2005 American Control Conference
June 8-10, 2005. Portiand, OR, USA

WeA01.5

Robust H_,, Control and Quadratic Stabilization of Uncertain
Discrete-time Switched Linear Systems

Zhijian Ji and Long Wang

Abstract— We focus on rebust H, control analysis and syn-
thesis for discrete-time switched systems with norm-bounded
time-varying uncertainties. Sufficient conditions are derived
to guarantee quadratic stability of switched systems with a
prescribed H.,-norm bound v. Each of these conditions can
be dealt with as a linear matrix inequality (LMI) which can be
easily tested with efficient algorithms. All the switching rules
adopted are constructively designed and do not rely on any
uncertainties.

I. INTRODUCTION

Switched systems have gained much attention during
the last decade, which deserve investigation for theoretical
development as well as for practical applications. Many
real-world systems can be modelled as switched systems
and they also have lots of applications in control of many
other fields, see for instance [1]-[19] for examples.

Although there have been many results on switched
systems (e.g., [1]-[16] and the references therein), there has
been relatively little work on study of uncertain switched
systems. But this study is important since uncertainty is
ubiquitous. One of the problems associated with this study
is how to design switching rules which not only don’t rely
on uncertainties but also can guarantee system stability or
other performances. Here, we will cope with this problem.
A method is proposed to constructively design a state-
dependent switching rule that is not dependent on any un-
certainties. By employing this switching rule, the uncertain
switched system is quadratically stable with a prescribed
H_,-norm bound ~.

As to performance analysis of switched systems, [14]
presented a method to compute slow switching RMS gain
for switched linear systems. [15] investigated the distur-
bance attenuation properties of time-controlled switched

systems. In these two papers, it is assumed that at least

one subsystem must be Hurwitz-stable. Here, we do not
take this assumption and focus on the following problem:

Is it possible for us to obtain a prescribed disturbance
attenuation level ~ via a properly designed switching rule
which do not rely on any uncertainties when all subsystems
are not Schur-stable ?

We will show that the answer to this question is YES.
Moreover, the H,., synthesis problem via switched state
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feedback and switched static output feedback is also stud-
ied.

Notations: L5[0,0c) denotes the space of square inte-
grable functions on [0,00) and || - ||2 stands for the usual
L4 [0, o0)-norm. The symbol * is used to denote a symmetric
structure in a matrix, i.e.

L N L N
* R NT R

II. QUADRATIC STABILIZATION WITH
DISTURBANCE ATTENUATION VIA SWITCHING

Consider the following uncertain discrete-time switched
linear systems:

z(t+1) = (Ar(z,t) + AAT(I’t))IB(t) + Blr(z,t)w(t)
+(BQT(:1:,t) + ABQT(I,t))u(t)
Z(t) Cr(z,t)z(t) + Dr(z,t)u(t)
y(t) = Hr(r,t)x(t)
(1)

where z(t) € R™ is the state, u(t) € R? is the control
input, w(t) € R* is the exogenous input which belongs to
Ls[0,00), z(t) € RY is the controlled output, y(t}) € R®
is the measurement output. The right continuous function
r(z,t) : R* x Rt — {1,2,---,1} (denoted as [) is the
switching rule to be designed. Moreover, r(z,t) = ¢ implies
that the i-th subsystem is activated.

[AA;, ABy;]| = EL'[Fu;, Fal, Viel 2

A;, By;, B2, C;, D; and H; are constant matrices of ap-
propriate dimensions that describe the nominal systems,
E;, Fy;, Fy; are given matrices which characterize the struc-
ture of uncertainty. I' is the norm-bounded time-varying
uncertainty, i.e.,

L =T(t) e {T@):T®)TT(t) < I,T(t) € R™*F}

In [20], it is pointed out that there are several reasons for
assuming that the system uncertainty has the structure given
in (2). One is that a linear interconnection of a nominal
plant with the uncertainty I" leads to the structure of the
form (2). The other comes from the fact that uncertainties
in many physical systems can be modelled in this manner,
e.g., satisfying ‘matching conditions’.

