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Abstract— An Unmanned Aerial Vehicle (UAV) formation
in a leader-follower structure, where the UAVs are flying a
common trajectory determined by a route planner hosted on
the leader is considered. The path description is compressed
by polynomial functions with respect to the flight envelope
constraints and transmitted to the followers, where a Model
Predictive Control (MPC) outer loop controller specifies the
command signals for the H∞ locally controlled dynamics with
respect to the nonlinear constraints of the aircraft dynamics.
Real time feasibility issues associated with the design are
discussed.

I. INTRODUCTION

The problem of controlling multiple vehicle formations
has received considerable attention recently [1], [2], [3],
[4], [5]. The development of increasely intelligent Un-
manned Aerial Vehicles render more precise tasks possible,
e.g. close formation keeping or flying cooperatively in
unfamiliar environments. The need to estimate neighbors
behavior leads to the use of prediction based methods, in
which the future states, positions of the vehicles can be
calculated based on the actual status of them. The Model
Predictive Control [6] approach is also useful in coping
with constrained and nonlinear dynamics. But it has some
drawbacks like non-negligible computational time and the
property that the system can only be handled as a low
frequency sampling time discrete system in which the in-
formation flow is limited. These properties were not critical
in applications on chemical processes but in aerospace they
must be handled well. The present work focuses on the
feasibility issues of a trajectory tracking problem solved by
an MPC outer loop controller, with respect to computational
time and various types of simplified dynamics. In contrast
with others [1], [7] the algorithm addresses the real-time
feasibility of the computations, copes with boundary condi-
tions and provides continuous, smooth transitions between
calculations of different horizons. In cooperative tasks one
of the main limitations is the communication delay [8],
in leader-follower structures the leader needs to transfer
its determined route to the followers, but a simple time
stamped waypoint data flow at every sampling time may
use irresponsible high amount of bandwidth. To shorten
the amount of transmitted data the position coordinates
can be approximated by polynomial functions, so with
preprocessing before transmission the amount of data can
be effectively reduced.

II. PROBLEM FORMULATION

The focus of this work is on a leader-follower structure
aircraft formation where every aircraft’s role is defined in
advance(Fig. 1). Given a low bandwidth communication

Figure 1: The structure of the complete control loop

channel between every leader follower pair of UAVs, we
want each of them to follow the other one’s path simul-
taneously with a constant position offset between them,
while respecting the aircraft dynamic response. The com-
munication algorithm must compress the position data being
transmitted, to ensure stealth requirements with low radio
emission, independently from the types of aircraft. The ap-
proach discussed in this paper uses splines to parameterize
the designated flight trajectory determined by the leader’s
route planner. All followers can add their offsets to the
spline parameterized trajectory received from their leader.
With this information they calculate their own control inputs
corrected by the estimate of the actual wind. A nonlinear
Model Predictive Control approach is employed to handle
the flight envelope constraints of the UAVs. Both the com-
munication and control algorithms make use of optimiza-
tion based on Sequential Quadratic Programming, which
can handle constrained dynamics and the computational
time depends on the iteration steps defined in advance.
The aircrafts have H∞/µ local multivariable controllers
to stabilize their dynamics [9], [10] and achieve desired
tracking properties.

This study focuses on horizontal movements, but the ap-
proach can be easily generalized to three dimensional flight.
After designing a suitable inner loop controller (Section
III) the communication algorithm is specified (Section IV)
and last the followers outer loop controller which calculates
the required control reference signals is specified (Section
V). To demonstrate the properties of the design method,
examples are presented in Section VI.

III. INNER LOOP CONTROL

The purpose of this paper is to develop leader-follower
tracking algorithm which are applicable to current aircrafts.
This requires realistic aircraft models and inner-loop con-
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trollers be used. Simulation of the leader-follower formation
requires precise tracking of trajectory commands, hence an
H∞ [11], [12] feedback controller is designed to the F-16
aircraft, what can be treated as an UAV [13]. For simplicity
the tracking problem is formulated in horizontal plane,
hence the aircraft needs to follow velocity (v) and flight
course angle (χ) commands. The position of the aircraft is
integrated from the initial coordinates using the kinematics
and wind, based on the knowledge of speed and heading
angle at the starting point.

