
 
Abstract - Genetic algorithms (GAs) have a wide variety of 

applications in control. However, GAs may suffer from slow 
convergence rates, and require the user to make difficult 
choices of ranking and scaling schemes and subpopulations 
that may lead to complexities in implementation. A new com-
putationally inexpensive alternative to GAs, the continuous 
adaptive culture model (CACM), is proposed in this paper. 
This new optimization algorithm is inspired by sociological 
models of culture dissemination and uses operators that act 
directly on vectors of real numbers to avoid the computation 
associated with binary encoding and decoding in GAs. The 
new algorithm does not use global information sharing which 
makes it amenable to parallel implementation since computa-
tional bottlenecks are avoided. The De Jong test suite of opti-
mization problems is used to test the new optimization algo-
rithm.  Effects of various parameters on the performance of 
the algorithm are investigated through simulations. 

 

I. INTRODUCTION 
LOBAL search algorithms like genetic algorithms 
(GAs) have a wide variety of control applications like 

design of fuzzy systems, adaptive and nonlinear control, 
neural network training, estimation and routing. However, 
GAs sometimes exhibit slow convergence and require a 
difficult choice of ranking and scaling schemes and sub-
populations that may lead to complexities in implementa-
tion. When using GAs in problems requiring optimization 
of real-valued functions of real variables, the binary repre-
sentation of tentative solutions that is needed for crossover 
and mutation is not natural. In this paper, a new continuous 
adaptive culture model (CACM) optimization algorithm 
that is computationally inexpensive and easy to implement 
is proposed as an alternative to GAs. The CACM algorithm 
is inspired by sociological models of culture dissemination 
and uses operators that act directly on vectors of real num-
bers.  
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The new CACM algorithm employs a random search, but 
instead of generating a sequence of random points in the 
solution space as proposed in [1],  the new algorithm uses a 
population of potential solutions that is evolved to generate 
better solutions. The evolution mimics the way animal so-
cieties composed of simple individuals solve complex op-
timization problems, and is based on the adaptive culture 
model (ACM) that was published in 1997 by Robert Ax-
elrod [2] as a model of the dissemination of culture. In the 
CACM algorithm, the population is organized into 
neighborhoods and individuals move towards the best solu-
tion found in their particular neighborhood. This is similar 
to the way an ant swarm finds the shortest path to food 
sources. The ant system algorithm [3]-[7] is an optimization 
algorithm that uses rules copied from the behavior of real 
ants to solve routing problems. There is no centralized con-
trol or global sharing of information and individuals act 
based on local information alone. Another example of an 
optimization algorithm based on models of animal behavior 
is the particle swarm optimization (PSO) algorithm [8]-[9] 
that was inspired by the behavior of flocking birds. 

In the ACM the global fitness of a population rises as 
each individual interacts with its neighbors. The ACM 
serves as the basis for the classical ACM optimization 
scheme in which tentative solutions (represented as strings) 
are organized in a rectangular array. Since the individuals 
are arranged in a rectangular array the individuals at the 
boundary will have only two neighbors instead of four; this 
can be avoided by assigning to each boundary individual 
another individual which is directly opposite on the oppo-
site boundary as its neighbor. From a geometrical point of 
view, this amounts to folding a rectangle into a cylinder and 
then folding the resulting cylinder into a toroid. For exam-
ple, to solve the traveling salesman problem (TSP) tentative 
solutions could be strings representing cities to be visited. 
Each individual is compared to its neighbors (above, below 
and on either side) and a non-matching character in the 
neighboring string is adopted if the neighbor is fitter. The 
process of adopting non-matching characters from fitter 
neighbors is repeated for each individual in the population. 
The individuals are updated row-wise. Thus, when each 
row is updated, good features (characters) from strings in 
rows above and below are copied to the individuals in that 
row resulting in higher fitness. The classical ACM algo-
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rithm can be used to solve only combinatorial optimization 
problems like the TSP since tentative solutions are repre-
sented as strings. However, many fundamental problems in 
engineering like model fitting, estimation, classification, 
training neural networks and controller design require op-
timization of real-valued functions of real variables. Thus, 
we consider the following generic function optimization 
problem: 
 

( )Nxxxf ,...,, minimize 21                           (1) 
where RRf N →: . 
 