Let us first consider the following unforced switched
systems simplified from (1):

{ r(t + 1) = (Ar(a:,t) + AAT(I,t))‘T(t) + Blr(z,t)w(t)
z(t) = CT(I‘t)CL‘(t) 3



To formulate the problem concerned here clearly, we need
the following definitions.

Definition 1: The system (3) with w = 0 is said to be
quadratically stabilizable via switching if there exist a
switching rule r(z,t), a positive definite function V(z) =
x¥ Pz and a positive scalar ¢ such that, for any admissible
uncertainty I with T <17

Viz(t+1) - V(z@t)) < —exT (t)z(t)

holds for all trajectories of system (3).

Definition 2: The system (1) is said to be quadratically
stabilizable via switched state feedback if there exist
a switching rule r(z,t) and an associated state feedback
u = K,z with K;(i € [) not depending on uncertainty
I', such that with v = K, (; 42, the resulting closed-loop
nominal system (w =0) is quadratically stable.

Remark 1: It should be noted that in the above two
definitions, not only the state feedback gain matrices K;(i €
1) but also the switching rule 7(z,t) to be designed do not
depend on any uncertainty I".

In order to study disturbance attenuation properties of
system (3), we give the following definition.

Definition 3: Given a constant v > 0, system (3) is said
to be quadratically stabilizable with H,, disturbance
attenuation - via switching if there exists a switching rule
r(z,t) such that under this switching, it satisfies
(1) system (3) with w = 0 is quadratically stabilizable for
all admissible uncertainties T,

(2) with zero-initial condition (0} = 0, |jz||lz < ||

for all admissible uncertainties I" and all nonzero w €
oo

3 2T (t)2(¢)-

L»[0, 00), where ||z||2 =

To develop the main result, we need the following two
lemmas.

Lemma 1: Suppose A, E, F are given matrices, P is a
positive definite matrix and 7 is a scalar such that n~ 17 —
ETPE > 0. Then

(A+ ETFYTP(A + ETF)
< AT(P—I _ WEET)—IA + n—IFTF
holds for arbitrary norm-bounded time-varying uncertainty

I'with T7T < I.
Proof: Since

ATPE(n™1 - ETPE)*ETPA - ATPETF
—FTTTETPA + FTTT (9~ — EYPE)TF
[ATPE(y~'I — ETPE)™%
—FTrT(y~[ — ETPE)?)
x[ATPE(n~'I — ETPE)"%
~FTrT(y=' — ETPE)?|T
> 0
and I'’T < I, we have
ATPE(m™I - ETPEY 'ETPA + 5y 'FTF
> ATPETF + FITTETPA+ FTTTETPETF, (4)
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It follows from (4) that

(A+ ETF)'P(A+ ETF)

= ATPA+ ATPETF + FTTTETPA
+FTTTET PETF

<ATPA+ ATPE(n~'I - ETPE)"'ETPA
+n ' FTF

= AT|[P+ PE(n Y1 - ETPE)"'ETP|A
4" FTF (5)

On the other hand, by the Schur complement technique, it
can be verified that

n I —ETPE >0« P '—qgEET >0
thus P~' — »EET is invertible. Since
(P '—nEET)™! = P+PE(y 'I-ETPE)"'ETP (6)

we can get the result by combining (5) and (6). [ ]
Lemma 2: Take as given the oy, --- ,0q with o > 0

and Zizl oy > 0, then the following two statements are

equivalent:

(1)There exist a symmetric matrix P > 0 and a scalar 77 > 0

such that

l
Y AT (Pt —y7?ByB], - nE:ET) 71 A
i=1

4 FLR, —P+CTC) <0 (7N

with

P! —47?BBf, —nEE] >0, Viel (8
where -y is a given constant.
(ii) There exist a symmetric matrix () > 0, a scalar n > 0

such that the following LMI

i
L varteaf verQAal 0 o
i
. -Q+qE ET 0 By, o
* * . : .
* - +  —Q+nEE] o By
N - * - —~2r o
* * * * * B :
- * * * * * 25
-y
x . - “ - . .
x - . . x - .
* . . . “ . *
- . - . “ . N
« « « N . . -
- N - . . . .
varae] varecl  yETQFf VETQF]
o} o o) 0
o &) 0 0
0 [¢) 0 0
0 0 <o

=
oo ..

