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Abstract— This paper addresses the map building problem
for cooperative search by a team of Uninhabited Air Vehicles
(UAVs) operating in an unknown and uncertain environ-
ment . We present and compare two evidential map-building
approaches based on Bayesian theory and Dempster-Shafer
theory respectively. We illustrate how to utilize the generated
maps into the UAVs path planning procedure so that they
could cooperatively localize targets in the environment. The
simulation results illustrate the effectiveness of the proposed
strategies.

I. INTRODUCTION

Control of networked multi-vehicle systems designed to
perform complex coordinated tasks is currently an important
and challenging field of research [1], [2], [3], [4]. One
of the key questions is how to coordinate the behavior
of multiple vehicles especially in an environment whose
structure is unknown and dynamic. This paper focuses on
the multi-vehicle cooperative search problem where a team
of Uninhabited Air Vehicles (UAVs) seek to find targets in
an unknown and uncertain environment [5], [6], [7], [8],
[15]. Since the environment is unknown, there is limited or
even no a priori information about the environment such
as the distribution of targets and threats. The UAVs need
to search the environment so that they can incrementally
obtain knowledge of the environment and locate targets. The
decision on where to search next is driven by the objective
to increase the chance of locating targets and possibly
avoiding threats. For this purpose, the UAVs require a
good model of the environment and they should be able to
construct and consistently update their environment models
based on the sensory information. The efficiency and quality
of the environment model will consequently affect the UAVs
short-term and long-term planning and decision-making
activities.

Since there always exist various kinds of inaccuracies
and uncertainties in UAVs sensory information about the
real world, sensory information from multiple sensors and
different vehicles needs to be combined to obtain the best
knowledge of the environment. One common method is to
treat sensor observations as evidence and uses evidential
reasoning techniques to fuse the sensor information, ex-
tract and share knowledge. Most available evidential fusion
methods are broadly based on Bayesian Theory, Dempster-
Shafer Theory and Fuzzy theory based techniques [9].
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These methods have already been successfully utilized in
various applications, e.g., the mobile robot exploration and
navigation problems [10], [11], [12], [13], [14].

In this paper, we present two evidential methods to
incrementally build cognitive maps for directing a group
of UAVs to perform cooperative search tasks. Both of the
formulations are suitable for sensor measurements obtained
in a sequential manner and they also allow the information
to be incorporated into a previously formulated finite hori-
zon optimal control problem for the multi-UAV cooperative
path planning problem in the search mission [8]. Some
simulation results and analytical discussions are given to
demonstrate the feasibility of using these map building
methods in the cooperative search problem and to compare
the performance of these two methods.

II. PROBLEM DEFINITION

We consider a team of UAVs engaged in searching for
targets in an environment with the objective to identify as
many targets as possible and minimize the loss or damage of
the UAVs. The environment is a bounded Lx × Ly cellular
area, populated by stationary non-threatening targets and
threats. There are M threats, γi, i = 1, . . . , M , located at
(xγ

i , yγ
i ) and each of them has a priori known attack region

φi over which the threat is capable of destroying the UAVs
with a priori known kill probability pi

kill ∈ [0, 1]. However,
the number and locations of the targets are initially unknown
and we assume that there is at most one target in each cell. A
team of N identical UAVs move synchronously in discrete
time and search the given environment using the equipped
sensors (with imperfect detection accuracy). They can also
communicate with each other for exchanging information.
Here, to simplify the problem, we assume that each UAV
can receive all the information from other UAVs without
any delay. This assumption will be relaxed later.

At time t, UAV i has cell position λi(t) = (xi(t), yi(t)),
and can be in one of eight possible orientations, oi(t): 0
(north), 1 (northeast), 2 (east), 3 (southeast), 4 (south), 5
(southwest), 6 (west), and 7 (northwest). It also has an alive
state flag δi(t) ∈ {0, 1} to indicate whether it has been
destroyed at time t, where δi(t) = 1 means that the UAV i
is alive at time t. Thus the state of UAV i at time t can be
denoted by vi(t) = [λi(t), oi(t), δi(t)].