Tentative solutions to this problem will be real vectors of 
length N. In the classical GA implementation, real vectors 
are encoded in binary to perform crossover and mutation in 
order to evolve a new population that is fitter than the 
original population on the average. Since solutions close to 
good solutions are likely to be good as well, mutation of a 
given binary encoded individual should in general produce 
a new individual that is close (Hamming distance) to the 
original individual. This is because most functions that 
arise in practical applications are discontinuous on only a 
small subset of the solution space. Thus if 1xr  is close to 2xr , 
then f( 1xr ) will be close to f( 2xr ) in most parts of the solu-
tion space. Also, recombination of two individuals should 
in general produce a new individual that is close to either of 
the parent individuals with higher probability; this is be-
cause an individual that is midway between two fit indi-
viduals will in general not be fit.  

In this paper, we introduce new operators that offer the 
desired behavior described above while operating directly 
on real vectors. The new operators avoid computation asso-
ciated with binary coding and decoding by acting directly 
on vectors of real numbers. The new operators are used to 
generalize the classical ACM algorithm resulting in the 
CACM algorithm that is useful for continuous optimiza-
tion. The De Jong test suite of optimization problems is 
used to test the new optimization algorithm. Effects of vari-
ous tuning parameters on the performance of the algorithm 
are investigated through simulation. 

II. OPERATORS THAT ACT DIRECTLY ON VECTORS OF REAL 
NUMBERS 

A.  A New Crossover Operator 
Consider two vectors 1xr  and 2xr . The following crossover 

operator is proposed to achieve recombination of 1xr  and 

2xr  to produce xr : 

                                    IUr
rrr 5.0−=                                 (2)                

                                     
                                    rx r

rr
σ∆ =  

 
                       IF  u  <  0.5 

 
xxx rrr

∆+= 1  
ELSE 

xxx rrr
∆+= 2  

END     
 

 
Where  
 
rr -Random vector with each component distributed          
independently and uniformly between  -0.5 to 0.5   
U
r

-Vector of dimension N with each component uniformly 
distributed between 0 and 1  
u  -Uniform random variable between 0 and 1 
I
r

 -Vector of dimension N with each component 1 
rσ -Scaling constant which controls size of recombination 

(distance from parent). 
 
The behavior of the crossover operator (2) can be under-
stood as follows. Given two vectors 1xr  and 2xr , choose one 
with probability 0.5 (both are equally likely). Then a new 
vector close to the selected parent vector is computed by 
adding to the selected vector a random vector which can 
point in all directions with equal probability and whose 
length is controlled by rσ . Thus, the new individual gener-
ated by recombination will be close to either of the parents 
with a high probability. A uniform probability distribution 
was used to create rr  because it is symmetric and has the 
highest entropy. A symmetric distribution is used since 
there is no reason to expect individuals on any side to be 
better. A large value of rσ  means that the new individual 
has a higher probability of being far from a parent; thus 
higher values can be used to perform a more random search 
since information contained in the parents is ignored. How-
ever, computational time will be wasted if a pure random 
search is made so an intermediate value has to be chosen. 

Note that the new operator (2) will be referred to as a 
“crossover” operator although a portion of each parent in-
dividual is not copied directly to the resultant individual 
(offspring); the new operator takes two parent individuals 
and produces another individual that is close to either of the 
parents in a probabilistic sense just like the GA crossover 
operator. Given the parents, as long as the offspring pro-
duced by the new operator (2) and the classical crossover 
operator have the same probability distributions, there are 
no differences between the new and classical operators with 
respect to convergence properties. 

B.  A New Mutation Operator 
Mutation is a device to search locally around a given 

point in the solution space. An individual mutation should 
produce a new individual that is close to the parent individ-
ual. Given a real vector xr , a new vector that is close prob-
abilistically can be computed as follows: 
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IUr
rrr

5.0−=                                 (3) 
    

rx m
rr

σ∆ =  
 

xxx rrr
∆+=  

 
Where 
 
rr  - Random vector with each component distributed           
independently and uniformly between  -0.5  to  0.5   
U
r

 - Vector of dimension N with each component uni-
formly distributed between 0 and 1  
I
r

  -  Vector of dimension N with each component 1 
mσ  - Scaling constant which controls size of mutation. 