—nl

is satisfied.



Proof: By computation, the feasibility of (7) and (8)
is equivalent to

T 1

A (P -8, B1 —nEE YA+ IF Fy
l
—ZaiP+5TU<O (9)
i=1
with
P ' 4 ?2B,B] —yEE >0 (10)
where
,/alAl «/01101
JVEA JaiC
Fl = diag{Bn, o ,Bll},ﬁ = dlag {P, A ,P}
!
\/01F11
E = diag{E,,--- ,E},F1 = :
VoarFy

By virtue of Schur complement formula, (9) and (10) hold
if and only if

- P at o ¢ Fr
=1
— 1 —
A -P _—}—TnEE B 0 0 <0 (D
0 B, -3l 0 0
C 0 0 -1 0
F 0 0 0 —nl

Multiplying diag{P~1,I,I,1,1} on both sides of the left-

hand-side matrix of (11) and denote P~! = (, then by
Schur complement formula, (11) is equivalent to (ii). This
concludes the proof. ]

In what follows, we will drop the state and time depen-
dence in 7(z,t), i.e., denote r{x,t) as r when the switching
rule r(z,t) is used as a subscript to a matrix.

Theorem 1: Given a constant v > 0, system (3) is
quadratically stabilizable with H, disturbance attenuation
v via switching if there exist a positive definite matrix Q
and a positive scalar 7 such that the LMI (ii) is satisfied for

1
;o with Y a; > 0.

i=1

some nonnegative scalars «,aag, - -

In this case, the switching rule is taken as
r(z,t) = arg min{z(t)T[AT(Q — v *BuBY; -
i€l

Proof: We first show the quadratic stabilization of
systems (3) via switching (12). By Lemma 2, the feasibility
of (ii) means that

!
> AT (P -
=1

VL EG —

v~ BB, —nE,ETY 14,

P-l-CiTCi}<0
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with

P! ~72BBL —nEET >0, iel (13)
where P = Q7! and Q is the positive definite matrix
satisfying (ii). This implies that the following inequality

always holds for some ¢ >0

l
> AT (P
i=1

—~P+Cfcy) < —¢I

v~ ?B:BY, —nE:ET) 71 4;
+77_1F11;F1i

Consequently, for any nonzero z(t) € R™
1
> aifmin =T (¢)(A] (P~' — v *By;B};
=1
—nE ENT'A; + n ' FLFy —
< Z ;T
—ﬂEiEiT) YA+ 0T FLFy -

< ¢z (t)a(t)

On the other hand, let’s consider the following discrete-type
Lyapunov function for systems (3)

P +CTCy)a(t))

t)[AT(P~! —472By,BY,

P+ CTcz(t)
(14

V(a(t)) =« (t)Px(t)
For w(t) = 0, we have

Viz(t+1)) - V(x(t))
=zT()[(A, + AA)TP(A, + AA,) — Plz(t)
<zT W[4 + AA)TP(A, + AA,) - P+ CTC,
+(A, + AA)TPBy. (4?1 — BL PBy,)"'BT P
X(Ar + DA )]z(t) (15)

where the inequality in (15) follows from the fact that

I - BLPBy; >0, iel

which is due to (8) since by the Schur complement tech-
nique

v - BLPB); >0« P! —42B;BT. > 0
Furthermore, by (6) and Lemma 1

(Ar + AANTP(A, + AAY) + (A, + AANTPBy,
x(v’I — B{,PB1,) ' Bl P(A, + AA,)

