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Abstract— Self-bounded controlled invariant subspaces play
a key role in the synthesis of minimal-order dynamic reg-
ulators attaining model following by output feedback with
stability. The approach, completely embedded in the geometric
context, provides insight into the internal eigenstructure of
the minimal self-bounded controlled invariant subspace, thus
leading to effective treatment of nonminimum-phase systems.

I. INTRODUCTION

The main contribution of this paper consists in detailing a
procedure to synthesize a minimal-order regulator for model
following by output feedback with stability, completely in
the geometric approach context [1], [2]: in fact, after the
pioneering work [3], just few papers can be found in the
literature, considering model matching from the geometric
point of view. In this paper, model following by dynamic
feedforward is considered first and, since it can be reduced
to an equivalent problem of measurable signal decoupling,
connections between structural and stabilizability condi-
tions for measurable signal decoupling and structural and
stabilizability properties of the system and the model are
set forth. Theorem 2 relates the structural condition for
measurable signal decoupling to a relative-degree condition
on the system and the model. This latter involves, along
with the concept of vector relative degree, an original
concept herein called vector minimum delay (they both are
characterized by computational algorithms). Theorems 3,
4 relate the stabilizability condition for measurable signal
decoupling to the invariant zero structure of the system and
the eigenstructure of the model: they exploit the properties
of self-bounded controlled invariant subspaces, herein for
the first time considered within model following. Since The-
orems 2, 4 state sufficient conditions for structural model
following and model following with stability, respectively,
they should also be regarded as guidelines to define an
admissible model for a given system in a non-conventional
model following problem where the designer may intervene
on the model itself. The subsequent Theorems 5, 6, 7 give
additional insight into the internal eigenstructure of the
minimal self-bounded, through the concept of generalized
frequency response, and suggest a straightforward proce-
dure to deal with nonminimum-phase systems. In the last
section, it is shown how output feedback model following
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can be reduced, from the structural point of view, to an
equivalent feedforward problem (Theorem 8) and how the
synthesis carried out according to the criteria previously
considered guarantees also internal stability of the closed
loop (Theorems 9, 10).

II. SELF-BOUNDED CONTROLLED INVARIANTS
IN MODEL FOLLOWING: MINIMAL-ORDER

FEEDFORWARD SOLUTION

According to a procedure well-settled in the geometric
approach, the model following problem is reduced to an
equivalent problem of measurable signal decoupling [3].
Hence, a feedforward solution is herein considered, on the
assumption that the given system is stable. This hypothesis
does not cause any loss of generality with respect to
that of stabilizability, usually introduced: if the system is
stabilizable, it can be considered as prestabilized by an inner
feedback. The discrete time-invariant linear system

xs(t + 1) = As xs(t) + Bs u(t), (1)

ys(t) = Cs xs(t), (2)

is considered, where x∈Xs = R
ns , u∈R

p, y ∈R
q respec-

tively denote the state, the control input, the controlled
output. The system is assumed to be stable. The set of all
admissible control input functions is defined as the set Uf

of all bounded functions with values in R
p. The discrete

time-invariant linear model

xm(t + 1) = Am xm(t) + Bm h(t), (3)

ym(t) = Cm xm(t), (4)

is considered, where x∈Xm = R
nm , h∈R

s, y ∈R
q respec-

tively denote the state, the exogenous input, the measurable
output. Also the model is assumed to be stable. The set of
all admissible exogenous input functions is defined as the
set Hf of all bounded functions with values in R

s. The
matrices Bs, Bm, Cs, Cm are assumed to be full-rank. The
symbols Bs, Bm, Cs, Cm are respectively used for im Bs,
im Bm, ker Cs, ker Cm.

Problem 1: model following by minimal-order dynamic
feedforward. Refer to Fig. 1. Let Σs be ruled by (1), (2),
with xs(0)= 0. Let Σm be ruled by (3), (4), with xm(0)= 0.
Let σ(As)⊂C

� and σ(Am)⊂C
�. Design a linear dynamic

feedforward compensator Σc ≡ (Ac, Bc, Cc, Dc) of mini-
mal order, such that σ(Ac)⊂C

� and, for all admissible
h(t) (t≥ 0), ys(t)= ym(t) for all t≥ 0.
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Theorem 1: Problem 1 is equivalent to Problem 4
in Appendix, with A= diag {As, Am}, B =

[
B�

s O
]�

,

H =
[
O B�

m

]�
, and C = [Cs −Cm ].