ẋ(t) = v(t) cos(χ(t)) + WE(t) (1)

ẏ(t) = v(t) sin(χ(t)) + WN (t) (2)

Assuming linearized dynamics, velocity tracking can be
easily achieved by slight modifications in the longitudinal
dynamics state space equations. Unfortunately the usual
airplane mathematical models are not suitable for the χ(t)
tracking purpose. To achieve desired (χ) command tracking
properties, the lateral dynamics state space is extended
with χ̇ which can be expressed using ΨNED and β [14],
based on the property that in horizontal flight the flight
course angle (χ) and the projection of the yaw angle into
the horizontal plane (ΨNED) differs only by the angle of
sideslip (β) [15]. That separation enables the design of an
output feedback controller for velocity tracking based on
the linearized longitudinal dynamics and design another
controller for flight course angle tracking based on the
modified linearized lateral dynamics of the airplane.

For the purpose of Model Predictive Control, simulation
of the future behavior of the system is necessary. Simplified
transfer functions of the vcmd → vac and χcmd → χac dy-
namics are determined, based on the original high order H∞

controlled mathematical description of the aircraft. First and
third order transfer functions are identified experimentally
from the frequency domain analysis of the original high
order v and χ dynamics for comparison.

IV. TRAJECTORY GENERATION

The leader airplane has a route planner which specifies
the points of the intended flight path (xref (t); yref (t))
based on geography and the tasks of the formation [7].
The amount of data required depends on the sampling time
of the system and the bandwidth required to transfer from
leader to followers. So an alternate method is used. One
obvious approach is to compress the data flow using splines
[1], this allows the route description to be the continuous
function of velocity and direction angle and splines are very
effectively characterize these kind of functions [16] at the
price of increased computational time. This drawback is
unavoidable when the coefficients of the spline functions
are computed.

In our case the acceleration (v̇(t)) and flight course angle
rate (χ̇(t)) data are parameterized by spline functions which
differs slightly from the method used by Papageorgiou [1]
where the parameterized functions are v(t) and χ̇(t). No
integration is needed to obtain velocity in that approach
though it is less effective in respect of the constraint
handling. The approach is also more computational con-
formable to handle constraints within the optimization than
parameterizing Eastern (x) and Northern (y) directional data.
This is discussed more detailed later. The form of our spline
functions are:

v̇(t) ∈
∑

i

αiφi(t); χ̇(t) ∈
∑

i

βiφi(t) (3)
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Figure 2: Required data flow between leader and follower
(u=10 sec; s=0.1 sec)

αi and βi are the coefficients of the splines and φi(t) is
the nth order B-spline basis function. One key point of
the design is to be familiar with the timing of different
data flow transfer and the usage of the received items, to
take care about the real-time feasibility. If we, for instance,
assume h sec sampling time data from the route planner and
u sec update frequency (u � h) in data transfer than for
simultaneous flight the non negligible computational time
demands the data structure seen on Fig. 2.

The n second long data intervals are parameterized by
6th order B-splines with n+5 coefficients and n+11 knot
points with 1 sec equivalent spacing in which the first 5
knot points represent the past so the first 5 coefficients are
fixed, obtained from the previous horizon to provide 5th

degree fitting between updates and provide the conformance
with constraints between horizons, the other n coefficients
are variables. The n second long data interval is a multiple
of the u sec update frequency. The MPC trajectory length
needs to be at least 2 times longer than the update rate.
The preferred length of the flight trajectory though is 3
times the update rate. This ensures the first 20 sec trajectory
is accurate and doesn’t penalize the decreasing accuracy
associated with the 20-30 sec time interval. Another con-
sideration in connection with the data timing is the effect
of computational time. While the follower develops its
command signals for the next horizon the leader must
compress the trajectory one data interval ahead to be able
to transmit that before it will be needed. The optimization
called at each refresh has the following form:

minαi;βi

∫ t0+tH

t0

∥∥∥∥xsp(t) − xdamp(t)
ysp(t) − ydamp(t)

∥∥∥∥
2

2

+

+c5v̇
2
sp(t) + c6χ̈

2
sp(t)dt (4)

The coefficients of the splines are obtained by optimizing
this function. It can be seen that the optimization wants
to keep the spline as close to the reference as possible.
An additional component penalizes the actuator usage with
c5 and c6 weights. The routine also pays attention to the
constraints from the beginning (t0) to the end (t0 + tH ) of
the horizon. The following variables are constrained in the
optimization:

c1[m/s] ≤ v(t) ≤ c2[m/s]; a(t) |≤ c3[m/s2]
|χ̇(t)| ≤ c4[1/s]

