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Robust Hm Control and Quadratic Stabilization of Uncertain 
Discrete-time Switched Linear Systems 

Zhijian Ji and Long Wang 

Abstract- We focus on robust H ,  control analysis and syn- 
thesis for discrete-time switched systems with norm-bounded 

feedback and switched static output feedback is also stud- 
ied. .- -. 

time-varying uncertainties. Sufficient conditions are derived 
to guarantee quadratic stability of switched systems with a Notations: L2 lo, denotes the space of square inte- 
Drwcribed H,-norm bound y. Each of these conditions can grable functions On Io, and 11 ' 112 stands for the 
be dealt with & a linear matrix inequality (LMI) which can be 
easily tested with efficient algorithms. All the switching rules 
adopted are constructively designed and do not rely on any 
uncertainties. 

L2 [o, m)-norm. The symbol * is used to denote a symmetric 
structure in a matrix, i.e. 

L N  [ *  R ] = [ z $  E ]  
11. QUADRATIC STABILIZATION WITH 

DISTURBANCE ATTENUATION VIA SWITCHING 

Consider the following uncertain disCrete-time switched 

I. INTRODUCTION 

Switched systems have gained much attention during 
the last decade, which deserve investigation for theoretical 
development as well as for practical applications. Many 
real-world systems can be modelled as switched systems 
and they also have lots of applications in control of many 
other fields, see for instance [1]-[19] for examples. 

Although there have been many results on switched 
systems (e.g., [1]-[16] and the references therein), there has 
been relatively little work on study of uncertain switched 
systems. But this study is important since uncertainty is 
ubiquitous. One of the problems associated with this study 
is how to design switching rules which not only don't rely 
on uncertainties but also can guarantee system stability or 
other performances. Here, we will cope with this problem. 
A method is proposed to constructively design a state- 
dependent switching rule that is not dependent on any un- 
certainties. By employing this switching rule, the uncertain 
switched system is quadratically stable with a prescribed 
H,-norm bound y. 

As to performance analysis of switched systems, [14] 
presented a method to compute slow switching RMS gain 
for switched linear systems. [ 151 investigated the distur- 
bance attenuation properties of time-controlled switched 
systems. In these two papers, it is assumed that at least 
one subsystem must be Hunvitz-stable. Here, we do not 

linear systems: 

z( t  + 1) = (Ar ( z , t )  + AAV(ZJ)Mt) + Bl,(z,t)w(t) 
+(B2r(r,t) + ABzr(l-,t))u(t) 

Y ( t )  = K ( z > t ) 4 t )  
= Cr(z,t)s(t) + Dr(,,t)u(t) { (1) 

where s( t )  E R" is the state, u(t)  E RP is the control 
input, w ( t )  E Rh is the exogenous input which belongs to 
Lz[O,m), z ( t )  E RQ is the controlled output, y(t)  E R" 
is the measurement output. The right continuous function 
r ( s , t )  : R" x R+ + {1 ,2 , . . .  , l }  (denoted as I )  is the 
switching rule to be designed. Moreover, r(z, t )  = i implies 
that the i-th subsystem is activated. 

[AAi, AB2i] = Eir[Fii, Fzi], V i  E I .  (2) 

Ai ,Bl i ,&,Ci ,  Di and Hi are constant matrices of ap- 
propriate dimensions that describe the nominal systems, 
Ei, Fli, F2i are given matrices which characterize the struc- 
ture of uncertainty. r is the norm-bounded time-varying 
uncertainty, i.e., 

r = r(t) E { q t )  : r(qTr(t) 5 ~ , r ( t )  E xxrnxlc) 

take this assumption and focus On the 
Is it Possible for  us to obtain a Prescribed disturbance 

attenuation level y via a properly designed switching rule 
which do not rely on any uncertainties when all subsystems 
are not Schur-stable ? 