= (A, + E,LF,)T|P+ PBy,.(v*I - BLPB,,)!
xBI P|(A, + E,TFy,)

= (A, + E,TF,) (P! =+ 2By, B])™!
x(A, + E.TFy,)

<AT(P™' —47?By, B,
+n ' FLF,

- UErEg)AlAT

(16)



holds. Hence, (15) and (16) gives that

V(z(t+1)) = V(z(t))
<" ()[AT (P~ =y 2By, Bl, —nE-E] )14,
0 FLF, — P+ CLClz(t) a7

Thus, combining (14), (17) and the switching rule (12), we
have

Vie(t+1)) — V(z(t)) < —exT (t)z(t)

!
proving the quadratic stability, where € = {(3 a;) 7.

i=1
Secondly, we will investigate the disturbance attenuation
of system (3). In order to establish the upper bound ~||w||2,
we introduce the criterion function

7= 3" [ (0)2(t) - T Ow(d)

Since system (3) is stable, all states converge to zero and
noticing that z(t,) = z(0) = 0, we have
(e o]
J =T AV (@) + 27 (0)2(t) — vwT (Hw(?)],
t=0
where AV (z(t)) := V(z(t + 1)) — V((t)). By computa-
tion, we get
AV (z(8)) + 2T ()2(t) — v*wT (Hw(t)
=zT(®)[(Ar + AA)TP(A, + AA) — P+ CTC,]
xz(t) + =7 (t)(Ar + AANT PBrw(t)
+wT(t)BE.P(A, + AA)z(t)
—wT (#)(v*I - B{,PB1,)w(t)
=T (O[{Ar + AANTP(Ar + AA) - P+ CTC,
+(Ar + AAS)TPB1. (421 — BE.PB;,) 1
x B P(Ar + AAS)2(t) — [y~ 1
—v 2B PBy.) BT P(Ar + AA)x(t) — yw(t)]T
x(I =y~ *B,PBi,)[y~'(I =y *B{,PB1,) !
x BT P(Ar + A AM)Z(t) — yw(t))
<zT)[(Ar + AA)TP(A, + AA) — P+ CTC,
+(Ar + £A)TPBi (v - B], PB1,)"!

x B, P(Ar + D A7) Ja(t) (18)

where the last inequality follows from the fact that 7 —
~v~2BT PB,, > 0. Hence, (18) and (16) gives that

AV (z(t)) + 27 (8)2(t) — v*w (tyw(t)
<zl (t)[AF (P~ — v 2By B, —nE.E]) 7' A,
+n P, — P+ CTC,Ja(t) (19)

Therefore, combing (19) with the switching rule (12), we
get
J <0

holds for any nonzero w(t) € L4[0, 00}, i.e., ||z[la < ¥||wl2
for all nonzero w(t) € Ls[0, c0). Obviously, the designed
switching rule (12) does not depend on any uncertainties.
This concludes the proof. ]
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III. CONTROL SYNTHESIS
A. Switched state feedback

In this section, we study H, control problem for system
(1) via switched state feedback.

The switched state feedback robust H, control prob-
lem addressed in this section is as follows: for a given
constant v > 0, design a switching rule r(x,t) and an
associated state feedback u = K,x such that the resulting
closed-loop system of (1) is quadratically stable with H,
disturbance attenuation y for all admissible uncertainties.

The resulting closed-loop system of (1) under switched
state feedback u(t) = K, x(t) can be written in the form of

{ 2(t+1) = (A, + AA)xz(t) + Brrw(t)

2(t) = Crz(t), z(0) =0
where A}\ = A, + Bngr,A//l\r = Erfﬁr,ﬁr = I, +
K., C,..=C,+ D,.K,.