Each UAV moves from one cell to another neighboring
cell at each time step and it can only change its orien-
tation by at most one step, that is, oi(t + 1) ∈ {oi(t) −
1, oi(t), oi(t) + 1} mod 8. In this way, each UAV has three
possible positions for the next time step, i.e. turn left, turn
right or go straight, designated by {l (left), f (front), r
(right)}. This essentially means that the UAV’s maximum
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Fig. 1. Possible transition choices for agents (UAVs) in all 8 orientations.

turning capability is 45◦. The control decision for UAV
i is its path selection at each time step t, which can be
denoted by ui(t) ∈ {l, f, r}. Figure 1 shows this dynamics
graphically for various orientations.

The threat actions in the environment, denoted by ω(t) =
[ω1(t), ω2(t), . . . , ωM (t)], will stochastically determine the
transition of UAVs’ alive state δi(t) since UAV i will be
destroyed with probability pj

kill in threat j’s attack region,
thus causing δi(t) = 1 change into δi(t) = 0. In summary,
a vehicle’s transition function can be expressed as:

vi(t + 1) = fv(vi(t), ui(t), ω(t)) (1)

In our model, UAVs use the q-steps-ahead path planning
method, that is, each UAV plans its path q steps ahead of
its current location, adding a new move at each time-step.
For simplicity, in this paper we use q = 1, but the extension
to q > 1 is straightforward. Thus, at time-step t, the UAV
i makes its path decision ui(t + 1).

The UAV’s decision on where to search is based on its
model of the environment, which can be utilized to quantify
the values to search certain areas of the environment and
it should be able to be consistently updated based on the
sensory information. In our method, the UAVs use cognitive
maps as their environment model and maintain these maps
in their information base. Cognitive maps are Cartesian
grids containing cells, where each cell is assigned a certain
value representing the probability or vehicles’ belief in
the corresponding region being occupied by a target or
threat. As UAVs search the environment, the cell values
are incrementally updated by incorporating the UAVs’ sen-
sor readings using the sensor fusion algorithm and using
the appropriate sensor model so that the non-ideal sensor
measurements could be accounted for. Here, we present
two evidential methods for UAVs to incrementally build
cognitive maps, which will help UAVs to cooperatively
localize possible targets in the environment.

III. EVIDENTIAL MAP BUILDING METHODS

The basic idea of the evidential map building methods is
to treat sensor observations as evidence and use eviden-
tial reasoning techniques to fuse sensor information and
hence to extract and share knowledge. This map building
procedure is illustrated in Figure 2. An initial map of the
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Fig. 2. Block diagram representation of evidential map building.

environment usually can be created based on the a priori
knowledge. Afterwards, the map is successively refined by
processing additional sensory information as it becomes
available. Most available evidential fusion methods are
based on Bayesian and Dempster-Shafer theories [9]. In
Bayesian based evidential methods, the sensor evidence is
represented probabilistically and is fused with other infor-
mation using Bayes rule. On the other hand, the Dempster-
Shafer based evidential methods consider sensor evidence
as belief and use Dempster-Shafer rule to incorporate the
sensor information. Another important difference between
the Bayesian and Dempster-Shafer approaches lies in their
methods to assign initial values to the states which are
completely unknown prior to any measurements. In the
following parts, we will discuss these two approaches in
detail and show how to apply them into the target cognitive
map building problem for the UAV cooperative search task.

A. Bayesian Map Building Formulation

In the cellular environment used in this paper, considering
the target information, the only state of interest for each cell
is target present or not, written as s(x, y) ∈ {0, 1}, where
s(x, y) = 1 indicates a target present in cell (x, y), and
s(x, y) = 0 indicates no target present in that cell. The
cognitive map used to store the target information is called
the target probability map, denoted by P (t). In P (t), each
cell has a target probability p(x, y, t) ∈ [0, 1] defined as:

p(x, y, t) = P (s(x, y) = 1 | Bt) = P (A | Bt) (2)

where A denotes an event that s(x, y) = 1 and Bt is the
vector of all sensor readings for cell (x, y) taken upto time
t. p(x, y, t) actually represents the probability of a target
present in cell (x, y) according to the vehicle’s current
knowledge. The higher the target probability is, the more
likely the vehicle believes the cell is occupied by a target.
This formulation allows the use of Bayesian inference to
fuse sensor readings, which can be expressed as

P (A | b) =
P (b | A)P (A)

P (b)
(3)

where b denotes the new sensor reading. P (A) is the
required a priori probability of the target state in that cell. If
there is no such a priori information available, one standard
approach is to assign the a priori probability as 0.5, that is
P (A) = P (s(x, y) = 1) = 0.5. If some target distribution
knowledge is available, then it can be represented using
different initial probability values. The normalization term
P (b) in (3) can be calculated as follows

