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Abstract—In this paper, we present a general family of which includes the coupled Lyapunov and Sylvester equa-
iterative methods to solve linear equations, which includes the tions as its special cases. In (1X; € R™*" are the

well-known Ja_lcobl and Gauss-Seidel iterations as |ts__speC|aI unknown matrices to be solved;, B;;, andC;; represent
cases. We give the necessary and sufficient conditions for

convergence of the iterative solutions. Furthermore, the methods constant (coefﬁClent.) matrlcgs of appropriate dl_menS|ons. For
are extended to solve coupled Sylvester matrix equations. In Such coupled matrix equations, the conventional methods
our approach, we regard the unknown matrices to be solved require dealing with matrices whose dimensionsarep x

as the system parameters to be identified, and propose a y;np. Such a dimensionality problem leads to computational

least squares iterative algorithm by applying a hierarchical  gifficylty in that excessive computer memory is required
identification principle. We prove that the iterative solution

consistently converges to the exact solution for any initial value. for computation gnd mvers,on of large matrices of size
The algorithms proposed require less storage capacity than the mnp X mnp. For instance, ifm = n = p = 100, then
existing numerical ones. Finally, the algorithms are tested on mnp x mnp = 10% x 106.

computer and the results verify the theoretical findings. In the field of matrix algebra and system identification,
Keywords: Sylvester matrix equation, Lyapunov matrix equa- iterative algorithms have received much attention [28], [29],

tion, identification, estimation, least squares, Jacobi iteration, [301: [6], [7]. For_ example, Starke presenteq an iterati-ve
Gauss-Seidel iteration, Hadamard product, star product, hier- method for solutions of the Sylvester equations by using

archical identification principle. the SOR technique [31]; Jonsson anégstbm proposed
recursive block algorithms for solving the coupled Sylvester
I. INTRODUCTION matrix equations [32], [33]; Kgstdm derived an approx-

: . , imate solution of the coupled Sylvester equation [34]. To

Lyapunov and Sylvester matrix equations play |mp0rtan6ur best knowledge, numerical algorithms for general matrix
roles_ n syste_m theory [1], [2], [3], [4], [5]'_ Although exact equations have not been fully investigated, especially the
solutions, which can be computed by using the KroneCk?{erative solutions of the coupled Sylvester matrix equations,

product, are important, the computational efforts rap'dllés well as the general coupled matrix equations in (1), and

Increase W!th the dimensions of th? matrlce§ to .b? solved. Fﬁ’{e convergence of the iterative solutions involved, which are
some applications such as stability analysis, it is often NQhe focus of this work

necessary to compute exact solutions; approximate solutions; ;.. paper, the problem will be tackled in a new way

or bounds of solutions are sufficient. Also, if the parameter_§ we regard the unknown matriceX, to be solved as

exact solutions for robust stability results [6], [7], [8], [9], Egnﬁﬁé?aeﬁzrzp(ﬁiﬁgestﬁfcgﬂiz‘:’ghgaf?gers,ﬁfﬁgt?oéo Pe
[10], [11]. _[12]' [13], [1_4]’ [15]' [16], [17], [18], [19]'_[20]' principle to decompose the system into some subsystems,
_ Alternative ways exist which transform the maitrix equazng derive iterative algorithms of the matrix equations in-
tions into forms for which solutions may be readilyyqyeq. Our methods will generate solutions to the matrix
computed, for example, the Jordan canonical form [21h, ations which are arbitrarily close to the exact solutions.
companlon-type. form [22], [23], Hessenber.g-Schur form The paper is organized as follows. In Section Il, we
[24], [25]. In this area, Chu gave a numerical algorithMyyiang the well-known Jacobi and Gauss-Seidel iterations
for solving the coupled Sylvester equations [26]; and Borngnq present a large family of iterative methods. In Sections Il
presented a parallel algorithm for solving the coupled Lyasng |y, we define the block-matrix inner product (the star

punov equations [27]. But, these algorithms require conlyqqyct for short) and derive iterative algorithms for the
puting some additional matrix transformatlon/decomposmorEoup|ed Sylvester matrix equations and general coupled
moreover, they are not suitable for more general coupleg,irix equations