Moreover, the H ,  synthesis problem via switched state 
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problem: In [20], it is pointed out that there are several reasons for 
assuming that the system uncertainty has the structure given 
in (2). one is that a linear interconnection of a nominal 
plant with the uncertainty r leads to the structure of the 
form (2). The other comes from the fact that uncertainties 

e.g., satisfying 'matching conditions'. 

systems simplified from (1): 

w e  will show that the answer to this question is YES. in many physical systems can be modelled in this manner, 

Let us first consider the following unforced switched 
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To formulate the problem concerned here clearly, we need 
the following definitions. 

Definition I :  The system (3) with w 0 is said to be 
quadratically stabilizable via switching if there exist a 
switching rule r(x, t ) ,  a positive definite function V ( x )  = 
xT Px and a positive scalar E such that, for any admissible 
uncertainty r with rTr 5 I 

V ( x ( t  + 1)) - V ( x ( t ) )  < -ExT(t)x(t) 

holds for all trajectories of system (3). 
Definition 2: The system (1) is said to be quadratically 

stabilizable via switched state feedback if there exist 
a switching rule r(x,t) and an associated state feedback 
u = K,(,,t)z with Ki(i E I) not depending on uncertainty 
I?, such that with u = K,(z,tlx7 the resulting closed-loop 
nominal system (w eo) is quadratically stable. 

Remark I :  It should be noted that in the above two 
definitions, not only the state feedback gain matrices Ki(i E 
4 )  but also the switching rule ~ ( z ,  t )  to be designed do not 
depend on any uncertainty r. 

In order to study disturbance attenuation properties of 
system (3), we give the following definition. 

Dejnition 3: Given a constant y > 0, system (3) is said 
to be quadratically stabilizable with H ,  disturbance 
attenuation y via switching if there exists a switching rule 
r(x,t) such that under this switching, it satisfies 
(1) system (3)  with w 0 is quadratically stabilizable for 
all admissible uncertainties I?, 
(2) with zero-initial condition x(0) = 0, lizll~ < yllwll2 
for all admissible uncertainties r and all nonzero w E 

L2[O,W), where Ilzll2 = /=. 
To develop the main result, we need the following two 
lemmas. 

Lemma I :  Suppose A,  E ,  F are given matrices, P is a 
positive definite matrix and q is a scalar such that q-lI - 
ETPE > 0. Then 

( A  + E r F ) T P ( A  + E r F )  
- < AT(P-l - qEET)-lA + q-lFTF 

holds for arbitrary norm-bounded time-varying uncertainty 
r with rTr 5 I .  

Proofi Since 

ATPE(q-lI - ETPE)- 'ETPA - ATPErF 
-FTrTETPA + FTrT(qP1I  - ETPE)rF  

= [ A ~ P E ( ~ - ~ I  - E ~ P E ) - +  
-FTrT(q-'I - ETPE)+]  

-FTrT (q-'I - ETPE)  
X [ A ~ P E ( ~ - ~ I  - E ~ P E ) - ~  

2 0  

and rTI' 5 I ,  we have 

A ~ P E ( ~ - ~ I  - E ~ P E ) - ~ E ~ P A  + r l - l ~ T ~  

2 ATPErF + FTrTETPA + FTrTETPErF,  (4) 

It follows from (4) that 

( A  + E r F ) T P ( A  + E r F )  
= ATPA + ATPErF + FTrTETPA 

+ FTrT ET PErF 
5 A ~ P A  + A ~ P E ( ~ - ~ I  - E ~ P E ) - ~ E ~ P A  

+q-l F ~ F  

+q-l F~ F ( 5 )  
= AT[P + PE(q-lI - ETPE)- lETP]A 

On the other hand, by the Schur complement technique, it 
can be verified that 

r l - 9  - E ~ P E  > o p - l -  q ~ ~ T  > o 
thus P-' - qEET is invertible. Since 

( P - ' - V E E ~ ) - ~  = P+PE(q-lI-ETPE)-lETP (6) 

Lemma 2: Take as given the al, . . .  ,cy1 with cy, 2 0 
and E",=, cy, > 0, then the following two statements are 
equivalent: 
(i)There exist a symmetric matrix P > 0 and a scalar q > 0 
such that 

we can get the result by combining (5) and (6). 