P (b) = P (b | A)P (A) + P (b | Ā)P (Ā) (4)
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where P (b | A) and P (b | Ā) depend on the sensor model,
which qualitatively describes the probability of obtaining
a sensor reading b given certain target present situations.
Therefore, we define two parameters to characterize the
sensor’s uncertainty: the sensor detection rate pc and the
false alarm rate pf :

pc = P (b(x, y) = 1 | A) (5)

pf = P (b(x, y) = 1 | Ā) (6)

where b(x, y) = 1 indicates a target detection in cell (x, y)
and b(x, y) = 0 indicates no target detection. So we can
see that pc quantifies the probability of a correct target
detection given the actual target present and pf represents
the probability of a false reporting of the target detection
given no target present. Based on these definitions, the
target probability map P (t) can be updated to combine each
sensor scan data b(x, y, t) using the following update rule
derived from Bayesian inference (3) and (4):

p(x, y, t) = b(x, y, t)Λ1 + (1 − b(x, y, t))Λ2 (7)

where

Λ1 =
pcp(x, y, t − 1)

pcp(x, y, t − 1) + pf (1 − p(x, y, t − 1))

Λ2 =
(1 − pc)p(x, y, t − 1)

(1 − pf )(1 − p(x, y, t − 1)) + (1 − pc)p(x, y, t − 1)

The Bayesian map-building approach provides a scheme
to incrementally estimate the target distribution information
by incorporating the new sensor readings. It can also easily
incorporate the a priori knowledge and even can permit
the use of subjective probability estimates. However, the
Bayesian approach has some shortcomings when applied
to some sensor fusion tasks [13]. In some situations, it
is difficult to specify the a priori probabilities and then
they could only be approximated. When there is no a
priori information exists, the probability p(x, y, 0) is usu-
ally initialized to 0.5 since the Bayesian theory requires
P (A) + P (Ā) = 1. This is essentially means that “with
50% certainty, the cell (x, y) is occupied,” yet, no sensor
readings have been collected. Moreover, this kind of ini-
tialization make it impossible to distinguish between the
ignorance and contradiction. For example, with cell value
as p(x, y, t) = 0.5 when t > 0, one cannot deduce whether
the cell has simply not been searched yet, or whether
the information received was contradictory, thus making
it likely that the particular cell (x, y) will continue being
close to the high uncertainty value. Such information, if
it was available could be used to make decisions on the
utilization of different sensors. These disadvantages limit
the applicability of the Bayesian inference method in many
complex situations.

To overcome the confusion between ignorance and con-
tradiction, we define a certainty value for each cell (x, y),
denoted as χ(x, y, t) ∈ [0, 1], which corresponds to the
degree to which the cell has been searched. If χ(x, y, t) = 0

then the cell has not been searched until time t. As the cell is
searched repeatedly, χ(x, y, t) approaches 1. The cognitive
map to store this information is called the certainty map
X (t), in which most cells typically begin with a certainty
0. Each time a UAV visits cell (x, y) and makes a scan, the
certainty changes according to the rule

χ(x, y, t + 1) = χ(x, y, t) + 0.5(1 − χ(x, y, t)) (8)

This is a simple way to track the number of useful “looks”
each cell has had and capture the notion of diminishing re-
turns with each look. Although the simulation results show
that the use of the certainty value into the UAV’s decision
procedure could enhance the performance of cooperative
search and could allow the distinction between ignorance
and contradiction, the certainty definition equation to com-
pute the uncertainty value is ad-hoc.

Another cognitive map the UAVs use is the threat prob-
ability map, K(t). It stores the threat probability of each
cell (x, y) denoted as k(x, y, t) ∈ [0, 1] which represents
the probability that the UAV will be destroyed at cell (x, y)
by any threat. We have

k(x, y, t) = P (UAV destroyed at (x, y) by threats)

= 1 −
n∏

j=1

(1 − pj
kill(x, y)) (9)

where n is the number of threats whose attack regions
cover position (x, y). Due to assumption that the threats
are all stationary and known a priori, the threat probability
map is time-invariant, that is K(t) = K(0). When the
threat information is unknown, it can be built incrementally
using similar methods as described above to build the target
cognitive map.