 
Larger values of mσ  allow the new individual to be distant 
from its parent. 

III. A NEW CONTINUOUS OPTIMIZATION ALGORITHM 
This paper uses the new continuous mutation operator 

(3) to generalize the classical ACM algorithm for continu-
ous optimization. The new CACM algorithm is similar to 
ACM algorithm in that the average fitness of the population 
increases as a result of local interactions of individuals with 
their neighbors. Tentative solutions are directly represented 
as real vectors arranged in a rectangular array as in the clas-
sical ACM algorithm. The population of tentative solutions 
is evolved as follows. Each vector is either mutated with 
probability mutP  or it is replaced with probability xovP  by a 
mutated copy of its most fit neighbor. Replacing an indi-
vidual by a mutated version of its best neighbor will be 
referred to as fitness adoption. The σ  associated with each 
mutation operation (see (3)) will be referred to as mσ  and 

fσ , respectively.  Consider a population of size P of ten-

tative solution vectors arranged as a rectangular array of 
size ROWS*COLUMNS = P . The vector (tentative solu-

tion) at row i and column j is denoted by ijxr . The new con-
tinuous optimization algorithm proposed is as follows: 
 

The CACM Algorithm 
 

Initialize mutP , xovP , mσ  and fσ .                                 (4)  

 
FOR  i = 1 to ROWS 
       FOR  j = 1 to COLUMNS 

Randomly initialize ijxr  (choose a point in the so-

lution space with uniform probability). 
          END 

 
 
END 
 
Do the following until convergence or maximum iteration 
is reached.  
 
FOR i = 1 to ROWS 
      FOR j = 1 to COLUMNS 

Step 1: Mutate ijxr  using (3) with probability mutP  

and sigma equal to mσ  in (3). 

Step 2:  Find the best individual ijb
r

 in the 

neighborhood containing ijxr .     

Step 3: Do the following with probability xovP . 

Replace ijxr  by a mutated copy of ijb
r

 found in 

step 2 with sigma equal to fσ in (3). 

       END 
END 
 

In the above algorithm the neighborhood of ijxr  refers to 

individuals in positions (i, j), (i+1, j), (i-1, j), (i, j+1) and (i, 
j-1). Thus when the individual at (i, j) is updated in step 3, 
its fitness increases since it moves closer to the best indi-
vidual in that neighborhood. Since the population is up-
dated row-wise the next individual to be updated after (i, j) 
will be (i, j+1). Thus the individual at (i, j+1) has a chance 
to learn (be updated) from individuals on its left and on top 
(on previous row) which have already been updated and 
hence are fitter than the individual at (i, j+1). In this way, 
as the population is updated row-wise, each individual prof-
its from the individuals in its neighborhood that have al-
ready been updated. This positive feedback mechanism, 
which is present in many complex biological systems, is 
responsible for faster convergence compared to GAs. In 
GAs two good solutions are recombined to produce an in-
dividual that is more fit than the parent individuals on the 
average. However, in the CACM algorithm an individual 
being updated has a chance to learn from all previously 
updated individuals leading to faster convergence.  

Thus, it is unlikely that an individual being updated is the 
best individual in its neighborhood because of the presence 
of other individuals that have already been updated.  How-
ever, if an individual is the best individual in its neighbor-
hood, it cannot learn from other individuals in its neighbor-
hood; the algorithm converges prematurely (to a local mini-
mum) if the best individual is not allowed to change. In (4) 
if ijxr  happens to be the best individual in its neighborhood, 

it will be replaced with probability xovP  by a mutated ver-
sion of itself. 