_ ) respectively, and study the convergence
matrix equations of the form:

properties of the algorithms. In Section V we give an example

» for illustrating the effectiveness of the algorithms proposed
ZAUXJ'BU =C;, i=1,2 -, p, (1) in the paper. Finally, we offer some concluding remarks in
j=1 Section VI.
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[I. EXTENSION OF THEJACOBI AND GUASS-SEIDEL In fact, if (GA)T + (GA) is positive-definite, we can take

ITERATIONS
| e | 0oy Amnl(GA)T +(GA)]
Consider the following linear equation: <p< Amax (GA)T(GA)]
Ax =b. (2) whereApnax (Amin) denotes the maximum (minimum) eigen-
value.
Here, A = [a;;] € R™*™ is a given full-rank square matrix 0

with non-zero diagonal elementsec R™ is a constant vector,

apdx € R™ an unknown vector to be_ solved. L&t be the omitted here. We may draw the following corollaries from
diagonal part ofA, L andU be the strictly lower and upper tnaorem 1.

triangular parts ofA: Corollary 1: For the Jacobi iteration, ifTD~! + D~14

The proof of Theorem 1 is straightforward and hence

D = diaglai1, azs, -+, Gnn] € RV is a positive-definite matrix, and
T 0 0 - e 0 0< < Amin[ATD~1 + D=1 4]
_ 1 T ,
4y 0 : Amax[ATD2A]
L = 4z ass 0O | ermm, thenkli_{n(r)lO (k) =x=A""b.
U
: . : 0 Corollary 2: For the Gauss-Seidel iteration, T (L +
L An1 Gnp2 ' QApn—1 0 | D)iT + (L + D)ilA > 0, and
0 a2 a1z -+ ai 0 << Amin[AT(L + D)~ + (L + D)t 4]
0 0 ax @2n B T N AT(L + D)"T(L + D)A]
U = oo : e R™™, then klim x(k) = x.
e an—1,n U
0 -+ -+ 0 0 Corollary 3: If AT + A > 0, take G = I (an identity
i trix) to get a simple iteration,
which satisfyL + D + U — A. Then both the Jacobi and Mau ) f0 get a simple iteration
Gauss-Seidel iterations can be expressed as [28], [29] { z(k) = z(k — 1) + p[b — Ax(k — 1)), 5)
Amin[AT+4]
Ma(k) = Na(k—1)+b, k=123, 0 <p < STaTal
H T _
where z(k) is the iterative solution oft. For the Jacobi OF If A" +A4 <0, taking& = —1I, we have
method,M = D and N = —(L + U); for the Gauss-Seidel a(k) = x(k — 1) — plb— Az(k —1)],
method,M = L+ D and N = —U. 0 < i< donlAT—A] (6)
Unfortunately, the Jacobi and Gauss-Seidel iterations can- Amax[ATA]
not guarantee that:(k) converges to the exact solutionBoth cases y|eldhm z(k) = x.
x = A~1b, and are not suitable for solving the non-square 0
system:Hx = g with [ € R™*". This motivates us to study  Corollary 4: If we take G = AT, then the iterative
new iterative methods. algorithm,
Let G € R™*" be a full-rank matrix to be determined and T
i > 0 be the step-size or convergence factor. We present a { (k) = z(k _21) +pAT[b — Ax(k )] @)
large family of iterative methods as follows: 0<p<sfrray o 0<u< e,
a(k) = 2(k—1)+pG b—Ax(k—1)], k=1,2,3,---, (3) yields h_}m x(k) = x. Here, || X||? = tr[ X X T].
U

which includes the Jacobi and Gauss-Seidel iterations SCorollary 5: If we take G = A~!, then the following

special cases. For example, whéh= D~! and p = 1, iterative algorithm converges to

we get the Jacobi method; whéh= (L+ D)~ ! andy = .