1 
T -1 aa[AT(P-l - T-~BI~BT, - qEtE, ) -4% 

z = 1  

+V-~F:F~,  - P + C:CJ < 0 (7) 

with 
p-1- - 2  B ~ , B T , - ~ E , E , T  > o ,  vz E L  (8) 

where y is a given constant. 
(ii) There exist a symmetric matrix Q > 0, a scalar q > 0 
such that the following LMI 

- a,Q &QAT f l Q A T  0 0 

-Q + ' I E ~  ET 0 E11 0 

1 

2 = 1  

* -  

. . .  . . .  0 n 0 n 
0 0 0 n . . .  . . .  

. . .  . . .  0 0 0 n < o  
- I  n 0 . .  0 

. . .  - I  n n 
- n I  . . .  n 

is satisfied. 
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Pro08 By computation, the feasibility of (7) and (8) with 
is equivalent to 

1 
- CriP + cTc < 0 

i=l 
(9) 

1 

By virtue of Schur complement formula, (9) and (10) hold 
if and only if 

1 

2 = 1  
- a,P ;iT 0 ET r; 

- 
Fi 0 0 0 -171 

Multiplying diag{P-', I ,  I ,  I ,  I }  on both sides of the left- 
hand-side matrix of (1 1) and denote P-l = Q, then by 
Schur complement formula, (1 1) is equivalent to (ii). This 

In what follows, we will drop the state and time depen- 
dence in ~ ( z ,  t ) ,  i.e., denote ~ ( z ,  t )  as T when the switching 
rule ~(x,t) is used as a subscript to a matrix. 

Theorem I :  Given a constant y > 0, system (3) is 
quadratically stabilizable with H ,  disturbance attenuation 
y via switching if there exist a positive definite matrix Q 
and a positive scalar 7 such that the LMI (ii) is satisfied for 

some nonnegative scalars a l ,  a2, . . . , a~ with ai > 0. 
In this case, the switching rule is taken as 

concludes the proof. rn 

1 

i=l 

r(z,t) = argmin{z(t)T[AT(Q - Y - ~ B ~ , B ~  - 
z E l  

T / E ~ E T ) - ~ A ~  + v-'F;Fli - Q-l+  CTCi]x(t)},(12) 
Proof: We first show the quadratic stabilization of 

systems (3) via switching (12). By Lemma 2, the feasibility 
of (ii) means that 

I 

P-' - Y - ~ B ~ ~ B E  - vEiEF > 0, i E 1 (13) 

where P = Q-' and Q is the positive definite matrix 
satisfying (ii). This implies that the following inequality 
always holds for some < > 0 

I CC~~[A:(P-~  - y - 2 ~ l i ~ ;  - v ~ i ~ , T ) - l ~ i  
i= 1 

+v -1 FliFli T - P + CFCi] < -[I 

Consequently, for any nonzero ~ ( t )  E R" 
I 

ai[minsT(t)(AT(P-' - y-2BliBE 
a € L  

i=l 
T -1 -7EiEi ) Ai + v-'F;Fli - P + CTCi)z(t)] 

1 

- < ~ r i z ~ ( t ) [ A T ( P - ~  - y-'BliBT, 
i= 1 

- v E ~ E T ) - ~ A ~  + v-'F;Fli - P + CyCi]z(t) 
< + T ( t ) X ( t )  (14) 

On the other hand, let's consider the following discrete-type 
Lyapunov function for systems (3) 

V ( z ( t ) )  = xT(t)Pz(t)  

For w(t) E 0, we have 

V ( 4 t  + 1)) - V ( 4 t ) )  
= xT(t)[(A,  + AA,)TP(A, + AA,) - P]x(t)  
5 zT( t ) [ (A ,  + LIA,)~P(A, + AA,) - P + CYC, 