B. Dempster-Shafer Map Building Method

Dempster-Shafer’s evidence method can be viewed as a
generalized Bayesian approach. It has some advantages over
the Bayesian method, especially in the ability to clearly dis-
tinguish between the ignorance and contradiction[13] [14].
In this part, we present an approach for using Dempster-
Shafer’s evidential method to build the target cognitive map.
To aid the reader in following the application of Dempster-
Shafer theory to cognitive map building, the basics of
Dempster-Shafer theory are briefly reviewed and then its
application to target map building procedure is described.

1) Dempster-Shafer Theory: The basic entity in
Dempster-Shafer theory is a set of exclusive and exhaustive
hypotheses about some problem domain, called the frame
of discernment, denoted as Θ. The degree of belief of each
hypothesis is represented by a real number in [0,1]. The
basic probability assignment (BPA) is a function m : Ψ →
[0, 1], where Ψ is the set of all subsets of Θ, the power
set of Θ, Ψ = 2Θ. The function m can be interpreted as
distributing belief to each element of Ψ, with the following
criteria satisfied: ∑

A⊆Ψ

m(A) = 1 (10)
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m(∅) = 0 (11)

Thus, the element A is assigned a basic probability number
m(A) describing the degree of belief that is committed
to exactly A. Note that a situation of total ignorance is
characterized by m(Θ) = 1. It can easily be verified that
the belief in some hypothesis A and the belief in its negation
Ā do not necessarily sum to 1, which is a major difference
compared to probability theory. Given two belief function
over the same frame of discernment, but induced by two
independent sources of information, they can be combined
into a new belief function over that frame of discernment
using Dempsters rule of combination

m1 ⊕ m2(A) =
∑

B∩C=A m1(B)m2(C)
1 − ∑

B∩C=∅ m1(B)m2(C)
(12)

m1 ⊕ m2(∅) = 0 (13)

2) Dempster-Shafer Target Map Building Algorithm: In
our problem, the target map is used to represent the belief
that a target is present (or not) in a particular cell. Each
cell is characterized by two states, empty and full. Thus, we
define the field of discernment Θ, by the set

Θ = {E, F} (14)

where E and F correspond to the states that the cell is
empty (no target present) or full (target present), respec-
tively. The set of all subsets of Θ is the power set

Λ = 2Θ = {∅, E, F, U} (15)

where U = {E,F} represent unknown. The state of cell
(x, y) is described by assigning basic probability numbers
to each element in Λ satisfying

mx,y(∅) = 0 (16)∑

A⊂Λ

mx,y(A) = mx,y(E) + mx,y(F ) + mx,y(U)

= 1 (17)

Considering this linear dependence, it is sufficient to store
mx,y(F ) and mx,y(U) to represent the state of cell (x, y).
The cognitive map used to store mt

x,y(F ) is called the target
map, denoted as T (t) and the map to store mt

x,y(U) is
called the Ignorance map, denoted as I(t). If there is no
available a priori information about target present or not in
cell (x, y), that is, we are completely ignored of the target
state, cell (x, y) is initialized as t(x, y, 0) = m0

x,y(F ) = 0
and i(x, y, 0) = m0

x,y(U) = 1 in the cognitive maps. Each
UAVs’ sensor reading about that cell is a source of evidence
for the target state and it can be incrementally fused into
maps through the sensor models.

The sensor model converts the sensor readings into the
belief assignments and it can be represented as its basic
probability assignment (BPA) function. When the sensor
reading reports a target detection in cell (x, y) at time t,
that is b(x, y, t) = 1, this sensor reading can be regarded
as a piece of evidence that increases our belief in state F ,

that is, there is a target present in cell (x, y). However, this
piece of evidence does not by itself provide 100% certainty
due to the sensor’s inaccuracy. So this can be expressed by
saying that only some part of our belief is committed to the
target present. Since this sensor reading does not provide
any information about the state E, the rest of our belief can
not be distributed to E and can only be assigned to U . This
item of evidence can therefore be represented by the basic
probability assignment (BPA) function defined as

mb(E) = 0 (18)

mb(F ) = mf (19)

mb(U) = 1 − mf (20)

where mf denotes our belief in the target being present
given a sensor reporting a target detection. Similarly, when
b(x, y, t) = 0, the sensor reporting increases our belief in
state E and provide no information about state F , so the
basic probability assignment(BPA) function can be given as

mb(E) = me (21)

mb(F ) = 0 (22)

mb(U) = 1 − me (23)

where me denote our belief in the state of no target present
given a sensor reporting no target detection. Note mf and
me are sensor’s characteristics. Following the approach in
[13], the relationships between mf , me and pf , pc can be
obtained as mf = 1−pf/pc and me = 1−(1−pc)/(1−pf).