Proof: Refer to Fig. 1. Set x(t)=
[
xs(t)� xm(t)�

]�
,

y(t)= ys(t)− ym(t). The statement directly follows from
the comparison of (1), (2) and (3), (4) with (10), (11).

In view of Theorem 1, the dynamic feedforward com-
pensator Σc designed according to the procedure detailed
in [4] preserves the features illustrated therein: the minimum
number of internal unassignable dynamics, in particular.
Moreover, Theorem 1 enables connections to be established
between the necessary and sufficient condition for measur-
able signal decoupling with stability (Theorem 11) and the
geometric properties of the original system and model. This
investigation is particularly useful from a technical point of
view, since it provides easy-to-check conditions to verify
solvability of the considered model following problem and
suggests how to modify a problem which is originally not
solvable, in order to achieve a feasible and satisfactory
trade-off. The following results focus on these issues.

A. Structural condition

In this section it is shown that, if the system is right-
invertible and the model is reachable, a straightforward
relation established between a pair of easy-to-compute
vectors in the model following problem, namely the vector
relative degree of the system and the vector minimum delay
of the model, implies that the structural condition of the
measurable signal decoupling problem, i.e. H⊆V∗ +B,
holds. The assumption of right-invertibility of the system
is not usually required in model matching. However, its
introduction, in the next Theorem 2, is rewarded by the
statement of a particularly simple condition, which, differ-
ently from those available in the literature, focuses on the
structural properties of the system and the model considered
separately, instead of referring to some combination of
them. The following definitions and properties are stated
for a generic discrete time-invariant linear system

x(t + 1) = Ax(t) + B u(t) (5)

y(t) = C x(t), (6)

where x∈X = R
n, u∈R

p, y ∈R
q respectively denote the

state, the control input, the controlled output, and where the
matrices B, C are assumed to be full-rank. The symbols B,
C stand for im B, ker C. The symbol Uf denotes the set
of all admissible control input functions, defined as the set

+

_

h

u ys

ym

y
ΣsΣc

Σm Σ

Fig. 1. Block diagram for feedforward model following.

of all bounded functions with values in R
p. The symbol Iq

stands for the set { i∈Z
+ : 1≤ i≤ q }.

Definition 1: Consider the system (5), (6) with x(0)= 0.
Let (A,B,C) be right-invertible. The vector relative degree
is the vector ρ= [ ρ1 . . . ρq ]�, where

ρi = min
u(·)∈Uf

{
t̄∈Z

+: yi(t̄) �= 0, yi(t) = 0, ∀ t< t̄,

yj(t) = 0, ∀ t≥ 0, j ∈Iq, j �= i} , i ∈ Iq.

Property 1: Consider the system (5), (6) with (A,B,C)
right-invertible. For any i∈Iq, let Ci denote the ith row of
C, Ci = ker Ci, C̄i =∩j ∈Iq, j �= i Cj , V̄∗

i = maxV(A,B, C̄i),
R̄(1)

i =B∩ V̄∗
i , R̄(η)

i = (A (R̄(η−1)
i ∩ V̄∗

i )+B)∩ V̄∗
i , with

η = 2, . . . , ki, where ki ≤n is the least integer such that
R̄(ki+1)

i = R̄(ki)
i . Then, for any i∈Iq, ρi is the least integer

such that Ci R̄(ρi)
i �= 0.

Proof: The statement follows from Definition 1 and
the properties of the ith constrained reachable subspace on
V̄∗

i , i.e. the subspace RV̄∗
i

= V̄∗
i ∩minS(A, V̄∗

i ,B), which
the considered sequence converges to.
The right-invertibility assumption guarantees that, for all
i∈Iq, ρi ∈{1, . . . , ki} exists, such that Ci R̄(ρi)

i �= 0.
Definition 2: Consider the system (5), (6) with x(0)= 0.

Let (A,B) be reachable. The vector minimum delay is the
vector δ = [ δ1 . . . δq ]�, where

δi = min
u(·)∈Uf

{
t̄∈Z

+ : yi(t̄) �= 0, yi(t) = 0, ∀ t< t̄
}

, i ∈ Iq.

Property 2: Consider the system (5), (6). Let (A,B) be
reachable. For any i∈Iq, let Ci denote the ith row of C. Let
R(1) =B, R(η) =AR(η−1) +B, η = 2, . . . , k, where k≤n
is the least integer such that R(k+1) =R(k). Then, δi is the
least integer such that Ci R(δi) �= 0.