+(A, + AA,)TPBl,(y21 - BT,PBi,)-'BT,P 
x (A,  + AA,)]z(t) (15) 

where the inequality in (15) follows from the fact that 

r 2 ~  - B E P B ~ ~  > 0, i E 1 
which is due to (8) since by the Schur complement tech- 
nique 

r2r - B E P B ' ~  > o p - l -  y - 2 ~ l i ~ :  > o 
Furthermore, by (6) and Lemma 1 

(A,  + AA,)TP(A, + AA,) + (A,  + AA,)TPB1, 
x ( y 2 1  - BcPB1,)-lBEP(A, + AA,) 

= (A ,  + E,rF1,)TIP + PB1,(y21 - BT,PB1r)-l 
xBT,P](A, + ETrFlr) 

= (A,  + E,rF1,)T(P-l - Y - ~ B ~ , B T , ) - ~  

< AT(P-' - n,-'B1,B; - vE,ET)-~A, 
x ( A ,  + E,rFl,) 



holds. Hence, (15) and (16) gives that 111. CONTROL SYNTHESIS 
A.  Switched state feedback 

(1) via switched state feedback. 
T -1 In this section, we study H ,  control problem for system 

The switched state feedback robust H ,  control prob- 

V ( 4 t  + 1)) - V(x( t ) )  
6 xT( t ) [AT(PP1 -y-2B1rBT, -qErE, ) Ar 

+q-'F;Flr - P + C,TCr]x(t) (17) 

Thus, combining (14), (17) and the switching rule (12), we 
have 

V ( x ( t  + 1)) - V ( x ( t ) )  < -&xT(t)Z(t)  

1 

a= 1 
proving the quadratic stability, where E = C( 

Secondly, we will investigate the disturbance attenuation 
of system (3). In order to establish the upper bound rllwllz, 
we introduce the criterion function 

a%)-'. 

00 

J = [ z T ( t ) z ( t )  - Y ~ W ~ ( ~ ) W ( ~ ) ] .  
t=O 

Since system (3) is stable, all states converge to zero and 
noticing that x ( to )  = x(0)  = 0, we have 

00 

J = [AV(x(t)) + zT( t ) z ( t )  - r2wT(t)w(t)l l  
t = O  

where AV(x(t))  := V(x(t  + 1)) - V(x ( t ) ) .  By computa- 

lem addressed in this section is as follows: for  a given 
constant y > 0 ,  design a switching rule r(x,t) and an 
associated state feedback u = K,x such that the resulting 
closed-loop system of ( I )  is quadratically stable with H ,  
disturbance attenuation y for all admissible uncertainties. 

The resulting closed-loop system of (1) under switched 
state feedback u(t)  = K,x(t) can be written in the form of 

(20) 

where A,  := A, + B2,KT1 AA, := E,rFr, F, := FI ,  + 
Lemma 3: Take as given the a1,. .. , a1 with ai > 

O(Vz E I ) ,  then the following two statements are equivalent: 
(i)There exist a symmetric matrix P > 0, a scalar 7 > 0 
and feedback gain matrices K1,. . . , Kl such that 

~ ( t  + 1) = ( X r  + ~ X r ) x ( t )  + Blrw(t) 
z ( t )  = E,x(t), x (0)  = 0 

A h h h  

h 

{ 
F2,KT1 C, := C, + D,K,. 

1 

i=l tion, we get 
+q -1 F, -T Fi A - P + cTEi] < 0 (21) 

p-1- -2 Xz(t)  + ".*@)(A, + AA,)TPBl,w(t) - q ~ i ~ T  > 0, vi E L  (22)  

A v ( z ( t ) )  + z T ( t ) z ( t )  - y2wr(t)w(t) 
= z* ( t ) [ (A,  + AA,)TP(Ar + AA,) - P + CTC,] 

with 

U . K  . 
(iij ?here exist a symmetric matrix Q > 0, a scalar 7 > 0 
and matrices Y1 ,. . . , such that the following LMI 

1 

* = I  
- a,Q B2 1 

- Q + q E l E T  . . .  
B21 0 

0 B11 

* -  

D1 F21 
0 0  

F2 I 

. . .  B l l  0 . . ,  0 6 . . .  0 
0 0 . . .  0 0 . . .  0 

A V ( x ( t ) )  + z T ( t ) z ( t )  - y2wT(t)w(t)  . . .  6 xT(t)[AT(P-' - yP2B1,BT, - qErEr T ) -1 A, 
* -y21 0 . . .  0 0 . . .  0 < 0 (21) . --I . .  0 0 . .  

