
 
 

 

  
Abstract—An approach combining hidden Markov model 

(HMM) with principal component analysis (PCA) for on-line 
fault diagnosis is introduced. As a tool for feature extraction, 
PCA is used to reduce the large number of correlated variables 
to a small number of principal components in an optimal way. 
HMM is applied to classify various process operating 
conditions, which is based on pattern recognition principles and 
consists of two phases, training and testing. The moving 
window for tracking dynamic data is used. The impact of the 
window length is studied by simulation. The sampling rate used 
in training data and in test data is different for correct and 
quick fault diagnosis. Case studies from the Tennessee Eastman 
plant illustrate that the proposed method is effective. 

I. INTRODUCTION 
ITH the increasing integration and complexity of 
chemical processes, it is essential for reliability and 

safety of the plant and for maintaining quality of the products 
to identify faults correctly and timely. With the widespread 
availability of distributed control systems (DCS), on-line 
fault diagnosis of chemical process is greatly facilitated, and 
has been studied intensively in recent years, which is 
recognized as a powerful support tool for operators. Much of 
the previous work on this topic is based on mathematical 
models and statistical models [8]. In the last two decades 
many contributions have been made using neural networks 
trained by steady-state data [2],[10], while some researchers 
trained the neural networks using dynamic data, a number of 
sets of time series data, and qualitative process dynamic 
trend [6],[10]. There are also some speech recognition 
approaches developed for fault diagnosis recently, such as 

 
Manuscript received September 19, 2003. This work was supported in 

part by the National High-Tech program of China under grant No. 
2001AA413110.  

Shaoyuan Zhou is with National Key Lab of Industrial Control 
Technology, Institute of Advanced Process Control, Zhejiang University, 
Hangzhou, 310027, Zhejiang Province, China (phone: 86-571-8795-2441; 
fax: 86-571-8795-1445; e-mail: syzhou@iipc.zju.edu.cn).  

Jianming Zhang is with National Key Lab of Industrial Control 
Technology, Institute of Advanced Process Control, Zhejiang University, 
Hangzhou, 310027, China (e-mail: jmzhang@iipc.zju.edu.cn). 

Shuqing Wang is with National Key Lab of Industrial Control 
Technology, Institute of Advanced Process Control, Zhejiang University, 
Hangzhou, 310027, China (e-mail: sqwang@iipc.zju.edu.cn). 

dynamic time warping (DTW) for off-line diagnosis [1], and 
hidden Markov model (HMM) for detecting abnormal 
process operation [9]. Most approaches mentioned above 
contain two steps, feature extraction and pattern recognition. 
Selecting some important measurement variables via human 
experience is a critical step for fault diagnosis in these 
methods, which is difficult in many complex chemical 
processes, and the feature sequences extracted from training 
data and testing data have the same length and sampling rate. 

In this work, all the measurement variables of plant are 
useful for fault diagnosis. Since all the measurement 
variables are highly correlated with each other, principal 
component analysis (PCA) will be used to reduce the large 
number of correlated variables to a small number of principal 
components in an optimal way without losing important 
information. These principal components can be used as the 
feature sequences (called observation sequences in this 
work), and indicate various kinds of process operating 
conditions. Then hidden Markov model is used for 
classification, which is based on pattern recognition 
principles and consists of two steps. 

 --First, a set of observation sequences traino  of training 
patterns (including normal and faults) is extracted via PCA 
and used to train corresponding HMMs. 
     --Second, when the pattern of an unknown fault is 
obtained, it is compared with all the reference patterns. 

The moving windows for tracking dynamic data are used. 
For correct and quick fault diagnosis, the length of 
observation sequences to  extracted from test patterns, 
which is determined by the moving window length, can be 
different from the one of observation sequences traino , and 
they also have the different sampling rate. The simulation of 
Tennessee Eastman (TE) plant with the decentralized 
Proportional-Integral-Differential (PID) control system is 
used to illustrate the proposed method. 

