
A Hybrid Symbolic-Numerical Simulation Method for Some Typical Boundary Control
Problems

Jinsong Liang,Student Member, IEEE, YangQuan Chen and Bao-Zhu Guo,Senior Members, IEEE

Abstract— A new simulation method for some typical bound-
ary control problems, combining symbolic algebra and numer-
ical method, is presented with typical examples. The transfer
function is obtained in the intermediate steps of the simulation,
which makes it possible and easier to apply more advanced
boundary controllers in the future.

Index Terms— Simulation; symbolic; numeric; boundary con-
trol; beam equation; numerical inverse Laplace transform.

I. I NTRODUCTION

Boundary control of linear partial differential equation
(PDE) has become an important research area in recent years
[1], [2], [3], [4], [5], [6], due to the increasing demand
on the high precision control of many mechanical systems,
such as spacecraft with flexible attachment or robots with
flexible links, which are governed by PDE’s rather than
ordinary differential equations (ODE’s). Two important re-
search topics are the boundary control of wave equation and
beam equation, which are often encountered in the practical
engineering design. Tracing the progress in the theoretical
analysis, we have found an interesting fact, i.e., simulation
examples of the boundary control of PDE’s are very few,
albeit simulation plays such an important role in verifying
the theoretical analysis and design, identifying the potential
problems, reducing the investment, and selecting the optimal
solution. The reason for this, we would like to suggest, is that
the difficulty of boundary control problems is far beyond the
capability of most commonly available mathematical tools,
such as Matlab, Maple, even FEMLAB [7]. For example,
Matlab PDE Toolbox is only able to solve second order
PDE’s with Dirichlet and/or generalized Neumann boundary
conditions [8], while the PDE’s of most boundary control
problems are either of higher order, or/and the boundary
conditions are much more complicated than what Matlab
PDE Toolbox could accept.

In this paper, we present an easy-to-implement, yet pow-
erful, boundary control simulation method, which combines
the analytical method, the numerical method, and the modern
symbolic algebra in a creative way. The simulation examples
show that this method applies to a wide range of boundary
control problems. The method is also much easier to imple-
ment than Finite Element Method (FEM) or Finite Difference
Method (FDM) [9] with no extra software needed except
Matlab and the Matlab Symbolic Math Toolbox.

J. S. Liang and Y. Q. Chen are with the Center for Self-Organizing
and Intelligent Systems (CSOIS), Dept. of Electrical and Computer
Engineering, 4160 Old Main Hill, Utah State University, Logan, UT
84322-4160, USA. B.-Z. Guo is with the Institute of Systems Sciences,
Academy of Mathematics and System Sciences, Academia Sinica, Beijing
100080, P. R. China. Corresponding author: Dr YangQuan Chen. E-mail:
yqchen@ece.usu.edu ; Tel. 01-435-7970148; Fax: 01-435-7973054.
URL: http://www.csois.usu.edu/people/yqchen

II. PRINCIPLE AND IMPLEMENTATION

PDE’s can be solved by means of Laplace transform [10].
Following is a summary of this method. We assume the
solution of a PDE is a functionu(x, t) of the two independent
variablesx and t.

• Transformu(x, t) with respect tot by means of Laplace
transform, so we obtain an ODE for the transformed
variableU(x, s):

f(U(x, s),
dU(x, s)

dx
, . . . ,

dnU(x, s)

dxn
, x, s) = 0. (1)

• Solve the ODE (1) forU(x, s) as a function ofx, with
the transform variables still appearing as a parameter
in the solution, and use the boundary conditions of
the original problem to determine the precise form of
U(x, s).

• Take the inverse Laplace transform ofU(x, s) with
respect tos to find the solutionu(x, t).

Several problems make the above method hard to use in
practice to solve a PDE boundary control problem. First, if
(1) is of high order, the general solution is too complicated
to obtain. Second, due to the high order of the ODE and
the complicated boundary conditions, the arbitrary constants
in the general solution of ODE are hard to determine. Third,
even if we can determine the undefined constants, usually the
inverse Laplace transform can not be performed by looking
up a table of transform pairs.