Based on the given sensor model, each sensor reading
can be fused into the cognitive map using the following
map updating rule derived from (12):

t(x, y, t + 1) (24)

=
t(x, y, t)mb(F ) + t(x, y, t)mb(U) + i(x, y, t)mb(F )

1 − (1 − t(x, y, t) − i(x, y, t))mb(F ) − t(x, y, t)mb(E)
i(x, y, t + 1) (25)

=
i(x, y, t)mb(U)

1 − (1 − t(x, y, t) − i(x, y, t))mb(F ) − t(x, y, t)mb(E)

where t(x, y, t) = mt
x,y(F ) and i(x, y, t) = mt

x,y(U). It can
be shown that i(x, y, t), representing the UAVs’ ignorance
of the target information in (x, y), will decrease as the
search time increases. This provides a theoretical basis for
using the uncertainty function defined as (8) to represent
the state of the environment.

IV. COOPERATIVE PATH PLANNING METHOD

In this section, we describe how to utilize the developed
cognitive maps for cooperative path selection and search.
The decision function is based on the expected rewards
associated with each of the three possible paths of the
next time step. The expected immediate reward for a UAV
searching cell (x, y) at time t+1, denoted as ρ(x, y, t+1),
is the payoff for target confirmation and UAV survival. It
is represented as a multi-objective cost function which is a
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linear combination of four types of rewards corresponding
to the four sub-goals:

ρ(x, y, t + 1) = ω1ρf (x, y, t + 1) + ω2ρe(x, y, t + 1)
+ω3ρt(x, y, t + 1)+ω4ρc(x, y, t + 1)(26)

where ρf (x, y, t + 1) is the target confirmation reward,
ρe(x, y, t + 1) is the environment exploration reward,
ρt(x, y, t+1) is the threat avoidance reward and ρc(x, y, t+
1) is the cooperation reward. The definitions of these
rewards are given below.

Target Confirmation Reward: To achieve the goal of
maximizing the number of confirmed targets, a UAV will get
a reward in one cell if it can confirm a new target there. This
kind of reward can direct the UAVs to the regions with high
target likelihood. In the Bayesian map-building method, the
expected target confirmation reward in cell (x, y) at time
t + 1 is defined as:

ρf (x, y, t + 1) = [(pc − pf )p(x, y, t) + pf ] (27)

and in the Dempster-Shafer map-building method, the cor-
responding reward is defined as:

ρf (x, y, t + 1) = et(x,y,t)−i(x,y,t) (28)

Environment Exploration Reward: Since targets are usually
relatively sparse in the practical situations, it is important
for the UAVs to explore the environment in order to obtain
new information on potential targets. This corresponds to
a requirement to decrease the uncertainty or ignorance of
target information in the whole environment. Hence, for
exploration purposes, it is better for the UAVs to visit
cells with lower certainty values χ(x, y, t) or with higher
ignorance values i(x, y, t). In the Bayesian map-building
method, the environment exploration reward, ρe, can be
defined as the expected certainty increase caused by a
UAV’s visit to cell (x, y):

ρe(x, y, t + 1) = 0.5(1 − χ(x, y, t)) (29)

And in the Dempster-Shafer based map-building method,
the reward ρe is defined as the ignorance value stored in its
Ignorance map I(t):

ρe(x, y, t + 1) = i(x, y, t) (30)

Threat Avoidance Reward: Due to the presence of threats,
UAVs can be destroyed, resulting in a reduction in the
terminal payoff. The threat avoidance reward ρt is defined
as the avoided loss if a UAV is not destroyed in cell (x, y)
at time t + 1:

ρt(x, y, t+1) = (1−k(x, y, t+1))(πv + n̄(t+1)πt) (31)

where n̄(t + 1) denotes the estimated average number of
targets which could be identified by the UAV from time
t + 2 until the terminal time. πv and πt represent the
value of a vehicle or a target respectively. To gain threat
avoidance rewards, a UAV needs to avoid cells with high
threat probabilities.