The xdamp(t) and ydamp(t) functions are part of the
modified reference trajectory. Since the reference trajectory
from the route planner and its description by polynomial
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functions may differ at every starting point due to the
continuity of the splines, an exponential damping function
is used to reduce the difference gradually to avoid violating
flight envelope margins. It is also suitable to handle changes
in the offset between the aircrafts,because the damping
function can decrease the effect of switches in desired
distance between aircrafts.

xdamp(t) = xref (t) + (xsp(0) − xref (0)) · e−kxt (5)

In the following I will omit the description of the corre-
sponding y coordinates hence they can be calculated the
same way as x terms with respect to the different wind
direction terms. The initial values for spline coefficients
are calculated from the trajectory received from the route
planner, the time stamped values of the knot points are
equivalent with the v̇ref (t) and χ̇ref (t) values at the
same time. This estimation is based on the correspondence
between the coefficients and the actual values of the splines
at given knot points assuming relatively smooth functions.

The problem is solved with MATLAB’s fmincon Se-
quential Quadratic Programming based routine with fixed
iteration steps. It handles the nonlinear constraints of the
problem and because the starting point is accurately se-
lected it converges to the reference quite rapidly. The main
problem arises from the non-convexity of the task, it can
be very sensitive to the minimum and maximum changes
in variables for finite difference gradients especially when
the constraints are derivatives of the variables. To avoid
using constraints as variable derivatives, we parameterized
v̇(t) and χ̇(t). This requires time consuming integrations,
in spite of this the calculations are computational tractable
and faster in practice than working with v(t) and χ(t).

• In the case of parameterizing velocity, the acceleration
is calculated based on that parameterization. Since
the constraints on velocity don’t limit the values of
acceleration significantly, the velocity change within
the constraints on speed can be very high between
two sampling points. Hence the bounds can be easily
violated. This leads to the algorithm not converging
directly to the optimum.

• With an acceleration parametrization it is harder to
violate the velocity margins. This is due to it being
more difficult to reach the maximum velocity with
several time step. Hence the probability of having un-
feasible solutions with call to the optimization function
is lower.

V. MPC CONTROL OF THE FOLLOWERS

The follower receives the route description when it is
actually flying its previous horizon. Hence first an esti-
mation is needed to determine the position of the aircraft
at the beginning of the next horizon (Fig. 3). It uses the
previously calculated command signals corrected with an
estimate of the actual wind based on a simplified model of
the aircraft. The optimization of the command signals for
the next horizon starts from that point. In our problem, the
followers calculate their command signals every u sec for
a 2u sec long horizon based on measured and previously
determined data like the position, velocity and direction of
the aircraft and the actual horizon’s command signal flow
(Fig. 4). To handle the effect of the wind, the synthesized
trajectory compensates for its effects. (Fig. 5).

Similar to the trajectory generation, the command signals
are also compressed in spline form to connect the relatively
low degree of freedom spline knot points with the required
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Figure 3: Simulated position of the UAV at the beginning
of the next horizon (u=10 sec)
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Figure 4: The reference and the intended path ignoring wind
(u=10 sec)

sampling time for the controller. There are two alternate
ways to parameterize the command signals:

• Describe the coordinates of the aircraft (x(t); y(t)) via
polynomial functions. This method uses dynamic in-
version [17] to calculate the required command signals.
It is easy to see that in the optimization routine we
cannot estimate the bounds of the coordinates. Hence
it is hard to find an initial estimate to the coordinates
and the problem cannot be well defined. Not to men-
tion that the optimization function contains the 2nd

derivative of the command signals which means 4th

derivative of the coordinates.
• Describing v̇cmd(t) and χ̇cmd(t) with splines and then

performing the required optimization needs more com-
putational time each iteration step. Though the problem
is better formulated and less steps are necessary to
obtain the required precision.

In our UAV formation problem, the second method is
used. The connection between different horizons is pro-
vided by the usage of integration, so the initial value of
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Figure 5: The reference and the intended path including
wind (u=10 sec)
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a given horizon (vcmd(0) and χcmd(0)) is obtained from
the previous command signal’s value at that time. That
leads to a continuous command signal flow, which secure
the constraint fulfillment in points between horizons. The
horizons are 2 times longer than the refreshing time and
all of the coefficients connected to the equivalently divided
spline knot points are optimized. The modification in the
spline coefficients has an indirect effect on the command
signals because an additional integration is needed to
obtain vcmd(t) and χcmd(t). The starting point for the
simulation of the aircraft’s movement with MPC controller
(xac,approx(n) and yac,approx(n)) is based on the previ-
ously calculated simulation results. Namely applying the
last command signal flow, starting from the last measured
position. We formulate the optimization function similar to
the function described above:

min
αMP C ;βMP C

∫ tH,MP C

t0

∥∥∥∥xd(t) − xmodel(t)
yd(t) − ymodel(t)

∥∥∥∥
2

2

+c7v̇
2
cmd(t) + c8χ̈

2
cmd(t) dt (6)

Where the xd(t), yd(t) damping function is calculated from
the received trajectory, and xmodel(t), ymodel(t) is the
simulated behavior of the simplified aircraft model.