We solve the above problems using the Matlab Symbolic
Math Toolbox [11] and the numerical inverse Laplace trans-
form [13], [14].

We take the following three boundary control simulation
examples to show the implementation procedures in detail.

A. Boundary control of wave equation

In this section, we will simulate the stabilization and
disturbance rejection for the wave equation as discussed in
[4], which is one of the very few papers with simulation
examples. The FDM was used in [4] to simulate the system.

We consider a string whose behavior is governed by the
wave equation. Denote the displacement of the string by
u(x, t) at x ∈ (0, 1) and t ≥ 0. The string is fixed at one
end and stabilized by dynamic boundary control at the other
end. The system is represented by

utt(x, t) − uxx(x, t) = 0, (2)

u(0, t) = 0, (3)

ux(1, t) = −f(t), (4)

where the subscript, e.g., thet as in ut, denotes a partial
differential with respect to the corresponding variable.f(t)
is the combination of boundary control force and the dis-
turbancen(t) applied at the free end of the string. We will
show the effect of the following control law:

f̂(s) = (d +
ks

s2 + ω2
)ût(1, s) + n̂(s), (5)

where f̂(s) is the Laplace transform of the combination of
boundary control force and disturbance force;n̂(s) is the
Laplace transform of the disturbance forcen(t); ût(1, s) is
the Laplace transform of the velocity of the free end;d and
k are the control gains;ω is the frequency of the noise.

The initial conditions are chosen as

u(x, 0) = −0.5 sin(0.5πx), (6)

ut(x, 0) = 0. (7)

The disturbancen(t) is chosen as

n(t) = cos(10t). (8)

We will simulate the following two cases to show that the
dynamic controller (k > 0) is better than the static controller
(k = 0) to reject the noise.

Case 1: d = 1, k = 10, ω = 10,
Case 2: d = 1, k = 0, ω = 10.
We take the simulation ofCase 1as an example to show

the steps. We first take the Laplace transform of (2), (3), (4)
with respect tot which gives

d2U(x, s)

dx2
− (s2U(x, s) − su(x, 0) − ut(x, 0)) = 0, (9)

U(0, s) = 0, (10)

dU(1, s)

dx
= (d +

ks

s2 + ω2
)(sU(1, s) − u(1, 0)) +

s

s2 + ω2
,

(11)
whereU(x, s) is the Laplace transform ofu(x, t).

Substituting the initial conditions (6) and (7) into (9) and
(11), we have

d2U(x, s)

dx2
− s2U(x, s) + s(−0.5 sin(0.5πx)) = 0, (12)

dU(1, s)

dx
= (d+

ks

s2 + ω2
)(sU(1, s)+0.5)+

s

s2 + ω2
. (13)

Next, we solve the equation (12), (10) and (13) using
Matlab Symbolic Math Toolbox functiondsolve() , which
symbolically solves the ODE(s) and the boundary and/or ini-
tial condition(s). Althoughdsolve() is able to determine
the arbitrary constants in the solution using the boundary
and/or initial condition(s), we find that its ability is rather
weak. So, we supply only (12) todsolve() rather than
supply (12), (10) and (13) together and get the following
solution with two arbitrary constantsC1 andC2 in it.
U(x,s) = 1/2*(-4*s*sin(1/2*pi*x)*exp(-s*x)+C1*piˆ2-C1 *piˆ2*e
xp(-2*s*x)+4*C1*sˆ2-4*C1*sˆ2*exp(-2*s*x)+C2*piˆ2+4* C2*sˆ2+4*
C2*sˆ2*exp(-2*s*x)+C2*piˆ2*exp(-2*s*x))/(4*sˆ2+piˆ2)*exp(s*x
) (14)

Next, we differentiateU(x, s) with respect tox to get the
first order derivative ofU(x, s) using Matlab Symbolic Math