Proof: The property follows from Definition 2 and
the properties of the subspace R= minJ (A,B), which the
considered sequence converges to.
The reachability assumption guarantees that, for all i∈Iq,
δi ∈{1, . . . , k} exists, such that Ci R(δi) �= 0.

Theorem 2: Consider the system (1), (2) and the
model (3), (4). Let (As, Bs, Cs) be right-invertible and
(Am, Bm) be reachable. Consider the system (10), (11),
defined according to Theorem 1. Let δm denote the vector
minimum delay of the model and ρs the vector relative
degree of the system. Then, δm ≥ ρs =⇒ H⊆V∗ +B.

Proof: For any i∈Iq, let δm,i ≥ ρs,i. For any
h(·)∈Hf , consider the corresponding effect, with the initial
condition xm(0)= 0, at the ith component of the output
ym. By Definition 2, for any i∈Iq, t̄i ≥ δm,i exists, such
that ym,i(t̄i) �= 0 and ym,i(t) = 0 for all t< t̄i. Due to
functional controllability of (As, Bs, Cs), if δm,i ≥ ρm,i,
then ui(·)∈Uf exists, such that, with the initial condi-
tion xs(0)= 0, ys,i(t)= ym,i(t) for all t≥ t̄i, ys,i(t) = 0,
for all t< t̄i, and ys,j(t) = 0, for all t≥ 0, with j ∈Iq,
j �= i. Consequently, by superposition, for any input func-
tion h(·)∈Hf , which, with xm(0)= 0, produces a certain
output ym(t), t≥ 0, a control function u(·)∈Uf exists,
such that ys(t)= ym(t), for all t≥ 0. In the equivalent
measurable signal decoupling problem, this means that for
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any h(·)∈Hf , u(·)∈Uf exists, such that y(t) = 0, for all
t≥ 0. In other words, for any h(·)∈Hf , u(·)∈Uf exists,
such that the corresponding state trajectory, x(t), t≥ 0,
starting from x(0)= 0, is steered on an (A,B)-controlled
invariant, say V , such that V ⊆C and H⊆V +B. Finally,
since V ⊆V∗, the latter inclusion implies H⊆V∗ +B.

B. Stabilizability condition

In this section it is shown that, on the assumption
that the structural condition of the equivalent measurable
signal decoupling problem holds, the stabilizability condi-
tion, namely internal stabilizability of the subspace Vm,
the minimal (A,B+H)-controlled invariant self-bounded
with respect to C such that H⊆Vm +B, is implied by a
straightforward condition involving the invariant zeros of
the plant and the poles of the model. In Theorem 3, as well
as in Theorem 2, the given system is assumed to be right-
invertible. Introducing this requirement, which, as already
pointed out, is non-standard in model following, returns a
direct and easy-to-check condition which provides insight
into the way poles and zeros of the system and the model
act in the extended system and suggests how to modify the
model when the equivalent measurable signal decoupling
problem is not solvable with stability.

Property 3: Consider the systems (1), (2), (3), (4),
(10), (11), where (10), (11) is defined as in Theorem 1. Let
S∗

s = minS(As, Cs,Bs), S∗ = minS(A, C,B). Let S∗
s be a

basis matrix of S∗
s . Then, S∗ = im [S∗

s
� O]�.

Proof: First, recall that S∗ is the last term of the
sequence S(1) =B, S(i) = A(S(i−1) ∩C)+B, i= 2, . . . , k,
where k is the least integer such that S(k+1) =S(k).
Note that, due to the particular structure of C,

C = im
[

C̄s C1

O C2

]
, where C̄s is a basis matrix of Cs, and

both C1 and C2 are non-zero matrices. Hence, due to the
structures of A and B, the last nm rows of the basis matrices
of the subspaces subsequently generated by the algorithm
of S∗ are zero. Moreover, the first ns rows are the basis
matrices of the subspaces generated by the same algorithm
applied to the triple (As, Bs, Cs), the algorithm of S∗

s .
Property 4: Consider the systems (1), (2), (3), (4),

(10), (11), where (10), (11) is defined as in Theorem 1. Let
(As, Bs, Cs) be right-invertible. Then, (A,B,C) is right-
invertible.

