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Abstract— The problem of estimating regions of asymptotic
stability for nonlinear dynamic systems is considered as an
optimization problem. Genetic algorithms are then proposed
to solve the resulting optimization problems. Three test systems
are used to evaluate the performance of the proposed genetic
algorithms. The test systems are 6th, 8th, and 17th order
nonlinear power electronics systems. The performance of the
genetic algorithms are also compared with that of the classical
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the
simplex method of Nelder and Mead. Time domain simulations
of the test systems are performed to validate the results of the
optimization algorithms. Issues involved with the successful
implementation of genetic algorithms to estimate regions of
attraction are discussed. It is observed that genetic algorithms
outperform the classical optimization algorithms in estimating
regions of asymptotic stability.

Index Terms— Genetic algorithms, Stability, Lyapunov
methods, Optimization methods, Power electronics systems,
quasi-Newton optimization method, Nelder-Mead simplex al-
gorithm.

I. INTRODUCTION

An asymptotically stable equilibrium point has the prop-
erty that the state of the system will return to the equilibrium
point following small disturbances. It is then natural to
ask how far the state can be perturbed and still return
to the equilibrium point. This question drives the search
for regions of asymptotic stability. A region of asymptotic
stability (RAS) is a region for which all system trajecto-
ries starting within the region asymptotically return to the
equilibrium point.

Lyapunov theory gives conditions that ensure that a
region bounded by a Lyapunov function contour is an
RAS. The problem of finding the largest Lyapunov function
contour that bounds an RAS is considered in this paper.
In [1], the search for such an RAS is formulated as an
optimization problem. Conventional optimization methods
are not suitable for such problems because good initial esti-
mates are not readily available, objective function gradients
can be difficult or impossible to calculate, and computation
times for large-scale systems become prohibitive.
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In this paper, genetic algorithm (GA) based techniques
are used to estimate RASs for 6th, 8th, and 17th order
power electronics system models. In addition to this, the
effectiveness of alternative optimization approaches to esti-
mating RASs are compared to the GA approach. Because
convergence to the global optimum is not guaranteed, the
result of the optimization procedure yields only an upper
bound on the Lyapunov contour that bounds an RAS. It
is, therefore, prudent to validate the RAS estimates. Two
methods are proposed to accomplish this. Positive results
of the validation procedures increase the system analyst’s
confidence in the RAS estimates.

II. BACKGROUND RESULTS FROM STABILITY THEORY

From Lyapunov theory it is known that a region
D={z:V(z) <c} (1

is an RAS if V(x), the time derivative of the Lyapunov
function V(z) : R™ — R along trajectories of the dynamic
system in question, is negative in D \ {0}. The application
of this theory to constrained system models is discussed
next. Then, an optimization approach to finding the largest
Lyapunov function contour value that satisfies the condition
is set forth.

A. Constrained System Models

Typically, system models are only valid in a certain
restricted region of the state space. These types of models
are called constrained system models [2]. The feasible
region, which is the region of model validity, can often be
represented in terms of algebraic constraints of the form

g9(x) <0, )

where g : R” — R™ and < implies that all components
of the vector valued function g(z) are less than zero. The
constraint could be due to a change in structure of the
system beyond the boundaries or natural restrictions on the
operation of a physical system. The case study in Section V
is an example of such a system.

In constrained systems some of the system trajectories
may leave the feasible region at a certain point in time,
then return to the region and asymptotically approach the
equilibrium point. Because it is undesirable for trajectories
of the system to leave the feasible operating region, these
trajectories must be excluded from any RAS estimate.
A restricted region of asymptotic stability (RRAS) can,
therefore, be defined as a connected set of points in state
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space for which a trajectory starting at a point in the set
approaches the equilibrium point asymptotically and does
not leave the feasible operating range. The region defined
in (1) is an RRAS if V(z) < 0 and g(z) < 0 in D\ {0}.

B. Optimization Approach to RAS Estimation

The problem of finding an RAS can be formulated as the
optimization problem

maximize c¢

subject to  V(x) < 0 when V(z) < c. )

However, the above optimization problem is not tractable
by available techniques because the constraint applies to an
entire domain, which in turn implies the existence of an
optimization problem within an optimization problem. In-
deed, the constraint of (3) involves solving an optimization
sub-problem of the form

maximize V(z)

subjectto  V(z) <ec. @)

The optimization problem (3) can be recast in a more
suitable form for numerical computation [1]:

minimize V(x)

subject to  V(x) > 0. )

While optimization problem (3) tries to enlarge the RAS
by searching ‘good’ regions of state space (where V(:c) <
0), optimization problem (5) seeks the smallest Lyapunov
function value in the ‘bad’ regions of state space (where
V(:C) > 0). The solution to (5) gives an upper bound on the
values of V() that yield valid RASs. Note that the origin,
x = 0, is the global optimizer of this problem since V' (z) >
0 when x # 0 and V(0) = 0. This solution corresponds to
a trivial RAS, but a non-trivial RAS is guaranteed since
it was assumed the equilibrium point was asymptotically
stable. It is, therefore, necessary to prohibit the optimization
procedure from converging to the origin.