Toolbox functiondiff() . The expression ofdU(x, s)/dx
is
dU(x,s)/dx = -1/2*s*exp(s*x)*(2*cos(1/2*pi*x)*pi*exp(-s*x)-C
1*piˆ2*exp(-2*s*x)-4*C1*sˆ2*exp(-2*s*x)+4*C2*sˆ2*ex p(-2*s*x)
+C2*piˆ2*exp(-2*s*x)-C1*piˆ2-4*C1*sˆ2-C2*piˆ2-4*C2* sˆ2)/(4*s
ˆ2+piˆ2) (15)

SubstitutingU(x, s) (14) and its first order derivative (15)
to the boundary conditions (10) and (11), we have two
boundary conditions (16) and (17) with two undetermined
constantsC1 andC2.
1/2*(2*C2*piˆ2+8*C2*sˆ2)/(4*sˆ2+piˆ2)=0 (16)

-1/2*s*exp(s)*(-C1*piˆ2*exp(-2*s)-4*C1*sˆ2*exp(-2*s)+4*C2*sˆ
2*exp(-2*s)+C2*piˆ2*exp(-2*s)-C1*piˆ2-4*C1*sˆ2-C2*p iˆ2-4*C2*
sˆ2)/(4*sˆ2+piˆ2)+(1+10*s/(sˆ2+100))*(1/2*s*(-4*s*e xp(-s)+C1
*piˆ2-C1*piˆ2*exp(-2*s)+4*C1*sˆ2-4*C1*sˆ2*exp(-2*s) +C2*piˆ2+
4*C2*sˆ2+4*C2*sˆ2*exp(-2*s)+C2*piˆ2*exp(-2*s))/(4*s ˆ2+piˆ2)*
exp(s)+1/2)+s/(sˆ2+100)=0 (17)

Feeding (16) and (17) to the Matlab Symbolic Math Toolbox
function solve() , the above two algebraic equations can
be solved symbolically to give the following expressions for
the two constantsC1 andC2:
C1 = 1/2*(12*s*piˆ2+100*piˆ2+sˆ2*piˆ2+8*sˆ3)/s/exp(s) /(5*s*p
iˆ2*exp(-2*s)-100*piˆ2-sˆ2*piˆ2+20*sˆ3*exp(-2*s)-5* s*piˆ2-40
0*sˆ2-20*sˆ3-4*sˆ4) (18)

C2 = 0 (19)

Now, we have actually obtained the explicit expression of
U(x, s), which is shown in (20).

U(x,s) = 1/(4*sˆ2+2778046668940015/281474976710656)*(-2*s*si
n(1/2*pi*x)-2778046668940015/1125899906842624*(sˆ2* piˆ2+8*sˆ
3+100*piˆ2+12*s*piˆ2)/s/exp(s)/(sˆ2*piˆ2+4*sˆ4+400* sˆ2+100*p
iˆ2+5*s*piˆ2-20*sˆ3*exp(-2*s)-5*piˆ2*exp(-2*s)*s+20 *sˆ3)*exp
(s*x)+2778046668940015/1125899906842624*(sˆ2*piˆ2+8 *sˆ3+100*
piˆ2+12*s*piˆ2)/s/exp(s)/(sˆ2*piˆ2+4*sˆ4+400*sˆ2+10 0*piˆ2+5*
s*piˆ2-20*sˆ3*exp(-2*s)-5*piˆ2*exp(-2*s)*s+20*sˆ3)* exp(-s*x)
-(sˆ2*piˆ2+8*sˆ3+100*piˆ2+12*s*piˆ2)*s/exp(s)/(sˆ2* piˆ2+4*sˆ
4+400*sˆ2+100*piˆ2+5*s*piˆ2-20*sˆ3*exp(-2*s)-5*piˆ2 *exp(-2*s
)*s+20*sˆ3)*exp(s*x)+(sˆ2*piˆ2+8*sˆ3+100*piˆ2+12*s* piˆ2)*s/e
xp(s)/(sˆ2*piˆ2+4*sˆ4+400*sˆ2+100*piˆ2+5*s*piˆ2-20* sˆ3*exp(-
2*s)-5*piˆ2*exp(-2*s)*s+20*sˆ3)*exp(-s*x)) (20)

Although obtaining the explicit expression ofU(x, s) is
just an intermediate step of this simulation method, it is
proven in the subsequent paper [12] that this is critical to
designing more advanced boundary controllers, sinceU(x, s)
is actually the transfer function of this boundary control
system.