we obtain the Gauss-Seidel method. { z(k) =x(k — 1)+ pA™' b — Az(k — 1)], ®)
Theorem 1:For the iterative algorithm in (3), assume O<p<2

the system in (2) has a unique solution. Then the iterativ¢ A is a non-square: x n full column-rank matrix, then we

solutionz(k) given by the algorithm in (3) converges to thehave hm z(k) = z in the following:

exact solutionz (i.e., khm x(k) = z = A~1b) for any finite
initial valuesz(0) if and only if { g(k) = ’Iék — 1)+ p(ATA) T AT — Az(k - 1)),
<p <2
uGA)T(GA) < (GA)T +(GA). (4) )
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O In order to derive the iterative solution to (10), we need
Whenu = 1, 2(1) = (ATA)~1ATb is the least squares to introduce the intermediate matricksandb, as follows:

solution, so (9) is also called the least squares iterative C—_YB
algorithm or the iterative least squares algorithm. by = { F_YE } ) (12)
From Corollaries 1 to 3, we can see that the Jacobi by = [C— AX, F— DX]. (13)

iteration, Gauss-Seidel iteration and the iterative algorithm
in (5) or (6) all require doing matrix eigenvalue analysisThen from (10), we obtain two fictitious subsystems
and additional computation because it is more complicated to

compute eigenvalues than the trace of a matrix; the iterative S Gi1X =br,
algorithms in (7) and (9) are also suitable for solving non- Sa Y Hy = bs.
square systems and are very useful for finding the iterative A
solutions of general matrix equations to be studied later; tHaere, G := [ p | @dH = [B, E.

convergence factoyg in (8) and (9) do not rely on the matrix et X (k) andY (k) be the iterative solutions of andY.

A and is easy to choose, although the algorithms in (8) arRleferring to Corollary 5, it is not difficult to get the iterative

(9) require computing matrix inversion. solutions toS; and S, as follows:
I1l. COUPLED SYLVESTER MATRIX EQUATIONS X&) = X(k—1)+upuGiG)™!
In this section, we study iterative algorithms to solve the A" A
. . by — Xk-1);, (14
coupled Sylvester matrix equation: D D
AX +YB=C, 10 Y(k) = Y(k—1)+p{b2—Y(k—1)[B, E]}
DX +YE=F. (10) (B, E|"(H,H)™!. (15)
Here, A, D € R™*™ B, E € R™" andC, F ¢ Rm™>»  Substituting (12) into (14) and (13) into (15) gives
are given constant matriceX,, Y’ € R™*" are the unknown ., _ v T -1
matrices to be solved. (k) ( T) GGy
First, let us introduce some notation. The notatipnis [ A ] {{ ¢-YB } _ [ A }X(k— 1)}
the identity matrix ofn x n. For two matricesM and N, D F-YE D
M ® N is their Kronecker product. For twa x n matrices = Xk-1)4puGIa)™t
X andY with [ A]T|: C—YB—AX(/C—l) ] (16)
X = [ L1, &2, -, In } eRan7 D F_YE_DX(k_l) ’
_ _ . Y(k) = Y(k-1)+p{[C—-AX, F - DX]
;?-I[X] is anmn-dimensional vector formed by columns of _Y(k—1)[B, E]}B, E]T(HlHlT)*l
1 = Y(k—1)4uC—-AX -Y(k—-1)B, F
o -DX -Y(k-1)E|[B, EI"(H,H)™. (17
col[X] = ) e R(mn) ( VE|[B, E|"(H,Hy) (17)
: Here, a difficulty arises in that the expressions on the right-
Tn hand sides of (16) and (17) contain the unknown parameter
and matrix Y and X, respectively, so it is impossible to realize
col[X] (2mn) the algorithm in (16) and (17). Our solution is based on the
col[X, Y] = [ col[Y] } R : hierarchical identification principle: The unknown variables

) ) Y in (16) and X in (17) are replaced by their estimates
The following resu!t is well-known. . o Y (k—1) andX (k—1). Thus, we obtain the iterative solutions
Lemma 1:Equation (10) has a unique solution if and onIyX(k) andY (k) of the coupled Sylvester equation in (10):

if the matrix
X(k) = X(k—1)+u(GiG)™"

AT C—AX(k-1)-Y(k—1)B
. . o _ o D F-DX(k-1)-Y(k—-1)E |’
is nonsingular; in this case, the unique solution is given by (18)

Y(k—1)+ plC — AX(k — 1)

and the corresponding homogeneous matrix equatidin+ ~Y(k ; B, fleX(k — 1) =Yk DE]
YB =0, DX+YE = 0 has a unique solution¥ =Y = 0. (B, E]" (HiHy) ",
O (19)