+q-lFT,F1r - P + C,TCr]x(t) (19) 0 

. .  Therefore, combing (19) with the switching rule (12), we 
get 

* * --I 0 . , .  0 
* * * - q r  . . ,  0 

* I * *  
J < O  

* f . * . - q r  
holdsfor any nonzerow(t) E '5210, m), i.e.7 112112 < r11w112 

for all nonzero ~ ( t )  E & [ O ,  co). Obviously, the designed 
is satisfied. Moreover, if (ii) holds, then (i) will hold for 

matrices I(. - ~ Q - 1 ,  where 7 ~ A Y i  
switching rule (12) does not depend on any uncertainties. 
This concludes the proof. rn 

I 

B~~ := &QAT + Y ; ~ B , T , , &  := &QAT + ~ ' B Z  
27 



- 
D1 := 6 Q C T  + YTDT, f i l  := &QCT + KTDT B. Switched static output feedback 

i=l 

+r]-lF?Fz - P + 23i] 
= A  -T ( P  --l -y -2B lBl  -T -r]mT)-'X 

1 

i=l 

- _  - 
P, B1, E are matrices defined in (9), by virtue of Schur 
complement formula, (21) and (22) hold if and only if 

1 

i= l  
- CViP AT CT FT 

T -- 
A -P 1+y-2B1B:+$TE 0 0 < o  

(24) 

C 0 -I 0 
F 0 0 -71 

Multiplying diag(P-',I, I , I }  on both sides of the left- 
hand-side matrix of (24) and denote P-l = Q,yZ = 
f i K i Q ,  then again, by Schur complement formula, (24) 

Theorem 2: Given a constant y > 0, the switched state 
feedback robust H ,  control of systems (1)  is feasible if 
there exist a matrix Q > 0, matrices Y1, . . . , K and a scalar 
r] > 0 such that the LMI (23) is satisfied for some scalars 
0 1 , .  . . , al > 0, where the state feedback gain matrices are 
given by 

is equivalent to (23). This completes the proof. 

In this case, the switching rule is taken as 

T - T  
T(X, t )  = arg min{z(t) [A, (Q - yp2B1,B; 

-r]E,E, T ) - 1 -  A, + r]-'F:Fz - QP1+ ~ ~ e ~ ] z ( t ) }  

A h 

where A, := A, + B2,K,, F, := F,, + F2,K,, 6% := C, + 
D,K,. 

Proof: By Lemma 3 and following similar arguments 
to the proof of theorem I ,  we can prove this result. 

For switched systems (l), let's consider the synthesis 
problem of switched static output feedback u( t )  = KTy(t)  
ensuring that the closed-loop system 

~ ( t  + 1) = [(AT + B2TKTHT) 
+Evr(J'lv + F ~ ~ K T H T ) ] x ( ~ )  + B~,w(t)  { ~ ( t )  = (CT + DTKTHT)z( t ) ,  ~ ( 0 )  = 0 

is quadratically stable with a prescribed H ,  disturbance 
attenuation y for all admissible uncertainties. Without loss 
of generality, the system matrices H,(Vi E I )  are assumed 
to be of full row rank. This assumption is reasonable since 
it can be achieved by discarding redundant measurement 
components of the output y(t). 