To obtain u(x, t), we need to take the inverse Laplace
transform ofU(x, s). We shouldnot use the Matlab Sym-
bolic Math Toolbox functionilaplace() , which takes
the inverse Laplace transform symbolically, since for sucha
complicated expression ofU(x, s), the explicit expression of
u(x, t) is usually unavailable. However, we can make use of
the numeric inverse Laplace transform. Among the existing
numeric inverse Laplace transform methods, the FFT (Fast
Fourier Transform) method seems to be both accurate and
fast [13]. So, we choose the program in [14] to take the
inverse Laplace transform ofU(x, s).

At this point, we have actually finished the time-domain
simulation. In what follows, we present some simulation
results for bothCase 1andCase 2.

The tip displacement inCase 1is shown in Fig. 1. The
tip displacement inCase 2 is shown in Fig. 2. It shows
clearly that the dynamic controller is better than the static

controller in rejecting the noise. The two plots are very
close to the simulation results reported in [4]. The simulation
code developed in this paper has been validated using this
example.

It is also very easy to show the displacement of the whole
string, which is shown in Fig. 3 and Fig. 4, forCase 1and
Case 2, respectively.

0 2 4 6 8 10 12 14 16 18 20

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

time

u(
1,

t)

Fig. 1. Tip displacement forCase 1

0 2 4 6 8 10 12 14 16 18 20

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

time

u(
1,

t)

Fig. 2. Tip displacement forCase 2

B. Boundary control of beam equation

In this section, the boundary control of beam equation, a
fourth order PDE, will be simulated.

Consider a flexible beam clamped at one end and is free
at the other end. We denote the displacement of the beam by
u(x, t) at x ∈ (0, 1) and t ≥ 0. The beam is controlled by
a boundary control force at the free end. The equations are
given as follows:

utt + uxxxx = 0, (21)

Fig. 3. Displacement of the whole string forCase 1

Fig. 4. Displacement of the whole string forCase 2

u(0, t) = 0, (22)

ux(0, t) = 0, (23)

uxx(1, t) = 0, (24)

uxxx(1, t) = f(t), (25)

wheref(t) is the boundary control force applied at the free
end of the beam.

It is well-known that the following controller stabilizes the
displacement of the beam [15]:

f(t) = kut(1, t), (26)

wherek > 0 is the constant gain.
The initial conditions are chosen as

u(x, 0) = x3
− 3x2, (27)

ut(x, 0) = 0. (28)

The initial condition (27) is a typical displacement profile
when the beam is subject to an static forcef = −1 at the
free end [16].

Since the basic simulation procedure are the same as that in
Sec. II-A, except that the intermediate results and expressions
are much more complicated, only the final simulation results
will be shown below.

Figure 5 shows the displacement of the free end of the
beam. The displacement of the whole beam is shown in
Fig. 6. We comment that the numerical results are correct
at least from the quantitative point of view.

0 5 10 15 20 25
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

u

Fig. 5. Displacement of the free end

Fig. 6. Displacement of the whole beam

C. Boundary control of beam equation with time delay

In this section, we simulate the boundary control of beam
equation with a time delay from the boundary velocity
feedback loop due to measurement lag or computation lag.

The PDE, boundary conditions, initial conditions and
control gain are the same as in Sec. II-B with the exception of
the expression of control input which is changed as follows:

f(t) = kut(1, t − θ) (29)

whereθ is the time delay.
In [17] and [18], it was shown that both boundary control

of wave equation and boundary control of beam equation
become unstable when an arbitrary small time delay is
introduced into the feedback loop. We will simulate this
phenomenon to see how it happens. To understand the reason
for the instability, it helps to plot both the tip velocity and
the tip displacement. To calculate the velocity profile at any
point is easy. After the expression ofU(x, s) is obtained,
sU(x, s) will be the Laplace transform of the velocity at any
point x.