Proof: Note that, since Cs and Cm are full-
rank, dim Cs =ns − q and dim C =ns +nm − q. Hence,

C = im
[

C̄s C1

O C2

]
, where C̄s is a basis matrix of Cs and

rank [C�
1 C�

2 ]� = nm. Since S∗
s + Cs = R

ns , due to right-
invertibility of (As, Cs, Bs), and since S∗ = im [S∗

s
� O]�,

due to Property 3, the particular structure of C implies
S∗ + C = R

ns+nm , i.e. right-invertibility of (A,B,C).
Property 5: Consider the systems (1), (2),

(3), (4), (10), (11), where (10), (11) is defined as
in Theorem 1. Let RV∗

s
= maxV(As,Bs, Cs)∩S∗

s ,
RV∗ = maxV(A,B, C)∩S∗. Let RV∗

s
be a basis matrix of

RV∗
s

. Then, RV∗ = im [R�
V∗

s
O]�.

Proof: First, recall that RV∗ is the last term of
the sequence R(1)

V∗ =B∩V∗, R(i)
V∗ = (AFR(i−1)

V∗ +B)∩V∗,
i= 2, . . . , k, where AF =A+ BF , with F being any real
matrix such that (A+ BF )V∗ ⊆V∗, and k is the least inte-
ger such that R(k+1)

V∗ =R(k)
V∗ . Note that, due to the particular

structure of A, B, and C, V∗ = im
[

V ∗
s V1

O V2

]
, where V ∗

s

is a basis matrix of V∗
s = maxV(As,Bs, Cs), and both V1

and V2 are non-zero matrices. Hence, the last nm rows of
the basis matrices of the subspaces subsequently generated
by the algorithm of RV∗ are zero. Moreover, the first ns

rows are the basis matrices of the subspaces generated by
the same algorithm applied to the triple (As, Bs, Cs), i.e.
the algorithm of RV∗

s
.

Property 6: Consider the systems (1), (2), (3), (4),
(10), (11), where (10), (11) is defined as in
Theorem 1. Let (As, Bs, Cs) be right-invertible. Let
V∗

s = maxV(As,Bs, Cs), V∗ = maxV(A,B, C). Let V ∗
s

be a basis matrix of V∗
s . Then, V∗ = im

[
V ∗

s V1

O V2

]
,

where both V1 and V2 are non-zero matrices and
rank [V �

1 V �
2 ]� =nm.

Proof: Since V∗
s is an (As,Bs)-controlled invariant

contained in Cs, matrices Xs and Us of appropriate dimen-
sions exist, such that AsVs = VsXs + BsUs and CsVs = 0.
As a consequence, due to the particular structures of
A, B, and C, V̄s = [V �

s O]� satisfies AV̄s = V̄sXs + BUs

and CV̄s = 0, which implies that V̄s = im V̄s is an
(A,B)-controlled invariant contained in C, hence contained
in V∗. On the other hand, by virtue of Property 4, (A,B,C)
is right-invertible, or, equivalently, S∗ +V∗ = R

ns+nm .
This completes the proof, since S∗ = im [S∗

s
� O]� by

virtue of Property 3 and S∗
s +V∗

s = R
ns by virtue of right-

invertibility of (As, Bs, Cs).
Theorem 3: Consider the systems (1), (2), (3), (4),

(10), (11), where (10), (11) is defined as in The-
orem 1. Let (As, Bs, Cs) be right-invertible. Then,
Z(A,B,C)=Z(As, Bs, Cs)�σ(Am).

Proof: Let V ∗ denote a basis matrix of V∗ and
let F be any real matrix such that (A+ BF )V∗ ⊆V∗.
Then, a matrix X of appropriate dimension exists,
such that (A+ BF )V ∗ =V ∗X . According to Property 6,

V ∗ =
[

V ∗
s V1

O V2

]
, where V ∗

s is a basis matrix of V∗
s and

rank [V �
1 V �

2 ]� =nm. Thus, the previous equation may
also be written as[

As + BsF1 BsF2

O Am

] [
Vs V1

O V2

]
=

[
Vs V1

O V2

] [
X1 X2

X3 X4

]
, (7)

where the structures A and B have been taken into ac-
count and where F and X have been partitioned ac-
cording to V ∗. The upper block-triangular structure of
A+ BF and the particular structure of V ∗ in (7) im-
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ply σ((A+ BF )|V∗)= σ((As +BsF1)|V∗
s
)�σ(Am). Fi-

nally, the thesis follows by virtue of Property 5.
Theorem 4: Consider the systems (1), (2), (3), (4),

(10), (11), where (10), (11) is defined as in Theorem 1.
Let H⊆V∗ +B. Let (As, Bs, Cs) be right-invertible,
Z(As, Bs, Cs)⊂C

�, and σ(Am)⊂C
�. Then, Vm, i.e. the

minimal (A,B+H)-controlled invariant such that Vm ⊆C
and H⊆Vm +B, is internally stabilizable.