This paper is organized as follows: In section Ⅱ and Ⅲ, 
PCA and HMM are briefly described. In section Ⅳ , 
PCA-CHMM based fault diagnosis method is developed in 
detail. In section Ⅴ, a simulation study using Tennessee 
Eastman plant is performed and the results are discussed. 
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II. PRINCIPAL COMPONENT ANALYSIS 
PCA is an optimal dimensionality reduction technique in 

terms of capturing the variance of the data. Given n  
observations of m  measurement variables stacked into a 
training data matrix X , which can be decomposed via 
singular value decomposition (SVD) as follows, 

 
/ 1 Tn Σ− =X U V                                                         (1) 
 

where n n×∈ℜU and m m×∈ℜV are unitary matrices and the 
matrix n mΣ ×∈ℜ contains the nonnegative real singular 
values of deceasing magnitude 1 2( )mσ σ σ≥ ≥ ⋅⋅ ⋅ ≥ . The 
loading vectors are the orthogonal column vectors in the 
matrix V , and the variance of the thi principal component 
(the projection of the training set along the thi column of V ), 
is equal to 2

iσ . The first principal component is the direction 
in the physical variables along which the data exhibit the 
greatest variability. Subsequent principal components 
explain the remaining variability, while being orthogonal to 
the previous principal component. A small number of 
principal components, which still retain most of the 
information, can represent process operating condition. In 
this study, the raw data from training patterns and test 
patterns must be pre-processed via PCA, and a certain 
number of principal components are used as observation 
sequences for training and testing. 

III. HIDDEN MARKOV MODEL 
HMM is a double stochastic model, which not only can 

capture the serial correlations in the data, but also can take 
into account the random factors of process. The underlying 
backbone of HMM is a Markov process, the states of which 
only can be observed through another set of stochastic 
processes representing a sequence of observation. HMM 
usually has a chain structure (shown in Fig. 1), and can be 
characterized by five parameters. 

1) N : the number of states in the model. The states are 
denoted as 1 2{ , , , }NS S S= ⋅⋅⋅S . 

2) M : the number of distinct observation symbols per 
state. The observation symbols correspond to the physical 
output of the system being modelled. The symbols are 
denoted as 1 2{ , , , }MV V V= ⋅⋅⋅V . 

3) { }ija=A : the state transition probability distribution, 
where 

 
1( | ), 1 ,ij t j t ia P q S q S i j N+= = = ≤ ≤                    (2) 

 
ija  is the probability of going to state jS  at time 1t + ,given 

that at time t , the state is iS . 

4) { ( )}jb k=B : the observation symbol probability 

distribution in state jS , where 
 

( ) ( ( ) | ), 1 ,1j k t jb k P V t q S j N k M= = ≤ ≤ ≤ ≤                 (3) 
 

( )jb k  is the probability of the thk  observation symbol given 

that the state is state jS  and the time is time t . 

5) =π { }iπ : the initial state distribution,  which is the 

probability of being in the thi state at the initial time, 1t = . 
Where 
 

1( ), 1i iP q S i Nπ = = ≤ ≤                                                  (4) 
 

According to characteristics of the observation symbols, 
there are two kinds of HMMs, discrete hidden Markov model 
(DHMM) and continuous hidden Markov model (CHMM). 
The observation symbols of DHMM are mentioned above. 
The observation symbols of CHMM are continuous, 
Gaussian distribution of which is assumed in each hidden 
state. In this study, CHMM is used to classify various process 
operating conditions. There are three fundamental problems 
need to be solved in the HMM application. 

1) Given the observation sequence 1 2{ , , , }To o o= ⋅⋅⋅O  and 
a model ( , )= A,Bλ π , how to calculate ( | )P O λ ? The 
solution provides a score or measure of similarity between 
the observation sequence and the model. 

2) Given the observation sequence 1 2{ , , , }To o o= ⋅⋅⋅O and 
a model ( , )= A,Bλ π , how to determine the most likely 
state sequence that corresponds to the observation sequence 
O . 