In the case of constrained systems, it is possible that a
subset of the RAS predicted above includes points that do
not lie in the feasible operating region. To remedy this situ-
ation, additional constraints are placed on the optimization
problem. The equivalent of (3) for constrained systems is

maximize c¢
subject to  V(z) < 0and g(x) < 0 when V(z) < c.
(6)
As before, this optimization problem enforces a restriction
on an entire region. A modification of (5) can alleviate this
problem,

minimize V(x)
subjectto V(z) > 0orgi(z) > 0or... or gm(x) >0
(N
As with (3) and (5), optimization problems (6) and (7) imply
searching through ‘good’ and ‘bad’ space, respectively.

III. GENETIC ALGORITHM APPROACH TO STABILITY
REGION ESTIMATES

The GA used for this problem is the real-encoded GA
described in [3], [4]. This GA has also been used in [5]-
[8]. What remains is to specify the fitness function.

GAs are formulated to maximize a unconstrained fitness
function. An appropriate fitness function that translates
the optimization problems (5) and (7) into unconstrained
maximization problems is given by

frie(w) = =V(x) = p(x), ®

where p(z) is an additive penalty function.

The additive penalty function p(x) is used to enforce the
constraints of optimization problems (5) and (7). It takes
the value zero when the constraints are met and a large
positive number when the constraints are not met. For an
unconstrained system,

_Jo itV >0
p(:v)—{M otherwise ©)

and for a constrained system,

0 ifz#0orV(z)>0org(z)>0or...

p(z) = or g (z) > 0

M  otherwise,

(10)
where M is a large positive number, which should be
chosen larger than values of V(x) in the search region.
Note that since the equilibrium point was assumed stable,
V(:C) is negative definite in some deleted neighborhood of
the equilibrium point. Thus, p(z) takes the value M at all
points in the deleted neighborhood of the origin, and this
fitness function prevents convergence to the origin.

Note that the best solution found by the GA comes from
the ‘bad’ region of state space. The value of the fitness
function evaluated at this solution is an upper bound of
Lyapunov function values for which regions of the form
(1) are (R)RASs. To determine a (R)RAS, the value must
be scaled by, for example, 99%. Methods for evaluating
whether a particular Lyapunov function value corresponds
to a (R)RAS are given in the next section. If a negative
result occurs with either of the verification procedures, then
the value returned by the GA must be scaled down further
(for instance, 98% of the original value) until a negative
result does not occur. An alternate procedure for scaling the
Lyapunov function contour so that it contains a (R)RAS is
set forth in [4].

IV. SECONDARY CONFIDENCE CHECKS

As stated above, optimization problems (5) and (7) search
through ‘bad’ regions of state space in an attempt to mini-
mize the Lyapunov function. Because the solution found in
this manner comes from the ‘bad’ region, it is prudent to
scale down the best solution found by the GA and verify
that it corresponds to a valid (R)RAS. Two methods are
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proposed to check this. The first is a GA that checks the
constraints in (3) and (6). The second approach uses time-
domain simulations.

A. Genetic Algorithm Confidence Check

For unconstrained systems the GA verification is straight-
forward. It can be accomplished by solving the optimization
problem,

maximize V()

subjectto V(x) =¢, (i

where c is the Lyapunov function value under consideration.
The genetic algorithm described above can be used to
maximize the fitness function V(:z:) If the fitness function
value of the best solution found is non-negative, then the
region corresponding to the Lyapunov function value c is
not a valid RAS. The constraint V' (x) = ¢ can be forced
by scaling each individual in the population using

2@ = \/e/e; y?, (12)

where y(*) is an individual in the GA population, ¢ is the
Lyapunov function contour value under consideration, c; is
the Lyapunov function value at (9, and 2 is the point on
the desired contour where the fitness function is evaluated.

Similar verification GAs can be formulated for con-
strained systems. In this case, m + 1 optimizations must
be carried out, where m is the number of constraints
bounding the feasible region. In addition to optimization
problem (11), optimization problems maximizing the fitness
functions g1 (z), ..., gm(x) under the constraint V(x) = ¢
must be solved. The predicted region is not an RAS if any
of the optimization procedures yields a non-negative fitness
function value for the best individual identified by the GA.