Proof: Recall that H⊆V∗ +B implies
maxV(A,B+H, C) = maxV(A,B, C). Hence, Vm

satisfies Vm = maxV (A,B, C)∩minS (A, C,B+H),
RV∗ ⊆Vm ⊆V∗, and (A+ BF )Vm ⊆Vm for any real
matrix F such that (A+ BF )V∗ ⊆V∗. Therefore,
σ((A+ BF )|Vm/RV∗ )⊆σ((A+ BF )|V∗/RV∗ ). Moreover,
σ((A+ BF )|V∗/RV∗ )=Z(As, Bs, Cs)�σ(Am), due
to Theorem 3, being (As, Bs, Cs) right-invertible. In
conclusion, Z(As, Bs, Cs)⊂C

� and σ(Am)⊂C
� imply

σ((A+ BF )|Vm/RV∗ )⊂C
�.

In the light of Theorems 3, 4, a nonminimum-phase
system seems to prevent the synthesis of an internally
stable compensator. In fact, an invariant zero of the system
outside the open unit disc results into an unstable internal
unassignable eigenvalue of the subspace Vm, thus violating
the stabilizability condition of the equivalent measurable
signal decoupling problem. However, also nonminimum-
phase systems may be handled, at the cost of modifying the
model so as to include the same unstable invariant zeros of
the system, with some further constraints as specified below.

Theorem 5: Consider the systems (1), (2), (3), (4),
(10), (11), where (10), (11) is defined as in Theorem 1.
Let H⊆V∗ +B. Then, the invariant zero structure of
(A, [B H], C) is part of the external eigenstructure of Vm.

Proof: The invariant zero structure of
(A, [B H], C) is the internal unassignable eigenstructure
of maxV(A,B+H, C). Hence, it is part of the
external eigenstructure of the constrained reachability
subspace maxV(A,B+H, C)∩minS(A, C,B+H).
Moreover, if H⊆V∗ +B, then
maxV(A,B+H, C) = maxV(A,B, C). This implies
maxV(A,B+H, C)∩minS(A, C,B+H)=Vm.

Theorem 6: Consider the system (5), (6) and its dual,
defined by the triple (A�, C�, B�). Then, (A,B,C) and
(A�, C�, B�) have the same invariant zero structure.

Proof: Consider the system (5), (6) and perform
the similarity transformations T = [T1 T2 T3 T4 ], with
im T1 =RV∗ , im [ T1 T2 ] =V∗, im [ T1 T3 ] =S∗, and
U = [U1 U2 ], with im U1 =B−1V∗, im U2 =

(
B−1V∗)⊥.

The matrices A′, B′, C ′, respectively corresponding to A,
B, C in the new bases, partitioned according to T and U ,
have the structures

A′ =

⎡
⎢⎢⎣

A′
11 A′

12 A′
13 A′

14

O A′
22 A′

23 A′
24

A′
31 A′

32 A′
33 A′

34

O O A′
43 A′

44

⎤
⎥⎥⎦, B′ =

⎡
⎢⎢⎣

B′
11 B′

12

O O
O B′

32

O O

⎤
⎥⎥⎦,

C ′ =
[

O O C ′
13 C ′

14

]
.

Consider the dual triple in the new bases, i.e.
(A′�, C ′�, B′�). By simple inspection one gets

V∗
d = maxV(A�, C⊥,B⊥) = imV ′∗

d = im

⎡
⎢⎢⎣

O O
I O
O O
O I

⎤
⎥⎥⎦ .

Let G� be any real matrix such that
(A� + C�G�)V∗

d ⊆V∗
d . In the new bases, let

G′� = [G�
11 G�

21 G�
31 G�

41]. Then, A′�
G = A′� + C ′�G′�

has the structure

A′�
G =

⎡
⎢⎢⎣

A′�
11 O A′�

31 O
A′�

12 A′�
22 A′�

32 O
A′�

G13 O A′�
G33 O

A′�
G14 A′�

G24 A′�
G34 A′�

G44

⎤
⎥⎥⎦ ,

where A′�
Gj4 = A′�

j4 +C ′�
14 G′�

j1 , with j = 1, 2, 3, 4,
A′�

Gj3 =A′�
j3 + C ′�

13 G′�
j1 , with j = 1, 3, and where

A′�
Gj3 =A′�

j3 + C ′�
13 G′�

j1 , with j = 2, 4, are set to zero by
imposing G′�

j1 =− (C ′�
13 )+A′�

j3 , with j = 2, 4, respectively.
Then, it is trivial to verify that A′�

G V ′∗
d = V ′∗

d X holds, with

X =
[

A′�
22 O

A′�
G24 A′�

G44

]
.