3) How to refine model parameters ( , )= A,Bλ π  to 
maximize ( | )P O λ ? The parameter re-estimation process is 
carried out using a set of observation sequences from training 
data. 

HMM is formulated in two stages, training and testing. 
The first two problems are solved in the test phase, while the 
model re-estimation problem is solved during training phase. 
A well-known Bawm-Welch method can efficiently solve 
both the training and testing problems mentioned above [4]. 

 

  
Fig. 1 Conventional HMM chain structure. 
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Fig. 2 Schematic diagram of fault diagnosis system. 

 

IV.    STRUCTURE OF PCA-CHMM BASED FAULT DIAGNOSIS 
METHOD 

Same as other fault diagnosis methods, PCA-CHMM 
based fault diagnosis method also contains two mainly parts, 
feature extraction and pattern recognition. The particular 
attention of this study is to address,  

 --First, reduce many measurement variables to some 
principal components using PCA, and use the principal 
components as observation sequences. 

 --Second, use the different sampling rates and sampling 
number in the different kinds of observation sequences: 
training and testing, and classify various process operating 
conditions via CHMM. 

The PCA-CHMM based fault diagnosis method 
developed in this study has a basic structure as shown in     
Fig. 2, where 0λ  represents CHMM for normal operating 
condition, 1 2, , , Nλ λ λ⋅ ⋅ ⋅  represent CHMMs for all faults, 
and tO  represents observation sequence for testing. 

A. Feature Extraction Using PCA 
 It is almost impossible to use all the measurement 

variables directly for fault diagnosis in chemical engineering. 
In qualitative process trend analysis based on Neural 
Network, only some important variables are selected from all, 
and this method is well applied in a continuously well-stirred 
tank reactor (CSTR) [10] and a fluid catalytic cracking (FCC) 
process [6]. However many chemical processes like TE are 
complex, and it is almost impossible to select proper 
variables for fault diagnosis. There are a large number of 
variables and faults in these processes. And different faults 
may affect different variables. It is difficult to find a few 
common variables to explain all kinds of the information of 
process operating conditions. Since all the process variables 
are highly correlated, PCA will be used to reduce the large 
number of correlated variables to a small number of principal 
components in an optimal way without losing any important 
information. These principal components can be used as the 
feature sequences, which can indicate various kinds of 
process operating conditions. Note that PCA will only be a 
tool for feature extraction. 

B. Moving Windows and CHMM Used for On-line Fault 
Diagnosis 
A moving window is an indispensable technique to track 

dynamic data and widely used for on-line fault diagnosis. 
Sometimes it is important to select the proper time span of 
the moving window for fault diagnosis, which is the product 
of the sampling number (window length) in each moving 
window and time increment (sampling rate). If the window is 
chosen too small, one may capture process changes quickly, 
but the window may not contain enough information to 
sufficiently reflect the current process operating condition, 
thus leading to ambiguous classifications. Large window 
sizes can consider more information, but may lead to large 
time delays for the classification of various process operating 
conditions. The observation sequences trainO  for training can 
have the different length from the observation sequences tO  
for testing, if HMM is used for classification. The 
observation sequences trainO are longer for more information 
of process operating condition, whereas the observation 
sequences tO  are shorter for quicker fault diagnosis. The 
minimum length of the observation sequences tO , which is 
determined by the moving window length, is found by 
simulation. 

The Shannon sampling theorem states that for a limited 
bandwidth (band-limited) signal with maximum frequency 

maxf , the equally spaced sampling frequency sf  must be 
greater than twice of the maximum frequency maxf in order to 
have the signal be uniquely reconstructed without aliasing. 
Here the sampling rate in training data can also be different 
from the one in test data, if both of them are sufficiently high. 
The sampling rate in training data is relatively low for more 
information of process operating condition, whereas the 
sampling rate in test data is high for timely fault diagnosis.  

Hidden Markov model method is mainly applied in the 
field of signal processing, and has been become a primary 
technique for speech recognition. In this study, CHMM is 
applied to classify various process operating conditions. The 
algorithm contains mainly five steps. 