Cooperation Reward: The cooperative reward is a cost
function that penalizes vehicles being close to each other
and heading in the same direction so as to reduce the
possible overlaps on their paths caused by their intentions to
obtain high individual rewards. In this paper, we utilize the
cooperation cost function generated based on the “rivaling
force” method. The rivaling force approach is based on
treating paths of other vehicles as soft obstacles, which are
to be avoided. A type of artificial potential field method
is used to derive an algorithm for generating the rivaling
force that neighboring agents’ paths may exert on a certain
vehicle. The cooperation reward, ρc, is defined as the
negative of the “rivaling force”, Fi:

ρc(x, y, t + 1) = −Fi(x, y, t + 1) (32)

where Fi(x, y, t + 1) is a function of other vehicles’
positions λj(t + 1) and orientations oj(t + 1), j ∈
{1, 2, . . . , N}, j �= i. Detailed information regarding the
generation of the rivaling force function F is given in [15],
[8].

The reward defined in (26) can be thought of as an
immediate reward since it considers the estimated reward
for the next step only. However, a good algorithm should
not be based only on the immediate reward but also lead
to a path that will bring more rewards over the long term.
Therefore, UAVs use a limited look-ahead policy to select
their paths in the proposed path planning method. An
approach to take into consideration both short-term and
long-term rewards is described in [5], [8].

V. SIMULATION RESULTS

In this section, a simulation study is included to illustrate
the feasibility of implementing these evidential approaches
and to demonstrate the importance of environment repre-
sentation to the performance of cooperative search. The
simulation scenario consists of a team of 5 UAVs searching
a 20×20 cellular environment with 20 targets and 2 threats.
It is assumed that there is some minor a priori topographical
information but no other sources of information on target
distribution. For all the simulation runs in this paper, the
homogeneous targets and threats are randomly assigned
into the environment and the UAVs’ initial locations and
orientations are also randomly assigned. The threats’ attack
regions are set to φ = 1, the threat probability pkill = 0.2.
A target is considered located in cell (x, y) if the number
of sensor readings reporting target detection in (x, y) is two
times larger than the number of sensor readings reporting
no target detection.

To assess the performance of different approaches de-
scribed in this paper, we run the simulations using two
different map-building approaches and using two different
search algorithms. They are Bayesian map-building method,
Dempster-Shafer map-building method, cooperative search
method and greedy search method. In the greedy search
strategy, the vehicles move at each step to the candidate
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Fig. 3. Number of targets found as a function of time: Comparison
between Bayesian method and Dempster-Shafer Method with high sensor
accuracy.
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Fig. 4. Number of targets found as a function of time: Comparison
between Bayesian method and Dempster-Shafer Method with low sensor
accuracy.

cells with highest reward for target confirmation and avoid-
ance of UAV losses, but they perform little distributed path
selection in order to coordinate their actions.

The performance was evaluated by the number of targets
found as a function of time. Figure 3 shows the perfor-
mance comparison for four different approaches when the
UAVs carry highly accurate sensors (specifically, the sensor
detection rate is pc = 0.9 and the sensors’ false alarm rate
is pf = 0.1). Figure 4 shows the performance comparison
when the UAVs carry lower accuracy sensors, where the
sensor detection rate pc = 0.6 and the sensors’ false alarm
rate pf = 0.4.

The simulation results shown that the cooperative search
method can always outperform the greedy search method
no matter which map-building method is used. We can
see that when the sensor accuracy is high, there is no big
difference between the Bayesian theory based map-building
and the Dempster-Shafer method based approach. However,
when the sensor accuracy is low, which means there is
more possibility to have contradictory sensor readings, the
Dempster-Shafer method based map-building method can
direct the UAVs to find more targets than the Bayesian
theory based map-building.

VI. CONCLUSION

In this paper, we present two evidential map-building ap-
proaches for the UAV cooperative search problem based on
Bayesian theory and Dempster-Shafer theory. We illustrate
how to utilize these maps into the UAVs path planning
procedure so that they could cooperatively localize targets
in an unknown and uncertain environment. The simulation
results illustrate the use of both approaches for the coopera-
tive search problem. The Dempster-Shafer theory approach
yields significantly better performance in the case that the
sensor uncertainty is high. This is due to the capability
of the Dempster-Shafer approach to differentiate between
ignorance and contradiction scenarios. Future work includes
the extension of evidential map-building approaches to more
complex problems and the more thorough study of the
performance analysis.
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