I, A BT®I,

— (2mn)x (2mn)

col[X,Y] = S5 teol[C, F, (11)  Y(k)
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T , (20) Taking into account the dimension compatibility, the star
m+n product is superior to matrix multiplication. Note thaf3 «
or C=AB*C)+(AB)*C.
= 1 For the Hadamardj product, we have{oY = YoX. For
Amax[G1(GTG1)YGT] + Amax[H (HLH )Y H1]”  the star product, since the multiplier matrix and multiplicand

To initialize the algorithm, we take{(0) = Y (0) = 0 or ~Matrix are not necessarily of the same size, in genetal,

some small real matrix, e.gX(0) = Y(0) = 10 51,,, B#B*A AxBxC=(AxB)xC# Ax(B~*C).

with 1,,x, being anm x n matrix whose elements are 1.  Lemma 2:Equation (21) has a unique solution if and

Theorem 2:If the coupled Sylvester equation in (10) hasonly if the matrix S, = [Bf @ A;;] € ROmnme)x(mne) s

a unique solutionX andY’, then the iterative solutioX (k) ~ nonsingular; in this case, the solution is

andY (k) given by the algorithm in (18)-(20) converges to 1

X and(Y) for any finite initial valuesX (0) andY (0), i.e., col[ Xy, Xp, -+, Xp] = 5, col[Ch, G, -+, G
lim X(k) = X, and lim Y(k) =Y. andifC; =0 (i=1, 2, ---, p), then the matrix equation
k—o0 k—o0 0 in (21) has unique solutionX; =0 (i=1, 2, ---, p).

Due to the limit of pages, the proofs of this theorem and In order to derive the iterative algorithm for solving the

following theorem are omitted, but can be obtained from thgeneral coupled matrix e'qua't|on in (21), we first consider th.e
coupled Sylvester equation in (10) to a more general form:

authors.
The convergence factor in (20) may not be the best and { AXIp+1aYB =C,
may be conservative. In fact, there exists a hesuch that DXIp+IpYE =T,

the fast convergence rate af(k) to X andY (k) to Y can  whose iterative solution can be expressed as
be obtained - see the example to be studied later.

T
IV. GENERAL COUPLED MATRIX EQUATIONS X(k)=X(k—1)+u(GTG) ™ [ é ]
In this section, we will extend the iterative method to solve
more general coupled matrix equations of the form: { [ C—AX(k—1)Ip—1,Y(k—1)B } flp 1 ]T}
_ _ _ _ B, 1E )
AnXiBu + A XoBio + -+ A1, X, By = Cy, F—DX(k—1)Ip—IpY(k—1)E
Ao X1Boy + Ao X9 Bos + - -+ 4 Agp X By = Co, (23)
Ap1 X1Bp1 + ApaXaBpa + - -+ + App X Byp = C). In 1"
plA1Dpl p222Dp2 pp<+ppp p(21) Y(k):Y(k—l)—i—,u[ [2 }
Here, 4;; € R™*™  B;; € R"*™ andC; € R™*™ are given
constant matricesX; € R™*" are the unknown matrix to C—-AX(k—-1)Ig—IpY(k—1)B
be solved. F-DX(k—-1)Ig—-IpY(k—1)E
In order to more succinctly express the iterative algorithm .
to be presented later, we introduce the block-matrix inner *[ BT } (H HD)=L, (24)
product - the starx) product for short, denoted by notation E
*, which differs from Hadamard (inner) product [35], [36],\f 7, 1, I, and I are identity matrices of appropriate
[37], [38] and general matrix multiplication. Let dimensions, then the algorithm in (23) and (24) is equivalent
X, Yi to the one in (18) and (19).
X, Yy Let X;(k) be the estimates or iterative solutions &f,
X = _ c R(mp)xn’ Y = _ c R(np)xm’ and
Xp Y, ih
(22) A7 _ .22' e R(mp)xm7
Then the block-matrix star product is defined as A:
P
X1 Yl X1Y1
X5 Y, X5, B; = |[Bi, Baj, -+, Byl € R™* (),