A. Past part of the route
First an approximation is needed to estimate the aircraft’s

position at the beginning of the next horizon (Fig. 3).

vac,approx(t) = Gv(vcmd(t)) t = −n..0 (7)
χac,approx(t) = Gχ(χcmd(t)) t = −n..0 (8)

The effect of wind based on the measurements is included:

ẋac,approx(t) = vac,approx(t) ·

· cos (χac,approx(t)) + ŴE(−n) (9)

The estimated position of the aircraft is calculated at the
point from where the optimization starts:

xac,approx(t) = xac(−n) +

+

∫ 0

−n

ẋac,approx(t)dt (10)

B. Required route
Since we want to design a route which is affected by

wind, we need to correct the desired path using wind data
(Fig. 5):

ẋw.c.ref (t) = ẋsp(t) − ŴE(−n) (11)

An exponential damping function is used to gradually
decrease the difference between the actual position of the
aircraft and the demanded trajectory. In addition, a constant
offset between the leader and the follower is added:

xd(t) = xsp(0) +

∫ 2n

0

ẋw.c.ref (t)dt +

+(xac,approx(0) − xw.c.ref (0)) · e−kxt + xo

(12)

C. Modelled route of the aircraft
The heart of the MPC algorithm is the part where

we design a suitable control signal flow with which the
modelled aircraft flies as close to the required path as
possible. This part starts from the previously calculated
xac.approx(0); yac.approx(0) point. The modelled position

of the aircraft is calculated by simulating the aircrafts
dynamics Gv and Gχ with the input signal function re-
ceived from the objects of optimization v̇cmd(αMPC) and
χ̇cmd(βMPC)) after an integration. The starting point of
the integration (vcmd(0);χcmd(0)) is equal to the previous
horizon’s value at t = 10s:

vmodel = Gv(vcmd(t));χmodel = Gχ(χcmd(t)) (13)

Then we can obtain the position of the model from previ-
ously calculated data:

xmodel(t) = xac.approx(0) +

+

∫ t0+2n

t0

vmodel(t) cos(χcmd(t))dt (14)

The following values must be constrained during flight.
The optimization algorithm include these as nonlinear con-
straints:

max |aac,long| ≤ c3; max |aac,lat| ≤ c4

c5 ≤ |vac| ≤ c6; max |χ̇ac| ≤ c7

The initial values of the acmd(t) and χ̇cmd(t) spline co-
efficients are obtained from the received spline coefficients
(αi(t);βi(t)) without modifications, because in optimal case
(neglecting wind) the coefficients of the route describing
spline coefficients and the spline coefficient parameterizing
the command signal are close and the iteration does not
need more precision to achieve convergence. The required
trajectory is corrected to comply with the optimization
function. First, the starting point of the horizons is computed
based on the last measured position and the actually imple-
mented command signals with the simplified aircraft model.
Second, the starting point of the received trajectory and
the actual aircraft position are different so an exponential
damping function is used to smooth out the error and
drive the aircraft. Third, the algorithm deals with wind
so the required trajectory and the trajectory to which the
optimization focuses must differ by the effect of wind. The
wind is estimated at the beginning of each optimization
horizon, what requires inertial/air pressure sensors and GPS
data [8].

ŴE = ẋac−vac cos(χac); ŴN = ẏac−vac sin(χac) (15)

VI. EXAMPLES

Two routes were simulated on 80sec long intervals with
various order simplified models in the MPC algorithm. All
tests were used fixed (approximately 30) iteration steps
for both the trajectory generation and the MPC control
optimization part. The obtained input was simulated on the
high order H∞ model of the aircraft affected with wind.
The constraints included were:

max |aac,long| = 4.5m/s2; max |aac,lat| = 90m/s2

50m/s ≤ |vac| ≤ 300m/s; max |χ̇ac| ≤ 36◦/s

The first trajectory was the following:

v(t) =

{
150m/s if 0s ≤ t < 30s,
130m/s if 30 ≤ t.