B. Confidence Check Using Time Domain Simulation

When it is feasible to run a large number of time-
domain simulations of the system under investigation, it
is prudent to validate the estimated RAS by this method
also. If a trajectory is found that begins inside the proposed
RAS and does not approach the equilibrium point, then
the region by definition is not a valid RAS. Of course,
not finding a trajectory that invalidates the RAS does not
validate the RAS. A positive result of this process does,
however, increase the confidence of the system analyst in
the predicted RAS. For studies herein, initial conditions
for the simulations were generated randomly with uniform
probability over a predefined area of the state space.

V. TEST SYSTEMS

The systems used to evaluate the performance of the
proposed procedure are subsystems of the Naval Combat
Survivability DC Distribution Testbed [9]. The subsystems
are composed of three components: a controlled rectifier
power supply (depicted in Fig. 1), a dc/dc converter module
(depicted in Fig. 2), and an inverter module feeding a
resistive load (depicted in Fig. 3). The power supply is
designed to supply 500 V dc from a 560 V line-to-line
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Fig. 1. Rectifier power supply.
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Fig. 2. dc/dc converter module.

rms three-phase ac input. The dc/dc converter module steps
a 500 V input down to 420 V and provides isolation to the
loads it feeds from the input. The inverter module provides
three-phase ac power from its dc input, and is designed to
maintain a constant power at its output. For details on the
controls of these components, see [9], [10]. In addition these
systems are shut down in certain circumstances to safeguard
system components. In particular, constraints are placed
on bus voltages to prevent them from reaching dangerous
levels. This gives rise to a constrained system model. The
three systems of interest are:

1) Power supply feeding the inverter module load
(6 states)

2) Power supply feeding the inverter module load with
an inductive line impedance represented (8 states)

3) Power supply feeding the inverter load through the
dc/dc converter module (17 states)

The switching of semiconductor devices in power elec-
tronics based systems complicates the stability analysis of
these systems, because system quantities are not necessarily
constant in the steady state. To enable the use of well-known
stability theory of fixed equilibrium points, average value
models of these time varying systems are often used [11]—
[15].

To illustrate the models of the test systems, the six-order
state-space model of the power supply feeding the inverter
module load is set forth. First, it should be noted that if
controlled appropriately, the inverter module can provide
constant power at its output. Therefore, on an average value
basis, it behaves as a constant power load. Also, the average
value of the voltage out of the rectifier is a function of the
firing angle «. Fig. 4 depicts an equivalent circuit for this
system.

The first stage of the controller filters measurements of
the inductor current, ¢y, and bus voltage, v;. The filtered
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Fig. 4. Average value model of sixth order system.

’, and their derivatives are

13)

values are denoted with a *
d’ZL/dt = (iL — ’ZL)/TiL

and .
’01 = (’Ul — ?A)l)/Tvl (14)

The bus voltage can be calculated in terms of inductor
current and capacitor voltage, vc, as

v1 = (Rair, +vo 4+ /(Rair +ve)? — 4PRy)/2,

where Ry is the effective series resistance of the capacitor
and P is the constant power out of the inverter module.

The next stage of the controller generates the bus voltage
command, vj. The derivative of this quantity is

- % * ISC —7?[/ *
vy = bnd (Vl bnd (m, O, 1) — Uy,

i)imina i)imax)a (15)
where
y vy
bnd(z,y,2) =2 y<z<z

z z<uw,
Vi* is the nominal output voltage command, I, is the

maximum allowable current out of the power supply, I;p, is
the threshold current above which the bus voltage command

will start to be decreased, and 07 ,,,;,, and 07 ., are the
minimum and maximum allowable slew rates for the bus
voltage command.

The commanded rectifier output voltage is

*

* * ~ o
v, = U + k'u (1)1 - Ul) + Vierror — kipZL;

where £, and k;;, are control parameters and Vierror 1S @
state variable whose derivative is

’[)ierror = kv (’UT - {)1)/7—1}- (16)

This component of the controller implements a proportional
plus integral voltage control and a proportional current feed-
back control. The thyristor firing angle is then calculated as

a = arccos(bnd (v} /V;, —0.9,1)),

where V,. is the average voltage out of rectifier if there is
no phase delay. The average voltage out of the rectifier is

vs = V. cosa — 2vy,

where vg4 is the voltage drop across a conducting thyristor.
The derivatives of the last two state variables are

d’iL/dt:(’Us—RliL—’Ul)/Ll (17)

and
o = (v1 —ve)/(R2Ch),

where R is the series resistance of the dc link inductor, L4
is the dc link inductance, and (7 is the effective capacitance
of the power supply’s output capacitance and the inverter
module’s input capacitance in parallel.