Since the simulation procedure is the same as in Sec. II-A
and Sec. II-B, only the simulation results will be presented.
We can see from Fig. 7 and Fig. 8 that the controller
is working at the beginning, driving the tip end to the
zero position. However, the frequency of the vibration is
increasing over time. When the frequency is high enough, the
time delay causes the control force to be in phase rather than
out of phase with the tip velocity, thus making the system
unstable. Although this phenomenon has been discovered for
more than ten years, no solution has been proposed so far.
In the subsequent paper [12], a new boundary controller
is presented to solve this problem with the help of the
simulation method developed in this paper.

0 5 10 15 20 25
−60

−40

−20

0

20

40

60

t

v

tip velocity

0 5 10 15 20 25
−3

−2

−1

0

1

2

t

u

tip displacement

Fig. 7. Tip velocity and displacement,θ = 0.05

III. C ONCLUDING REMARKS

A hybrid symbolic and numerical method based on MAT-
LAB Symbolic Math Toolbox is developed in this paper
to simulate the typical boundary control problems. For il-
lustration and validation, three different boundary control
problems are simulated using the proposed method. The

Fig. 8. Displacement of the whole beam,θ = 0.05

proposed simulation method can be applied to a wide range
of boundary control problems. Furthermore, the transfer
function can be calculated in the intermediate steps of the
simulation, which can be used to design some more advanced
boundary controllers. We hope that this method is helpful for
researchers to study the boundary control problems with easy
simulation explorations in the future.

IV. REFERENCES

[1] Ömer Morgül, “An exponential stability result for the
wave equation,” Automatica, vol. 38, pp. 731–735,
2002.

[2] Ömer Morgül, “Stabilization and disturbance rejection
for the beam equation,”IEEE Transactions on Auto-
matic Control, vol. 46, no. 12, pp. 1913–1918, 2001.

[3] Francis Conrad and̈Omer Morgül, “On the stability of a
flexible beam with a tip mass,”SIAM Journal of Control
and Optimization, vol. 36, no. 6, pp. 1962–1986, 1998.

[4] Ömer Morgül, “Stabilization and disturbance rejection
for the wave equation,”IEEE Transactions on Auto-
matic Control, vol. 43, no. 1, pp. 89–95, 1998.

[5] Bao-Zhu Guo, “Riesz basis approach to the stabilization
of a flexible beam with a tip mass,”SIAM J. Control
Optim., vol. 39, no. 6, pp. 1736–1747, 2001.

[6] Bao-Zhu Guo, “Riesz basis property and exponential
stability of controlled euler-bernoulli beam equations
with variable coefficients,” SIAM J. Control Optim.,
vol. 40, no. 6, pp. 1905–1923, 2002.

[7] COMSOL Inc.,www.femlab.com
[8] Comsol AB, Partial Differential Equation (PDE) Tool

Box User’s guide, The Mathworks, Inc., 2002.
[9] Andrew R. Mitchell, David Griffiths, The Finite Dif-

ference Method in Partial Differential EquationsJohn
Wiley & Sons, 1980.

[10] Alan Jeffery, Advanced Engineering Mathematics,
Harcourt/Academic Press, 2002.

[11] The Mathworks, Inc.,Symbolic Math Toolbox User’s
Guide, 2002.

[12] Jinsong Liang, YangQuan Chen and Bao-Zhu Guo “A
new boundary control method for beam equation with
delayed boundary measurement using modified smith
predictors,” in Proceedings of the IEEE Conference on
Decision and Control (CDC) 2003, Hawaii, USA.

[13] Dean G. Duffy, “On the numerical inversion of
Laplace transforms: comparison of three new methods
on characeristic problems from applications,”ACM
Transactions on Mathematical Software, vol. 19, pp.
333–359, 1993.

