scale matrices.

Remark 2: In [15], the following cost function is minimized
FUV)=tr(A-UVDHT(A-UVT) (41)

to obtain a low-rank approximation for a rectangular matrix A.
By minimizing the above function with respect to U and V alter-
natingly, the following algorithm is obtained:

Uk +1) = AV(k)(V(K)TV (k)L

Vik+1) = ATUR)(UFR)TUK)™! 2

This is an alternating power method which converge fast to a
solution (U, V) that is not unique and also is dependent on the
initial matrices. Thus the alternating power method of (42) only
produces an arbitrary basis of the principal singular subspace.
It turns out that a slight modification of (42) motivated by the
derivation of Algorithm 10, the alternating power method could
produce the actual low rank SVD. Thus the new alternating power
method for SVD is given as in the following algorithm.

Algorithm 13
U(k+1) = AV(k)(V(k)TV(k)+ D)7t
V(k+1) = ATUR)UFTUE) + D)1,

where D is a diagonal matrix with positive diagonal entries.
This algorithm computes the true singular value components in
that it generates a sequence (U(k),V(k)) such that U(k)TU(k),
V(E)TV (k), and U(k)T AV (k) converge to diagonal matrices as
k — oo. To show this, let (U(k),V(k)) — (Uso,Veo), then
UL U (ULUs + D) = ULAVs and VLV (VLVe + D) =
V£ATUOO. Clearly,

D{(ULUx)? — UL AVoo} = {(ULUx)? — VEATUYD

(43)
D{(VIV%)? = VIATUL} = {(VIVe)? — UL AV} D.
This shows that
D(ULU)? —UZ AV + (VEVL)?2 = VEATUL,) )

= (UZU)? —VEZATUs + (ULU)? — UL AVs)D

Hence, (ULUx)? — UL AV + (VEVs)? — VLATU, = Do
for some diagonal matrix Do. It follows from Proposition 4
(see Appendix) that (VIVe)D = (VIV)? — VLATU, and
(ULUx)D = (ULUw)? — UL AV are diagonal matrices. Hence
VZIVs and UL Uss are diagonal. This implies that UL AVeo =
UL Uco(ULUoo + D) and VEATUs = VEIVeo(VEVeo + D) are
diagonal as they are products of diagonal matrices.

Motivated by Algorithm 11, another modification of Algorithm
13 can be obtained:

Algorithm 14
Uk1 = AV Tri(ViI Vi) ™)
Virr = ATULTri((UTUL)™Y)

Here the notation T7ri(X)
triangular part of X.

represents the upper or lower
Simulations showed that Ug Uy,
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VkT Vi, and U,Z’AV;c converge to diagonal matrices as k —
oo. Thus the PSQiA of dimension r will _ble of the form:
Fr = Uso(ULUs)2 P, Gy = Voo(VEIV)2Z P, and %, =

=1 =1
PT(ULUs) 2 UL AV (VLVs)2 P, where P is a permutation
matrix. We noted that Algorithm 11 is superior to Algorithm
14 in that Uy and V} are automatically normalized in Algorithm
11. One may also argue that Algorithm 11 is simpler and eas-
ier to implement that the Bi-iteration proposed in [14] as no QR
factorization is required.

5. Proofs

In the last few sections, we stated several results and learning
algorithms for PCA, MCA, and SVD. The derivation of these re-
sults and their proofs follow staraightforward from applying the
methodology described in Section 2. Due to space limitations,
we will only provide a proposition for the derivation of the crit-
ical points and critical values of the optimization problem (37a)
which yields Algorithm 1. Other optimization problems of (37b)-
(37f) can be treated similarly. The gradient of matrix functions
is computed by applying the matrix calculus presented in [16].

Proposition 3. Let D be a diagonal matrix such that the diago-
nal entries of D are positive, distinct, and arranged in descending
order and let A € R™*™ be a real matrix with singular values
o1 >-->0p > 0pp1 > - > 0p > 0 and the corresponding or-
thonormal left and right singular vectors are F' = [f1,---, fp] and
G = (g1, -, gp, respectively. Let Gs(U,V) = tr(UT AV D), then
the maximum of Gg(U, V'), subject to UTU =1, and VTV =TI is
attained if and only if U = Fy. and V = G, where F. = [f1 - fr]
and Gy = [g1 - - - gr]. Moreover, maxq tr(UT AV D) = 2;1 o;d;.

Outline of Proof: Let the Lagrangian of the optimization prob-
lem (37a) be

A1
2
where A\; and A2 are Lagrange multiplier matrices. Since this is
an optimization problem over a compact set, both minima and
maxima exist. For any critical point (U, V') of (37a), VL(U,V) =
0, where

LU, V) =tr{UTAVD - (UTU - )= — (VTV — 1)%},

AVD —-U)\

ATUD -V

Ve V)= |7 gy
VTy —1

For any two matrices U and V satisfying UTU = I and VTV =1,
the Lagrange multipliers A1 and A2 are given as: A} = UL VyL =
UTAVD and Ay = VIVy L = VTATUD. Additionally, both
A1 and A2 are symmetric. Clearly, (U,V) is a solution of
VL(U,V) = 0 if U is a matrix whose columns consists of lin-
ear combination of r left singular vectors, and V is the matrix
each column of which is a linear combination of corresponding
right singular vectors, i.e., U = F.P and V = G,Q, where P
and @ are orthogonal matrices. Here F, is a matrix consist-
ing of any r columns of F and G, is a matrix consisting of
the corresponding r columns of G. Now, for any critical point
(U, V), it follows that tr(UTAVD) = tr(PTZ,.QD), where %,
is a diagonal matrix so that Fi' AG, = %,. From the neces-
sary condition for optimality, we get £,QD — PA; = 0, and
SrPD — QX2 = 0. Since AT = X; and AT = Xy, it fol-
lows that A\ = PTS,.QD = DQTX, P, and X2 = QTS PD =
DPTPTY. Q. Let E = PTS,.Q, then ED = DET and ETD =
DE. This implies that (E + ET)D = D(E + ET), and therefore
Proposition 4 (see Appendix), (E + ET) = D; for some diagonal
matrix D;. Now, ED = DET = D(D,—E), or ED+DE = DDj.
Proposition 4 (see Appendix) guarantees that E is diagonal. As-
sume that E = PTS,.Q = D, then Q = £,1PDy and hence,
I =QTQ = DyPTE2PDs. This shows that PTS 2P = D 2.
The last equation implies that P is a permutation matrix. Simi-
larly, one can show that @ is a permutation matrix. The equation
E = PTS,Q = D, implies that QTP = Dy 'PTS 1P = Ds for
some diagonal matrix D3. Since P and @ are permutation matri-
ces, we must have P = Q. The value of the cost function UT AV D
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at a critical point has the form tr(PTL, PD) = 22:1 0j,d;. Since
%, and D have positive diagonal element (in decreasing order),
the maximum of tr(PT%,.QD) occurs when P = I, in which case
the maximum is 22:1 o;d;. It also follows that the maximum is
attained at U = F- and V = G,-. Q.E.D.

Appendix: Finally, we state a result which is essential for the
proofs of Propositions 1-3.

Proposition 4 [17]. Let D,C € R™*"™ such that D is diagonal
having distinct eigenvalues. If CD = DC, then C is diagonal.
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