Lemma 3: Take as given the «,,---, with o; >
0(Vi € {), then the following two statements are equivalent:
(i)There exist a symmetric matrix P > 0, a scalar n > 0
and feedback gain matrices K, --- , K; such that

(20)

!
Zai[;{?(P_l —472B;BY, — nE;ET)"14,
i=1

+npFTE, - P+CTC] <0 @n
with
P71 _~72B,,BT _qEEF >0, Viel 22

where A\z = A; + BQZK“E = Fy; + Fy K, 6, =C; +

(iis There exist a symmetric matrix @ > 0, a scalar 3 > 0

and matrices Y7,--- ,Y; such that the following LMI
t
- @;Q By By o
i=1
* -Q+nE ET 0 By
* * K . :
. . - -Q+nEEF [
* * * * —~27
N « N M "
N N N - .
. N . . N
. - . » .
. . . * .
N . N N .
. . « N .
N . . N N
0 Dy - Dy F2 - Py
[\] o o 4} [}
By 0 0 o 0
a 0 0 4] 8
- — 421 0 0 o 0 <0 23)
* * -1 0 Q [}]
« x . : : :
* * * * -TI [¢] [¢)
. * - - * —nl 0
* * * - * * " .
- - * « * * - —nI

is satisfied. Moreover, if (ii) holds, then (i) will hold for
matrices K; = \/La_,YZ-Q*I, where

By = a1QAT + V' BY,, By := VauQAT + V' B,



D, := ya,QCT + YT DT, D, := \Ja,QCF +Y,*DF

Fgl = ,/alQFﬂ =+ YlTngi,ﬁzl = \/alQFl,I; + }/lT
Proof: Since

T
FQl

!
> AT(P~' —47?BuBY, - nE:ET) YA,
i=1

4+ ETE, - P+ CTC)
= AT(P ' — 4 ?B,B. —nEE")'A
4
+n UFTE - 0P+ CTC

2=1
where

Vai(Ay + B21 K1) vai(Cr + D1Ky)

A=

: e; :
Vvoa(A; + By Ky) Vo (Cr + DiKy)

Vo (Fii + Fn Ky)
ﬁ: .

Vai(Fu+ FuKp)

P,B,E are matrices defined in (9), by virtue of Schur
complement formula, (21) and (22) hold if and only if

4

— a; P AT cT FT
=1
A P 44?B B +9EET 0 0 <O
C 0 -1 0
F 0 0 -l
(24)

Multiplying diag{P~',1,1,1} on both sides of the left-
hand-side matrix of (24) and denote P~! = Q.Y; =
Vi K;Q, then again, by Schur complement formula, (24)
is equivalent to (23). This completes the proof. [ ]

Theorem 2: Given a constant v > 0, the switched state
feedback robust H., control of systems (1) is feasible if
there exist a matrix Q@ > 0, matrices Y7, -+ ,Y; and a scalar
1 > 0 such that the LMI (23) is satisfied for some scalars

ai,- - ,oq > 0, where the state feedback gain matrices are
given by
1
Ki - }/z ‘.17 i€l
Erae el

In this case, the switching rule is taken as
_ . T 2T -2 T
r(z,t) = argmin{z(t)” [4; (Q ~ 77" BuBy;
—nEEN) T A+ FIF, - Q71 + CT Cila(t)}
where A\L == Az -+ BQlKZ,ﬁl = Fli -+ F‘Qlf(’“é'\l = Cz +
DK,

Proof: By Lemma 3 and following similar arguments
to the proof of theorem 1, we can prove this result. [ ]
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B. Switched static output feedback

For switched systems (1), let’s consider the synthesis
problem of switched static output feedback u(t) = K, y(t)
ensuring that the closed-loop system

z(t+1) = [(A, + B2y K- H,)
+E.T(Fy + Fo, K, H.))z(t) + Brrw(t)
2(t) = (Cr + D, K. H,)z(t), z(0)=0

is quadratically stable with a prescribed H,, disturbance
attenuation -y for all admissible uncertainties. Without loss
of generality, the system matrices H,(Vi € [) are assumed
to be of full row rank. This assumption is reasonable since
it can be achieved by discarding redundant measurement
components of the output y(¢).