Since X = (A� +C�G�)|V∗
d

is lower block-triangular,
σ((A� + C�G�)|V∗

d
)= σ(A′�

22)�σ(A′�
G44). Hence, the set

of the internal unassignable eigenvalues of V∗
d , i.e. σ(A′�

22),
matches that of V∗.

Theorem 7: Consider the systems (1), (2), (3), (4),
(10), (11), where (10), (11) is defined as in Theorem 1.
Let H⊆V∗ +B. Let (As, Bs, Cs) and (Am, Bm, Cm) be
right- and left-invertible. Let X be a real Jordan block,
part of the invariant zero structure of both (As, Bs, Cs)
and (Am, Bm, Cm). If matrices Vs, Vm, and L of appro-
priate dimensions exist, such that A�

s Vs −VsX =−C�
s L,

B�
s Vs = O, A�

m Vm −VmX = C�
m L, and B�

m Vm =O,
then X is part of the eigenstructure external to Vm.

Proof: Let X be part of the invariant zero
structure of both (As, Bs, Cs) and (Am, Bm, Cm).
Then, by virtue of Theorem 6, it is also part
of the invariant zero structure of (A�

s , C�
s , B�

s ) and
(A�

m, C�
m, B�

m). Since (As, Bs, Cs) and (Am, Bm, Cm) are
right- and left-invertible by assumption, (A�

s , C�
s , B�

s ) and
(A�

m, C�
m, B�

m) are right- and left-invertible, too. Hence,
matrices Vs, Vm, Ls, and Lm of appropriate dimensions
exist, such that A�

s Vs −VsX =−C�
s Ls, B�

s Vs =O,
A�

m Vm −VmX = C�
m Lm, and B�

m Vm = O. In particular,
if Ls =Lm =L, then the above equations can be written as[

A�
s O

O A�
m

][
Vs

Vm

]
−

[
Vs

Vm

]
X =−

[
C�

s

−C�
m

]
L, (8)

[
B�

s O
O B�

m

][
Vs

Vm

]
=

[
O
O

]
. (9)

Since the triple (A�, C�, [B H]�) is left-invertible (as a
consequence of Property 3 and duality), (8),(9) imply that X
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is part of the invariant zero structure of (A�, C�, [B H]�).
Hence, by virtue of Theorem 6, X is part of the invariant
zero structure of (A, [B H], C), which implies that it is part
of the eigenstructure external to Vm, due to Theorem 5.

Remark 1: In view of the previous results, a real Jordan
block X corresponding to an unstable invariant zero of
(As, Bs, Cs) does not necessarily imply violation of the
stabilizability condition. In fact, it may be removed from
the eigenstructure internal to Vm, by replicating it as part
of the invariant zero structure of the model, with a further
constraint on the so-called input distribution matrix L
according to Theorem 7. Non-left-invertible systems can be
handled by resorting to the techniques detailed in [4].

III. SELF-BOUNDED CONTROLLED
INVARIANTS IN MODEL FOLLOWING:
MINIMAL-ORDER OUTPUT FEEDBACK

SOLUTION

Throughout this section, the system (1), (2) and the
model (3), (4) are considered, with the further assumption
that the model is square.

Problem 2: model following by minimal-order dynamic
output feedback. Refer to Fig. 2. Let Σs be ruled by (1), (2),
with xs(0)= 0. Let Σm be ruled by (3), (4), with xm(0)= 0.
Let σ(As)⊂C

� and σ(Am)⊂C
�. Design a linear dynamic

regulator Σc ≡ (Ac, Bc, Cc, Dc) of minimal order, such that
the loop is internally and externally stable and, for all
admissible h(t) (t≥ 0), ys(t)= ym(t) for all t≥ 0.

A. Structural condition

The next Theorem 8 shows that, from the structural point
of view, the output feedback model following problem is
equivalent to a feedforward model following problem which
refers to a suitably modified model.