The state-space models of the remaining test systems can
be found in [4].

(18)

VI. RESULTS OF STABILITY ANALYSIS

The goals of this work are twofold: investigate the
use of genetic algorithms in the estimation of regions of
asymptotic stability and compare their effectiveness with
other methods. To this end the region of asymptotic stability
estimation method described above was applied to all three
systems. Also, two other optimization methods were inves-
tigated. The first is a quasi-Newton method using the BFGS
(Broyden, Fletcher, Goldfarb, and Shanno) [16] Hessian
matrix approximation update; the second is the Nelder-
Mead simplex method [17], [18]. Both of these methods
are available in the MATLAB Optimization Toolbox [19].
Finally, the confidence checks proposed above are applied
to provide an indication of the accuracy of the approach.

A. Optimization Method Comparison

The optimal population size and number of generations
to use in a genetic algorithm is unclear a priori. A number
of settings of these parameters was tested for each of the
systems. For each setting the GA was run NN times, where
N = 200 for the first two test systems and N = 100 for
the third test system. The average computation time per
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run for each setting was also recorded. The two alterna-
tive optimization procedures both require initial conditions;
however, good initial conditions are not known. The initial
conditions were generated randomly with uniform probabil-
ity over the same feasible region as was used in the GA.
To make the comparison meaningful, it is important to use
equal computation time. The two alternative optimization
procedures were also run N times corresponding to each
population size/generations setting of the GA. Random
initial conditions were generated and the procedures run
starting at those conditions. Then, this would repeat until
the appropriate amount of computation time had elapsed.

System 1 Results: Fig. 5 depicts the results of the opti-
mization procedures. The data in the legend in Fig. 5(a) is in
the form: run time; population size; number of generations.
The optimization procedures were run 200 times, that is,
N = 200, for each setting of population size and number
of generations. Then, the results of the 200 runs were
sorted in ascending order and plotted. The vertical axis of
these plots is the best (smallest) Lyapunov function value
found by the optimization procedures. It is desirable for the
data series to be lower on the plot and remain low over
all of the 200 runs; however, since all of the procedures
have a random nature, they will not always converge to
the same solution. For this system, all methods found the
same minimum; however, the quasi-Newton and Nelder-
Mead methods found the minimum more consistently than
the GA.

System 2 Results: Fig. 6 depicts the results of the opti-
mization procedures. As with System 1, the optimization
procedures were run 200 times (N = 200) for each setting
of population size and number of generations. In this
case, the GA has about the same performance for lower
computation times; however, at higher computation times,
the GA is able to find the minimum more frequently. As
above, all of the methods find roughly the same minimum
value.

System 3 Results: Fig. 7 depicts the results of the op-
timization procedures. The optimization procedures were
run 100 times (N = 100) for each setting of population
size and number of generations. For this system, the quasi-
Newton and Nelder-Mead methods could not find the same
minimum value as the GA. The minimum values found by
the GA, quasi-Newton method and Nelder-Mead method are
845, 1507, and 1143, respectively. For higher computation
times, the GA is able to find the minimum value roughly
30% of the time; It is apparent, however, that this problem is
getting harder to solve as the system order increases because
a significant portion of optimization runs yielded results that
were not close to the minimum value.

B. Confidence Check Results

As stated above, the solutions obtained by the optimiza-
tion procedures are upper bounds. A genetic algorithm
was used to solve (11) for all three systems starting at
99% of the minimum Lyapunov function values obtained
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Fig. 5. System 1 optimization technique comparison. (a) Genetic
algorithm. (b) Nelder-Mead method. (c) quasi-Newton method

TABLE I
SIMULATION CONFIDENCE CHECK RESULTS

Simulation RAS  Optimization RAS ~ Number of
contour value contour value simulations

System 1 1050.08 808.24 950,000
System 2 1533.1 1107.9 1,437,414
System 3 856.11 836.33 3,315,341

by the optimization procedures. The confidence check was
passed for all three systems at 99% of values obtained. This
indicates that the genetic algorithm was able to find the
solution to (7) accurately.

The time-domain simulation confidence check was also
run for the three systems. The results of the procedure are
summarized in Table I. In this table, the minimum value
found by the optimization procedure is compared to the
minimum Lyapunov function value corresponding to an
unstable simulation trajectory. In all cases, no unstable tra-
jectories were found that would violate the RAS prediction
yielded by the optimization procedure.
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