XxY = : * : - We present the least squares iterative algorithm of computing

X,, 3}p X,;Yp the solutionsX;(k) (i = 1, 2, ---, p) of the matrix

- i , equations in (21) as follows:
In the above definition, we assume that the dimensions of

multiplier matrix and multiplicand matrix are compatible. Xi(k) = Xi(k — 1) + u(AF A;)tAT
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[ Z A1 X(k —1)By; ] is the relative error. The errosswith different convergence
BT, factors are shown in Fig. 1. From Table | and Fig. 1, itis clear
Cy — Z Agi X;(k —1)By; B2TZ. thaté are becoming smaller and smaller and goes to zero as
* - (B;B)™1, k increases. This indicates that the proposed algorithm is
: effective.
BT
p pt
TABLE |
P Z Aijj(k - 1)Bpj
L j=1 | THE ITERATIVE SOLUTIONS (1 = 1/1.10)
(25) k T11 T12 T21 x22

5 361430 2.99005  2.94096  3.69706
1 10 3.58609  3.05453  2.90272  3.87639
B= ) 15 3.82227  3.06025 295326  3.97523
Moo [A: (AT AN-1ATIN. [BT(B; BT)-1B, 20 3.89469  3.05144 297031  3.99632
L; max[Ai (A7 A) 7T AT Amax [ B (BiB) 1 Bl 25 3.94038  3.03387 298259  4.00113
30 3.96448  3.02170  2.98944  4.00170
or 35 3.97879  3.01341 299364  4.00132
1 40 3.98723  3.00821  2.99615  4.00089
wo= —. (26) 45 3.99229  3.00500  2.99767  4.00056
mnp 50 3.99534  3.00303 299859  4.00035
; ; 55 3.99718  3.00184  2.99915  4.00021
Smcg (25) and (26) are established bgsed on the least squares 60 300829 300111 299948 400013
iterative idea of Corollary 5, the algorithm in (25) and (26) Solution 2.00000 3.00000 3.00000 2.00000

is known as the least squares iterative algorithm. In this
algorithm, we only require computing the inversion of the
m xm andn x n matrices instead of thewnp x mnp matrix,
e.g., in Lemma 2.

Theorem 3:If the coupled matrix equation in (21) has

unique solutionsX;, i = 1, 2, ---, p, then the iterative k Y11 Y12 Y21 Y22 o (%)
i o by the aldorithm | 5 332082 030948 -2.97530  3.2708622.33259974
solutionsX; (k) given by the algorithm in (25)-(26) converge 15 334456 078180 -2.21107 3.09466 7.84857813

TABLE Il
THE ITERATIVE SOLUTIONS (1 = 1/1.10)

to the solutionsX; for any finite initial valuesX,(0), i.e., 15 221169 0.83128 -2.10876 3.07171 4.34305171
20 2.10743 0.90351 -2.04993  3.04066 2.41409661

lim X;(k)=X;, i=1,2 ---, p. 25 2.06247 0.93997 -2.02722 3.02519 1.42914360

k—oo 30 2.03639 0.96383 -2.01531 3.01515 0.85256301

U 35 2.02173 0.97803 -2.00897 3.00919 0.51331998

40 2.01304 0.98670 -2.00533 3.00556 0.30979089

V. EXAMPLE 45 2.00787 0.99195 -2.00320 3.00337 0.18728213

: ; ; ; 50 2.00475 0.99512 -2.00193 3.00204 0.11329119
In this Section, we give an example to illustrate the 55 200287 099705 -2.00117 300123 0.06855766

performance of the proposed algorithms. 60  2.00174 099821 -2.00071 3.00075 0.04149393
Suppose that the coupled matrix equations A& + Solution  2.00000  1.00000 -2.00000  3.000p0
YB=C, DX +YE = F with

A= | 200100y 1000 —0.20 } The effect of changing the convergence fagtois illus-
—1.00 2.00 0.20  1.00 trated in Fig. 1. We see that the larger the convergence factor
_ | 1320 10604 ) =200 =050 1 1 is, the faster the convergence the algorithm (or, the smaller
0.60 8.40 0.50  2.00 the estimation error). However, jifis too large, the algorithm
po| ~L00 =300 o —9.50 ~18.00 } may diverge. How to choose a best convergence factor is still
2.00 —4.00 16.00  3.50 a project to be studied.