[14] Lubomı́r Brančı́k, “Programs for fast numerical inver-
sion of Laplace transforms in matlab language enviro-
ment,” in Konference MATLAB́99 ZCU Plzen, 1999,
pp. 27–39.

[15] G. Chen, M. C. Delfour, A. M. Krall, and G. Payre,
“Modelling, stabilization and control of serially con-
nected beams,”SIAM J. Contr. Optimiz., vol. 25, pp.
526–546, 1987.

[16] Aslam Kassimali,Structural Analysis, PWS Publishing,
1999.

[17] R. Datko, J. Lagnese, and M. P. Polis, “An example
on the effect of time delays in boundary feedback
stabilization of wave equations,” SIAM J. Control
Optim., vol. 24, pp. 152–156, 1986.

[18] R. Datko, “Two examples of ill-posedness with respect
to small time delays in stabilized elastic systems,”IEEE
Transactions on Automatic Control, vol. 38, no. 1, pp.
163–166, 1993.

APPENDIX
The code and its demo can be downloaded from

http://mechatronics.ece.usu.edu/jinsong/boundsim.zi p.

% WAVE_TF calculating the transfer function of boundary con trol of wave
% equation
%
% function U_xs = wave_tf(m, d, k, w, w_noise u_0, v_0)
%
% m: tip mass, currently only m = 0 is tested
% d: controller gain, refer to Omer Morgul, "Stabilization a nd
% disturbance rejection for the wave equation", IEEE
% Transactions on Automatic Control, Vol. 43, No. 1,
% pp. 89-95, 1998
% k: controller gain
% w: controller parameter
% w_noise: frequency of the noise, assume noise = cos(w_nois e*t)
% u_0: initial displacement condition, u_0 = u_0(x)
% v_0: initial velocity condition, v_0 = v_0(x)

% Copyright: Jinsong Liang and YangQuan Chen
% Department of Electrical and Computer Engineering
% Utah State University
% email: jinsongliang@cc.usu.edu
% yqchen@ieee.org
% Last Modified: 02/16/2003

function U_xs = wave_tf(m, d, k, w, w_noise, u_0, v_0)

syms s x C1 C2

ode = strcat(’D2U-sˆ2*U’,’+(’, char(sym(s*u_0)),’)+(’, ...
char(sym(v_0)), ’)’,’ = 0’);

U_xs_ud = simple(dsolve(ode, ’x’)); % U(x,s) with undefine d constants
dU_ud = simple(diff(U_xs_ud, ’x’, 1)); % first order deriva tive

% with undefined constants

%keyboard
eq1 = strcat(char(subs(U_xs_ud, x, 0)), ’=0’);
eq2 = simple(subs(dU_ud, x, 1) + (d + k*s/(sˆ2 + wˆ2))* ...

(s*subs(U_xs_ud, x, 1) + 0.5) + s/(sˆ2 + w_noiseˆ2));
eq2 = strcat(char(eq2), ’=0’);

[C1, C2] = solve(eq1, eq2, ’C1’, ’C2’);

U_xs = subs(U_xs_ud);
U_xs_str = char(U_xs);
U_xs_str = strrep(U_xs_str, ’*’, ’.*’);
U_xs_str = strrep(U_xs_str, ’/’, ’./’);
U_xs_str = strrep(U_xs_str, ’ˆ’, ’.ˆ’);

fid_lap = fopen(’F_lap.m’, ’Wt’);
fprintf(fid_lap, ’function F = F_lap(s)\n’);
fprintf(fid_lap, ’global x;\n’);
fprintf(fid_lap, ’F = %s;\n’, U_xs_str);

fclose(fid_lap);
clear F_lap;
% end of wave_tf.m

% Main program to simulate the examples in
% Omer Morgul, "Stabilization and disturbance rejection fo r
% the wave equation", IEEE Transactions on Automatic Contro l,
% Vol. 43, No. 1, pp. 89-95, 1998
% Copyright: Jinsong Liang and YangQuan Chen
% Last modified: 02/15/2003