 --First, a certain number of CHMMs are trained to 



 
 

 

construct a database, including one CHMM corresponding to 
normal operating condition and other CHMMs 
corresponding to faults. 

 --Second, at time t , a limited number of data points are 
got from the raw data using moving window, and observation 
sequence tO (principal components) is extracted via PCA. 

 --Third, the probabilities ( | )( 0,1 , )t iP i Nλ = ⋅⋅⋅O  are 
calculated, which are the probabilities of the observation 
sequence tO , given all CHMMs iλ  in the database. 

 --Fourth, the maximum probability ( | )t jP λO  is found 
by comparing these probabilities, which indicates that the 
plant is running with fault ( 0,1 , )j j N= ⋅⋅⋅ . 

 --Fifth, with time going on, the steps from second to 
fourth are repeated until we can make a correct fault 
classification. 

V. APPLICATION 
The Tennessee Eastman process simulator was created by 

the Eastman Chemical Company to provide a realistic 
industrial process for evaluating process control and 
monitoring methods. As a standard model, the Tennessee 
Eastman process simulator has been widely used by the 
process monitoring and diagnosis community as a source of 
data to estimate various fault detection and diagnosis 
methods [3]. The process consists of five major unit 
operations: a reactor, a product condenser, a vapor-liquid 
separator, a recycle compressor, and a product stripper. Two 
products are produced by two simultaneous gas-liquid 
exothermic reactions, and a byproduct is generated by two 
additional exothermic reactions. The control system used for 
dynamic simulations is the decentralized PID control system 
designed by McAvoy and Ye [7], which is shown in Fig. 3. 
The process has 12 manipulated variables, 22 continuous 
process measurements, and 19 composition measurements of 
reactor feed, purge gas and product. 

In this study, the reference set consists of four patterns, 
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Fig. 3 A diagram of Tennessee Eastman simulator. 
 

0R , 1R , 2R , and 3R . The first pattern corresponds to the 
normal operating condition, whereas the other three patterns 
correspond to three major deterministic upsets, IDV(1), 
IDV(2), and IDV(7) [1]. A total of 41 variables is recorded 
every 6 minutes, and the details are shown in Table 1. 

The patterns in the reference set in our case studies contain 
41 measurement variables. However, not all 41 variables 
carry equally process information of variance for fault 
diagnosis purposes. Since the 41 variables are highly 
correlated with one another, PCA is used to reduce the 
dimension of the patterns in an optimal way. 

 
TABLE I 

PATTERNS IN THE REFERENCE SET 

Pattern Fault Type 
Step 
size 

Simulation 
time(minute) 

0R  Normal ─── ─── 480 

1R  IDV(1) Step +1.0 480 

2R  IDV(2) Step +1.0 480 

3R  IDV(7) Step +1.0 480 

 
After PCA, the first four principal components, which can 

explain most information of process operating condition, are 
used as the observation sequence for training corresponding 
CHMM. Thus the observation sequence of each pattern in the 
reference set consists of four vectors with length of 80. Fig. 
4a, 4b, 4c, and 4d show the first four principal components 
for 0R , 1R , 2R , and 3R  respectively. 
 

 
Fig. 4a Four principal components of 0R . 

 
Fig. 4b Four principal components of 1R . 



 
 

 

 
Fig. 4c Four principal components of 2R . 

 
Fig. 4d Four principal components of 3R . 

There are four CHMMs need to be trained in this study, 
one for normal operation and other three for corresponding 
fault operations. For each reference pattern ( 0,1, ,3)iR i = ⋅⋅ ⋅ , 
the corresponding observation sequence is used to train the 
continuous hidden Markov model ( 0,1, ,3)i i = ⋅⋅⋅λ via 
Baum-Welch method. Fig. 5 shows the results of training. 
From Fig. 5, we can see that the two training processes, 

0R and 2R , are quite similar, which indicates that the 
dynamic response characteristic of pattern 2R  is close to 
normal, whereas the two other patterns, 1R  and 3R , are quite 
different from normal operating condition. 