In GAs, “elitism” refers to the strategy of allowing good 
solutions to stay unchanged from one iteration to the next  
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to prevent good solutions from getting lost. The following 
experiment was done to study the effects of using elitism in 
the CACM algorithm. Algorithm (4) was modified so that 
when ijxr  is the best individual in its neighborhood it is 
replaced by a mutated copy of itself only with a certain 
probability, elitistP . For the sphere test function in the De 
Jong test suite, the average cost over 100 runs for different 
values of elitistP  is shown in Fig. 1.  It was found that con-
vergence was slowed for elitistP  < 1. Thus, use of elitism is 
not beneficial in case of the CACM algorithm. 

 
 
Fig. 1. Effect of elitistP on the convergence rate of the CACM algorithm 
for sphere test function. Convergence is slowed if locally best solutions are 
not allowed to change. elitistP  is the probability that the best individual is 
changed (solid line: elitistP  =  0.3 and plus: elitistP  =  1). 

 
A xovP of 0.9 was found to work well for all test func-

tions.  

 
 
Fig. 2.  Effect of mutP on the convergence rate of the CACM algorithm for 
sphere test function. The average cost was taken over 100 independent 
runs. mutP  higher than 0.3 resulted in slower convergence. A choice of 0.3 
for mutP  was found to work for all test functions (solid: mutP = 0, plus: 

mutP = 0.1, and square: mutP = 0.3). 
 

The mutation probability mutP  has a larger effect on per-
formance for the CACM algorithm than for GAs; this is  
 

 
because better solutions found by mutation are adopted 
while bad solutions are rejected on the average. Thus, the 
CACM algorithm provides a better way of incorporating 
the mutation operator than GA. In the new CACM algo-
rithm, larger values of mutP  ( mutP = 0.3) were needed to 
achieve high convergence rates than are used in GAs. Fig. 2 
shows the average cost over 100 runs of the CACM algo-
rithm with different mutation rates for the sphere test func-
tion in the De Jong suite. 

It was found that convergence as well as the quality of 
the final solution was improved by letting fσ  go to zero 

linearly. Also, a linearly decreasing fσ  was found to yield 

better results than a random or constant fσ  (Fig. 3). The 

following formula was found to yield good results: 
 

  1+−= maxf K/k)k(σ                         (5) 

 
where 
k  - Iteration number 

maxK  - Maximum iterations allowed. 
 

Thus, the parameters fσ  and mσ  control the amount of 
movement towards best neighboring solution and mutation, 
respectively. For functions with many local minima, a lar-
ger mσ  is needed to avoid getting trapped in local minima.  
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Fig. 3. The effects of various choices of fσ on convergence of the CACM 
algorithm for the sphere test function. The average cost was taken over 
100 independent runs. A linearly decreasing fσ results in faster conver-
gence and better quality of the final solution than a constant or ran-
dom fσ . (solid: fσ  = 0.1,  min =  2.2819e-004;  plus: fσ =  0.5u,  min  =  
8.3487e-004;  square: fσ  =    -k/50+1,  min = 7.3796e-005). 

 
The nature of the cost function is not usually known be-
forehand, so a random selection has to be made for mσ . 
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This allows the amount of mutation to vary from iteration 
to iteration. The following selection of mσ  gave good re-
sults for all test functions. 
 

NU(k)m 32 +=σ                            (6) 
 
Where 
 
k   -  Iteration number 
U -  Uniform random variable between 0 and 1 
N -  Normal random variable with mean 0 and variance 1. 

IV. PERFORMANCE OF CACM ALGORITHM ON 
BENCHMARK COST FUNCTIONS 

The CACM algorithm was found to converge in signifi-
cantly less iteration than classical GAs for functions in the 
De Jong test suite. For functions with few local minima 
convergence to 0.1 accuracy was achieved within 10 itera-
tions. Since the CACM algorithm avoids the fundamental 
problem of binary encoding this represents a significant 
reduction in flops. The CACM algorithm avoids the rank-
ing problem inherent in GAs. Thus good solutions are kept 
in the population without sacrificing diversity due to use of 
local neighborhoods alone instead of global information 
sharing. The performance of the new CACM algorithm for 
some benchmark test functions found in the De Jong suite 
is shown in Fig. 4-6. The test functions have a global 
minimum of zero. Fig. 4 shows the performance of the 
CACM algorithm on a test function with flat regions 
(Rosenbrock’s valley test function).  
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Fig. 4.  Performance of CACM algorithm on a test function with a flat 
region surrounding the global minimum. The average cost was taken over 
100 independent runs. Flat regions pose a challenge to optimization algo-
rithms; since the gradient is zero, there are no good search directions. 
Consequently, a random walk is the best approach to search flat regions. 
 