Theorem 8: Refer to Fig. 2. Let Σs be ruled by (1), (2),
with xs(0)= 0. Let Σm be ruled by (3), (4), with xm(0)= 0.
Then, Σc ≡ (Ac, Bc, Cc, Dc) is a minimal-order regulator
solving the structural output feedback model following
problem, i.e. such that for all admissible h(t) (t≥ 0),
ys(t)= ym(t) for all t≥ 0, if and only if Σc is a
minimal-order compensator solving the structural feedfor-
ward model following problem for the modified model
Σ′

m ≡ (Am + BmCm, Bm, Cm).
Proof: From the structural point of view, the block

diagram in Fig. 3 is equivalent to that shown in Fig. 2. In
fact, it is obtained by adding the same signal ym(t) both to
the input of the loop and to the input of the model and taking

+

+
_

_

Σs

Σm

Σc
h u

y

ys

ym

Fig. 2. Block diagram for dynamic output feedback model following.

into account that, on the assumption that Σc guarantees that,
for all admissible h(t), (t≥ 0), y(t) = 0 for all t≥ 0, it is
ym(t)= ys(t) for all t≥ 0.

Thus, the dynamic output feedback model following
problem is reduced to an equivalent feedforward model
following problem, as far as the structural aspects are
concerned. Stability of the output feedback loop is treated
as specified in the next section.

B. Stabilizability condition

The next Theorems 9, 10 concern internal and external
stability of the loop when the plant is minimum-phase
and nonminimum-phase, respectively. The minimal-order
regulator Σc is designed in order to solve the feedforward
model matching problem for the modified plant from the
structural point of view. This is achieved by following the
procedure detailed in [4], but leaving apart the question of
internal stabilizability of Vm.

Theorem 9: Consider the system (1), (2) and the
model (3), (4). Let (As, Bs, Cs) be right-invertible,
σ(As)⊂C

�, σ(Am)⊂C
�, and Z(As, Bs, Cs)⊂C

�. Let
Σc ≡ (Ac, Bc, Cc, Dc) be a minimal-order regulator solving
the structural output feedback model following problem
according to Theorem 8. Then, the loop is internally and
externally stable.

Proof: Since the structural property, i.e. y(t) = 0,
∀t≥ 0, for any admissible h(t) (t≥ 0), is preserved in
the equivalence between the block diagrams in Figs. 2,
3, stability of the original model implies external sta-
bility of the loop. As to internal stability, accord-
ing to Theorem 3, the poles of Σc are a subset of
Z(As, Bs, Cs)�σ(Am +BmCm), where σ(Am +BmCm)
is not necessarily contained in the open unit disc. Hence, Σc

is not necessarily stable. Nevertheless, the loop is internally
stable since cancellations outside the open unit disc are
prevented by the assumption that Σs is minimum-phase.

Theorem 10: Consider the system (1), (2) and the
model (3), (4). Let (As, Bs, Cs) and (Am, Bm, Cm) be
right- and left-invertible. Let σ(As)⊂C

�, σ(Am)⊂C
�,

and Z(As, Bs, Cs)∩σ(Am +BmCm)= ∅. Let the unsta-
ble part of the invariant zero structure of (As, Bs, Cs)
be replicated as part of the invariant zero struc-
ture of (Am, Bm, Cm) according to Theorem 7. Let
Σc ≡ (Ac, Bc, Cc, Dc) be a minimal-order regulator solving
the structural output feedback model following problem
according to Theorem 8. Then, the loop is internally and

+

+

+

_

Σs

Σm

Σc
h u

y

Σ′
m

ys

ym

Fig. 3. Block diagram for equivalent feedforward model following.
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externally stable.
Proof: External stability is guaranteed by stability

of the model and preservation of the structural property
(y(t) = 0 for all t≥ 0, for any admissible h(t), t≥ 0) in the
equivalence between the block diagrams in Figs. 2, 3. As to
internal stability, since output feedback does not modify the
invariant zero structure of the model, the unstable part of
the invariant zero structure of (As, Bs, Cs), reproduced in
(Am, Bm, Cm) according to Theorem 7, is also part of the
invariant zero structure of (Am + BmCm, Bm, Cm). Hence,
due to Theorem 7, it is not part of the internal unassignable
eigenstructure of Vm, or, equivalently, it is not part of the
eigenstructure of Σc. Thus, cancellations outside the open
unit disc are avoided for nonminimum-phase plants.

IV. CONCLUSIONS

The design of a dynamic regulator with the minimum
number of internal unassignable dynamics achieving model
following by output feedback has been thoroughly accom-
plished in the geometric context. The structural properties
of self-bounded controlled invariant subspaces have been
shown to be fundamental to both the minimization of the
regulator complexity and the stabilization of the closed loop,
particularly in the presence of nonminimum-phase systems.