There are also four patterns in the test set. All faults in the 
test set are identical to the faults of the reference set, and each 
test pattern begins with normal operation and introduces a  

 
Fig. 5 Iteration process for training four CHMMs. 

fault after 480 minutes. A total of 41 variables is recorded 
every 1 minute (min). The details are shown in Table 2. The 
moving window is used for tracking dynamic data in the test 
set, and the window length should be as short as possible for 
quicker fault diagnosis. Here four windows with different 
length, 10, 20, 40 and 80, are used to test the effect of the 
window length on delay of diagnosis. Fig. 6a, 6b, 6c, and 6d  
 

TABLE II  
PATTERNS IN THE TEST SET 

Pattern Fault Type 
Step 
size 

Fault occurs 
from/to (minute) 

1T  Normal ─── ─── ─── 

2T  IDV(1)  Step +1.0 480/960 

3T  IDV(2) Step +1.0 480/960 

4T  IDV(7) Step +1.0 480/960 

 
show the results of four patterns in the test set with the 
window length of 10. The vertical coordinates represent 

( ( | )( 0,1 ,3))t ilog P iλ = ⋅⋅⋅O , the log  probabilities of the 
observation sequence tO , given all four CHMMs in the 
database, and the horizontal coordinates represent time t . 
From these figures, we can see that various process operating 
conditions can be recalled correctly using the proposed fault 
diagnosis method. 0( ( | )tlog P λO and 2( ( | )tlog P λO are 
close in each figure, because the process operating 
conditions between 0R and 2R are quite similar, which 
mentioned above. For pattern 4T , when fault IDV(7) is 
introduced at 480 min, the diagnostic performance is not so 
satisfying at the beginning (see Fig. 6d). Some random 
disturbance of process may worsen such performance. With 
time going on, the fault feature can be more discriminable, 
which is available of correct fault identification. Table 3 
gives the diagnosis delay of different test patterns with the 
windows of different length, which shows that for the same 
test pattern with different length windows, the shorter of the 
window, the quicker of fault diagnosis. And for the same 
length window used for different patterns, the delay of 
diagnosis is shorter if the test pattern is closer to normal 
operation. In this study, if the window length is less than 10, 
the test patterns will not be recognized correctly. 

 
Fig. 6a  Result of diagnosis for 1T . 



 
 

 

 
Fig. 6b  Result of diagnosis for 2T . 

 
Fig. 6c  Result of diagnosis for 3T . 

 
Fig. 6d  Result of diagnosis for 4T . 

 
TABLE III  

DIAGNOSIS DELAY ACCORDING TO WINDOW LENGTH 
Window 
length 

diagnosis 
time in 2T  
(minute) 

diagnosis 
time in 3T  
(minute) 

diagnosis 
time in 4T  
(minute) 

10 510 549 495 
20 514 553 500 
40 523 563 508 
80 538 576 517 

 

VI. CONCLUSION 
An approach combing PCA with HMM for on-line fault 

diagnosis has been described. The use of PCA as a tool for 
feature extraction greatly reduces the dimensions of the 

patterns and results in large improvement in the 
discriminatory power of the classifier. The CHMM, which 
not only can capture the serial correlations in the feature 
sequences of the patterns, but also can take into account the 
process random factors, is used to classify various process 
operating conditions. It is very important to train a certain 
number of CHMMs accurately. These CHMMs construct a 
database, including one CHMM corresponding to normal 
operating condition and other CHMMs corresponding to all 
faults. The sampling rate and the sampling number of 
patterns in the reference set, are relatively low and more so 
that the observation sequences of patterns can contain 
sufficient process operating information and be used to train 
more accurate CHMMs. The moving window is used to 
tracking dynamic data for on-line fault diagnosis. The 
moving windows with shorter length and the high sampling 
rate of the test patterns are selected for quicker fault 
diagnosis. The proposed fault diagnosis method is 
demonstrated in Tennessee Eastman simulator, and results 
show that it can recall single faults correctly.   
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