χ̇(t) =

⎧⎪⎪⎨
⎪⎪⎩

0◦/sec if 0s ≤ t < 10s,
-9◦/sec if 10s ≤ t < 20s,

13.5◦/sec if 20s ≤ t < 30s,
-13.5◦/sec if 30s ≤ t < 50s,

9◦/sec if 50 ≤ t.
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Figure 6: The UAV’s path relative to the reference

It was used to verify the performance of the controller and
to compare the different order simplified models used for
MPC control, and to see the effect of the wind on the
performance. To improve the quality of the control method
weighting functions were included into the cost functions
of the optimizations. This enhanced the importance of
the spline functions’ fitting in the optimization near to
the connection points between horizons, causing improved
conjunctions. The modified cost function for trajectory
generation:

∫ t0+3n

t0

∥∥∥∥xsp(t) − xdamp(t)
ysp(t) − ydamp(t)

∥∥∥∥
2

2

(W(t))+c5v̇
2
sp(t)+c6χ̈

2
sp(t)dt

(16)
W(t) = 2.5 · 10−7t3 − 1.5 · 10−4t2 + 2.25 · 10−2t + 1

The modified cost function for MPC control:∫ t0+2n

t0

∥∥∥∥xd(t) − xmodel(t)
yd(t) − ymodel(t)

∥∥∥∥
2

2

W(t) + c7v̇
2
cmd + c8χ̈

2
cmd dt

(17)
W(t) = −0.01t2 + 0.2t + 1

It can be seen in Fig.6 that the maximum error is less than
50 m in case of first order model, ignoring wind. The error
is defined as the distance between the aircraft’s position and
the desired point on the given trajectory at a certain time.

The values of the constrained variables are shown on
Fig.7. These values are always lower than their maximal
value, but in some cases like in the longitudinal acceleration
and in the flight angle rate are far from their maximal
value which affects the performance. This is due to the
penalization of the actuator usage in the cost function with
c7 = 100 and c8 = c7(180/π)2 weights. With lower cost on
the performance can be improved with higher energy invest.
The effect of the high refreshing time (10 s) can be seen
on Fig.8, where the continuity of the constrained behavior
of the system in the transition points is also demonstrated.

Fig.9 shows the effects of a random wind simulated at
speeds: WN = 10.5 ± 0.5m/s;WE = 15.75 ± 0.75m/s .
It can be seen that the first estimate for wind was false.
The first measurements can be built in into the second
horizon where the wind can be estimated precisely. The
tracking properties are similar with the previous case with
a slight difference in the error, because of the uncertainty
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Figure 11: 80 s long tracking problem with corrected 3rd

order model

of the wind. The method was verified on a different tra-
jectory Fig.10 in which two possible obstacle avoidance
manoeuvres were performed in the region of vac = 110 −
150m/s and |χ̇ac| = 0 − 15◦/s. The last figure Fig.11
demonstrates the apparent opposition between higher order
models and performance. It is easy to see that in the first
order simplified dynamics case, where the rank of the state
space is 1, all the states can be measured at the starting
point of the approximating function. But when 3rd order
models are used at least two states of each systems are
uncertain. If vac(t) and χac(t) are measured, the initial
values of the two remaining states of each models can not
be estimated. This leads to less precision. Fig.11 shows the
case when the initial states for modelling the approximated
aircraft position are corrected by the measured velocity and
heading angle, but the other states are coming from the
last uncertain simulation results not from measurements.
Based on the simulation results, the higher order models
have no advantages versus the first order models, unless
the additional states can be predicted precisely. It is also
noticeable that there is just a slight difference between the
corrected and non corrected systems.

VII. CONCLUSION

The control algorithm presented provides a real-time
feasible solution to trajectory tracking with constrained dy-
namical behavior. The present work solved many feasibility
problems of a trajectory tracking problems in connection
with the communication and computational time delay. It
also pays attention to the boundary points and transitions
between horizons. The simulation includes the high order
dynamics of the aircraft not just only the properties of the
control method with simplified low order dynamics. The
simplified aircraft models used in the MPC prediction are
also extracted from the high order aircraft model. The main
issue still is the significant computational capacity needed
by each optimization cycle. An effective way of increasing
precision is to shorten the update time between horizons,
or increase iteration steps but this would require more
performance from the computer processor. Another way is
to develop more efficient Sequential Quadratic Program-
ming methods, one promising product is Tomlab’s Minos
[18] software, which is 10 times faster than MATLAB’s
fmincon routine. The article also presented a way of
trajectory tracking control solution which can be the starting
point for further development.
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