APPENDIX

GEOMETRIC APPROACH BACKGROUND

The discrete time-invariant linear system

x(t + 1) = Ax(t) + B u(t) + H h(t), (10)

y(t) = C x(t), (11)

is considered, where x∈X = R
n, u∈R

p, h∈R
s, y ∈R

q

respectively denote the state, the control input, the exoge-
nous input, the controlled output. The set of all admissible
control input functions is the set Uf of all bounded functions
with values in R

p. The set of all admissible exogenous input
functions is the set Hf of all bounded functions with values
in R

s. The matrices B, H , C are full-rank. The symbols
B, H, C are used for im B, im H , ker C, respectively. The
notation minJ (A,B) is used for the minimal A-invariant
containing B. The notations V∗ and maxV(A,B, C) are
used for the maximal (A,B)-controlled invariant contained
in C, S∗ and minS(A, C,B) are used for the minimal
(A, C)-conditioned invariant containing B, and RV∗ is used
for the subspace reachable from the origin on V∗. Let V ⊆X
be an (A,B)-controlled invariant, F be any real matrix
such that (A+ BF )V ⊆V , and RV =V ∩minS(A,V,B).
The assignable and the unassignable internal eigen-
values of V respectively are σ((A+ BF )|RV ) and
σ((A+ BF )|V/RV ). Let R= minJ (A,B). The assignable
and the unassignable external eigenvalues of V respectively
are σ((A+ BF )|(V+R)/V) and σ((A+ BF )|X/(V+R)).
Hence, V is internally stabilizable if and only if at least
one real matrix F exists, such that (A+ BF )V ⊆V and
σ((A+ BF )|V)⊂C

�. Likewise, V is externally stabiliz-
able if and only if at least one real matrix F exists, such

that (A+ BF )V ⊆V and σ((A+ BF )|X/V)⊂C
�. The

unassignable internal eigenvalues of V∗ are the invariant
zeros of (A,B,C), denoted by Z(A,B,C). The notion of
invariant zero structure generalizes that of invariant zero,
since it carries complete information on the complex or real
Jordan form of (A+ BF )|V∗/RV∗ . Let (A,B,C) be left-
invertible, a real Jordan block X is part of the invariant zero
structure of (A,B,C) if and only if matrices V , L exist,
such that AV −V X =−BL, CV =O. Let V ⊆X be an
(A,B)-controlled invariant contained in C, V is said to be
self-bounded with respect to C if V ⊇V∗ ∩B. The set of all
(A,B)-controlled invariants self-bounded with respect to C
is a non-distributive lattice with respect to ⊆, +, ∩ , denoted
by Φ(B, C). Its supremum is V∗. Its infimum is RV∗ .

Lemma 1: [5], [6] Let H⊆V∗ (H⊆V∗ +B). If
the minimal (A,B+H)-controlled invariant self-bounded
with respect to C, i.e. Vm =V∗ ∩minS(A, C,B+H),
is not internally stabilizable, no internally stabilizable
(A,B)-controlled invariant V exists, which satisfies both
V ⊆C and H⊆V (H⊆V +B).

Problem 3: measurable signal decoupling with stability.
Consider the system (10), (11) with x(0)= 0. Design a
linear algebraic state feedback F and a linear algebraic
feedforward S of the measurable exogenous input h on
the control input u such that σ(A+ BF )⊂C

� and, for
all admissible h(t) (t≥ 0), y(t) = 0 for all t≥ 0.

Theorem 11: [2] Consider the system (10), (11). Let
(A,B) be stabilizable. Problem 3 is solvable if and only
if i) H⊆V∗ +B ; ii) Vm is internally stabilizable.
If Σ is stable, the action that, starting from the zero
state, is performed by the linear algebraic feedback-
feedforward regulator previously considered can also be ob-
tained by means of a linear dynamic feedforward regulator
Σc ≡ (Ac, Bc, Cc, Dc), initially assumed in the zero state.

Problem 4: measurable signal decoupling with sta-
bility by minimal-order linear dynamic feedforward.
Consider the system (10), (11) with x(0)= 0. Let
σ(A)⊂C

�. Design a linear dynamic feedforward com-
pensator Σc ≡ (Ac, Bc, Cc, Dc) of minimal order, such that
σ(Ac)⊂C

� and, for all admissible h(t) (t≥ 0), y(t) = 0
for all t≥ 0.

The solution of Problem 4 is detailed in [4].
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