Lemma 4: Take as given the a1, . . . , a1 with ai > 
O(Vi E I ) ,  then the following condition (ii) implies con- 
dition (i): 
(i)There exist a symmetric matrix P > 0, a scalar r] > 0 
and feedback gain matrices K1,. . . , KI such that 

1 

Cai[(Ai  + B z ~ K ~ H ~ ) ~ ( P - '  - y-2BliBT, 
i=l 

T -1 -VEaE, ) (Ai + B2iKiHi) + v-l(F1i + F2iKiHi)T 

(25) 
x(F1i + F2iKiHi) - P + (Ci + DiKiHi)T 
x (Gi + DiKiHi)] < 0 

with 

P-' - T - ~ B ~ ~ B T ,  - vEiET > 0,  Vi E (26) 

(ii) There exist a symmetric matrix Q > 0, a scalar r ]  > 0 
and matrices Ni, K ( i  = 1,. . . ,1 )  such that the following 
LMI 

1 

2=1 
HI - a,Q H1 0 . . .  

-Q + V E ~ E T  . .  0 B l l  

. . .  0 

. . .  0 

E l l  . . .  
. . .  0 

0 . . .  0 0 . . .  0 
0 . . .  0 0 . . .  0 

0 . .  0 0 . . .  0 < o  
- 1  . . .  0 0 . . .  0 

* * --I 0 . . .  0 
I * _I - V I  . .  0 

* * * *  
* * * * * - q l  

and 
H,Q = VH,. 'dZ E 

28 



is satisfied. Moreover, if (ii) holds, then (i) will hold for 
matrices Ki = -&Niy-', where 

Hi := 6 Q A T  + H T N F B g , H i  := 6 Q A T  + HFNTB;  

F11 := JculQFE + HTNTF; ,  F11:= ,&QFE + H F N T F s  
Pro08 Assume there exist Q > 0 and matrices Ni, V ,  

such that the LMI in condition (ii) and (27) are satisfied. As 
H ,  is of full row rank and Q is positive definite, it follows 
from (27) that V,  is of full rank for all i = 1, . . . , 1  and then 
invertible. Again, by (27) and note that Ki = & N , y - ' ,  
we have 

G K i H i Q  = NiHi, i = 1 , . . . 7 1  

Replacing NiHi in condition ( i i )  by &KiHiQ and by 
the Schur complement formula, the result can be proved in 

Theorem 3: Given a constant y > 0, the switched static 
output feedback robust H ,  control of systems (1) is fea- 
sible if there exist a matrix Q > 0, matrices Ni,V, ( i  = 
1, . . . , I )  and a scalar 7 > 0 such that the LMI in condition 
(ii) and (27) are satisfied for some scalars ( ~ 1 ,  . . . , QZ > 0, 
where the output feedback gain matrices are given by 

the same way as the proof of Lemma 3. 

In this case, the switching rule is taken as 

- Y - ~ B ~ ~ B ;  - vEiE,')-'(Ai + B2iKiHi) 
+q-'(Fii + F2iKiHi)T(F1i + F2iKiHi) - Q-l  
+(Ci + DiKiHi)T(Ci  + D i K i H i ) ] z ( t ) }  

Pro08 By Lemma 4, the result can be proved in the 

Remark 2: The method adopted here to construct switch- 
ing rules is named as the min-projection strategy in some 
papers (e.g., [13][16][17]). The direct application of min- 
projection strategy may result in sliding motions. We refer 
to Pettersson [13] and Sun [lo] for discussions of how this 
behavior can be avoided. 

same way as the proof of theorem 1. 

IV. CONCLUSIONS 
This paper has studied disturbance attenuation properties 

of uncertain discrete-time switched systems by employing 
a constructively designed state-dependent switching rule. A 
method is proposed to design a switching rule which is 
not dependent on any uncertainties to guarantee quadratic 
stability with a prescribed H,-norm bound for a switched 
system. The feasibility of this method is associated with the 
solvability of a matrix inequality which can be dealt with 
as a linear matrix inequality (LMI). How to develop other 
switching rules to cope with the H ,  control problem for 
switched systems should be studied in the future work. 
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