clear all
syms x

% initialization
PI = sym(pi);
m = 0; % tip mass, only m=0 is tested
d = 1; % controller gain
k = 10; % controller gain
%k = 0;
w = 10; % another controller parameter
w_noise = 10; % frequency of noise, assume noise = cos(w_nois e*t)
u_0 = -0.5*sin(PI/2*x); % initial displacement condition
v_0 = 0; % initial velocity condition
t_sim = 20; % simulation time
steps_x = 20; % number of points in x direction for simulation
% end of initialization

wave_tf(m, d, k, w, w_noise, u_0, v_0);

clear x; % syms x is not needed any more
global x; % global parameters needed in function F_lap.m,

% generated in beam_smith.m

x = 1;
[u_xt_new, t] = nilt(’F_lap’, t_sim);

figure
plot(t, u_xt_new)
axis([0, 20, -0.6, 0.2])
xlabel(’\ittime’)
ylabel(’\itu(1,t)’)

% for some unknown reasons, displacement at x=0, which shoul d be zero
% at all times, can not be simulated, so we choose a very small x
u_xt = [];
for x = [0.0001, 1/steps_x:1/steps_x:1],

[u_xt_new, t] = nilt(’F_lap’, t_sim);
u_xt = [u_xt, (real(u_xt_new))’];

end

x = [0.0001, 1/steps_x:1/steps_x:1];
figure
[X, T] = meshgrid(x, t);

surf(X(2:end,:), T(2:end,:), u_xt(2:end,:), ’FaceColor ’,’interp’, ...
’EdgeColor’,’none’, ’FaceLighting’,’phong’)

%daspect([5 5 1])
%axis tight
view(-50,30)
camlight left

%surf(X, T, u_xt);
%grid on;
xlabel(’x’);
ylabel(’time’)

% NILT numerical inverse Laplace transform
% except from Programs for Fast Numerical Inversion of Lapla ce
% Transforms in Matlab Language Environment, Lubomir Branc ik,
% Konference MATLAB 99 ZCU, Plzen, 1999, pp. 27-39
%
% function [ft, t] = nilt(F, tm)
%
% F: file name of the transfer function
% tm: time range in which to calculate the inverse Laplace tra nsform
% ft: vector of the numerical value of the inverse Laplace tra nsform
% t: vector of the time, t(1) = 0, t(end) = tm

function [ft,t]=nilt(F,tm);
% In boundary control problems, if the solution includes ver y high
% frequency components, such as boundary control of beam equ ation with
% time delays in the tip velocity measurement using static co ntroller
% only, experience shows M should be at least 2048. Otherwise M = 1024
% should be enough. The values of alfa and P are not tuned so far .
% Commented by Jinsong Liang

%alfa=0; M=256; P=2;
%alfa=0; M=512; P=2;
alfa=0; M=1024; P=2;
%alfa=0; M=2048; P=2;

N=2*M; wyn=2*P+1;
t=linspace(0,tm,M);

NT=2*tm*N/(N-2); omega=2*pi/NT;
c=alfa+25/NT; s=c-i*omega*(0:N+wyn-2);
Fsc=feval(F,s);
ft=fft(Fsc(1:N)); ft=ft(1:M);
for n=N:N+wyn-2
ft(n-N+2,:)=Fsc(n+1)*exp(-i*n*omega*t);
end
ft1=cumsum(ft); ft2=zeros(wyn-1,M);
for I=1:wyn-2
ft=ft2+1./diff(ft1);
ft2=ft1(2:wyn-I,:); ft1=ft;
end
ft=ft2+1./diff(ft1); ft=2*real(ft)-Fsc(1);
ft=exp(c*t)/NT.*ft; ft(1)=2*ft(1);

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP14.5
	Page0: 5653
	Page1: 5654
	Page2: 5655
	Page3: 5656
	Page4: 5657
	Page5: 5658