Lemma 4: Take as given the oy, ---,0p with o; >
0(¥i € 1), then the following condition (i¢) implies con-
dition (2):

()There exist a symmetric matrix P > 0, a scalar n > 0
and feedback gain matrices Ky, --- , K; such that

!

Zai[(Ai + BgiKiHi)T(P_l — ’)/_ZBUBE

i=1
—nE.ET)"Y(A; + By KGH;) + 7Y (Fuy 4+ FouKGH)T
x(Fyi + Fpu K H;) — P+ (C; + D;K;H)T

with

P~ —42B BT, —yEEF >0, viel (6

(i1) There exist a symmetric matrix ¢ > 0, a scalar > 0
ind matrices N;, Vi(i = 1,--- 1) such that the following
MI

I
- Q Hy H, 0
=1
N -Q+nE1EY 0 B11
* » “ X .
_ T
. . - Q@+ nE E] 0
* . * " -y ¢
" . * . .
- . * - .
M M » . .
* M - . .
* . - N N
- » * . N
™ * * . M
« . * . M
0 [ T Gy Fny : F1i
0 i [ 0 0
By, 0 0 0 0
0 0 0 0 0
- —421 o a 0 0 <0
- - -1 0 0 0
* * * K . : .
. * N N 1 0 o
. . . p «  —nI 0
* * * * * * K N
* - - - - - * —nI
and
HQ=VH;, Viel 27



is satisfied. Moreover, if (ii) holds, then (i) will hold for
matrices K; = \/%_lNiVi'l, where

Hy := vaiQAT + HFNTBL  H) = v« QAT + HI NI B,
¢y = varQCT + HINT DT, ) .= JaqQCT + HE NFDF

Fis = varQFfy + HENTFE, Fyy o= VaiQF, + HY NFE
Proof: Assume there exist ¢ > 0 and matrices N;, V;
such that the LMI in condition (ii) and (27) are satisfied. As
H, is of full row rank and @ is positive definite, it follows
from (27) that V; is of full rank for all s = 1,--- , and then
invertible. Again, by (27) and note that K; = \/%_iNiV;_I,
we have

Vo, K H,Q = N;H,, [

Replacing N;H; in condition (i) by ,/o; K;H;Q) and by
the Schur complement formula, the result can be proved in
the same way as the proof of Lemma 3. ]
Theorem 3: Given a constant v > 0, the switched static
output feedback robust H,, control of systems (1) is fea-
sible if there exist a matrix @ > 0, matrices N;, V;(i =
1,---,1) and a scalar > 0 such that the LMI in condition
(ii) and (27) are satisfied for some scalars ay,--- , a7 > 0,
where the output feedback gain matrices are given by

1
V&
In this case, the switching rule is taken as

r(z,t) = arg IIIEIP{Z'(t)T[(Az + B, K H)T(Q

i=1,--,

K; NV

—y"2ByBY; - nE;E]) " (Ai + B K H,)
0 (P + Fo KiH) T (Fui + Foi KGH;) — Q71
+(Ci + DiKiHi)T(Ci + D; K H;))x(t)}
Proof: By Lemma 4, the result can be proved in the
same way as the proof of theorem 1. [ ]
Remark 2: The method adopted here to construct switch-
ing rules is named as the min-projection strategy in some
papers (e.g., [13][16][17]). The direct application of min-
projection strategy may result in sliding motions. We refer
to Pettersson [13] and Sun [10] for discussions of how this
behavior can be avoided.

IV. CONCLUSIONS

This paper has studied disturbance attenuation properties
of uncertain discrete-time switched systems by employing
a constructively designed state-dependent switching rule. A
method is proposed to design a switching rule which is
not dependent on any uncertainties to guarantee quadratic
stability with a prescribed H,, —norm bound for a switched
system. The feasibility of this method is associated with the
solvability of a matrix inequality which can be dealt with
as a linear matrix inequality (LMI). How to develop other
switching rules to cope with the H, control problem for
switched systems should be studied in the future work.
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