Flat regions are difficult to search since there are no 
good search directions like the gradient. However, the 

CACM algorithm is able to find the global minimum em-
bedded in a flat region by performing a random walk when 
it encounters flat regions. The performance of the CACM 
algorithm on test functions with large numbers of local 
minima is shown in Fig. 5 and 6.  

 
 
Fig. 5.  Performance of CACM algorithm on a function with a large num-
ber of uniformly distributed local minima (Rastrigin's function). Average 
cost is not used because of the large number of iterations required to find 
the minimum.  
 

0 5 10 15 20 25 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ITERATION

A
V

E
R

A
G

E
  C

O
S

T

 
Fig. 6.  Performance of the CACM algorithm on a test function with large 
numbers of local minima (Griewangk's function). The average cost was 
taken over 100 independent runs. 
 

The best individuals in the population are close to various 
local minima. The global minimum is found by a stochastic 
search around the local minima. Local minima pose serious 
challenges to GAs since individuals near local minima have 
higher fitness and have a higher tendency to get repro-
duced. Thus the population might converge to a local 
minimum leading to stagnation of the evolutionary process. 
For the CACM algorithm, since each individual is updated 
based on neighboring individuals alone, information about 
the best solution found so far takes some time before it 
reaches all individuals. Since during this delay random 
changes can occur due to movement towards the best 
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neighbor, mutation, and change in the best individual itself, 
traps due to local minima are avoided.  

V. COMPARISON OF GA AND ACM ALGORITHM 

Figure 7 shows the performance of the ACM algorithm 
and a classical GA. A four dimensional Rastrigin function 
was used as the test function since it has multiple local min-
ima. The GA used 40 bits accuracy per variable and a sin-
gle population.  It is seen that the CACM algorithm con-
verges faster on the average than the classical GA. 

For the CACM algorithm, since each individual is up-
dated based on neighboring individuals alone, information 
about the best solution found so far takes some time before 
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Fig. 7. Performance of GA (upper) and CACM algorithm (lower) for a test 
function with large numbers of local minima (Rastrigin function). The GA 
used 40 bits per variable. The average cost was taken over 50 independent 
runs. 
 
it reaches all individuals. During this delay random changes 
occur in the population due to movement towards the best 
neighbor, mutation, and change in the best individual itself.  
This phenomenon helps avoid premature convergence and 
traps due to local minima. Also, use of local neighborhoods 
alone without use of global neighborhoods preserves the 
diversity of the population; global competition among indi-
viduals might result in the loss of less fit individuals result-
ing in loss of diversity. When using GAs, problems due to 
local minima can be alleviated by using multiple popula-
tions and sharing individuals periodically [10]. However, 
for the CACM algorithm this is achieved with less compu-
tation by updating each individual based only on its 
neighbors. Thus the more complex multipopulation ap-
proach and associated information sharing problems are 
avoided. 

VI. CONCLUSION 
In this paper a new computationally inexpensive alterna-

tive to GAs referred to as the CACM algorithm has been 
proposed. The CACM algorithm uses new operators that 

act directly on real vectors and generalize the classical op-
erators in a geometrically intuitive way. This approach is 
more natural and avoids the disadvantages of binary encod-
ing and decoding. In GAs two good solutions (parent solu-
tions) are recombined to produce two offsprings that are 
fitter on the average. In the CACM algorithm, when an 
individual is updated it has a chance to learn from all previ-
ously updated individuals; this positive feedback effect 
leads to higher convergence rates compared to GAs. The 
effect of various parameters on the performance of the 
CACM algorithm was studied. Also, the CACM algorithm 
does not require global information sharing thus avoiding 
computational bottlenecks and facilitating parallel imple-
mentations. The new operators introduced in this paper can 
also be used in GAs to avoid binary coding. 
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