Then the solutions o andY from (11) are

V1. CONCLUSIONS

X = ill T =1 3.00 4.00 A family of iterative methods for linear systems is pre-
y21 y N '2.00 .1.00 sented and a least squares iterative solution to coupled matrix
Y= e 200 3.00 } equations are studied by using the hierarchical identification
e ' ' principle. The analysis indicates that the algorithms proposed
Taking X (0) = Y (0) = 10-%15,5, we apply the algorithm can achieve a good convergence property for any initial

in (18) and (19) to comput& (k) andY (k). The iterative values. Although the algorithms are presented for linear

solutions X (k) andY (k) is shown in Table I, where coupled matrix equations, the idea adopted can be easily
extended to study iterative solutions of more complex matrix
[ X (k) — X|* + ||V (k) — Y| equations and nonlinear matrix equations, e.g., the Riccati
(I X112+ |Y])? equation.
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1 — u=1/100 [14]
—— u=1/4.00 ||
— u=1/2.00 |J
— p=1/1.10 [15]
p=1/0.99 []
[16]
[17]
(18]
. . [19]
Fig. 1. The relative errod of Example 1 versug (dots)
1 1
M = = =
_ o F _1 [20]
B X [GL(CTC) IO Aman AT (L HT) - VHL] 2
[21]
[22]

VII. ACKNOWLEDGMENTS

This research was supported by the Natural Sciences aad]
Engineering Research Council of Canada and the National

Natural Science Foundation of China (No. 60074029).

(1]
(2]
K]

(4]

(5]

(6]

(7]

(8]

[

(20]
[11]

[12]

[13]

[24]

VIIl. REFERENCES [25]
T. Chen, B.A. Francis, Optimal Sampled-data Control Systems, Lon-
don, Springer, 1995. [26]
T. Chen, L. Qiu/H design of general multirate sampled-data control
systems, Automatica 30 (1994) 139-1152.

L. Qiu, T. Chen, Contractive completion of block matrices and itd27]
application toH., control of periodic systems, in: I. Gohberg, P.
Lancaster, P.N. Shivakumar (Eds.), Recent Developments in Operal@s]
Theory and Its Applications, Birkhauser Verlag, Basel, Switzerland
1996, pp. 263-281. 29]
L. Qiu, T. Chen, Multirate sampled-data systems:7dll, suboptimal
controllers and the minimum entropy controller, IEEE Trans. Automat
Control 44 (1999) 537-550.

L. Qiu, T. Chen, Unitary dilation approach to contractive matrix 1
completion, Linear Algebra and its Applications, In Press, Correcte@ |
Proof, Available online 17 July 2003. (32]
Y. Fang, K.A. Loparo, X. Feng, New estimates for solutions of
Lyapunov equations, |IEEE Trans. Automat. Control 42 (1997) 408-
411.

H. Mukaidani, H. Xu, K. Mizukami, New iterative algorithm for 133]
algebraic Riccati equation related #b., control problem of singularly
perturbed systems, IEEE Trans. Automat. Control 46 (2001) 1659-
1666.

T. Mori, A. Derese, A brief summary of the bounds on the solution 34]
of the algebraic matrix equations in control theory, Int. J. Control 3
(1984) 247-256.

J. Garloff, Bounds for the eigenvalues of the solution of the discret 5]
Riccati and Lyapunov equation and the continuous Lyapunov equation,
Int. J. Control 43 (1986) 423-431.

N. Komaroff, Simultaneous eigenvalue lower bounds for the Lyapunotge]
matrix equation, IEEE Trans. Automat. Control 33 (1988) 126-128.

A. Hmamed, Discrete Lyapunov equation: Simultaneous eigenvalq@n
bounds, Int. J. Control 22 (1991) 1121-1126.

M. Mrabti, A. Hmamed, Bounds for the solution of the Lyapunov[3g]
matrix equation - A unified approach, Systems Control Lett. 18 (19925
73-81.

N. Komaroff, Lower bounds for the solution of the discrete algebraic
Lyapunov equation, |IEEE Trans. Automat. Control 37 (1992) 1017-
1019.

(30]

N. Komaroff, Upper summation and product bounds for solution
eigenvalues of the Lyapunov matrix equation, IEEE Trans. Automat.
Control 37 (1992) 1040-1042.

M. Mrabti, and M. Benseddik, Unified type non-stationary Lyapunov
matrix equation - Simultaneous eigenvalue bounds. Systems Control
Lett. 24 (1995) 53-59.

W.H. Kwon, Y.S. Moon, S.C. Ahn, Bounds in algebraic Riccati and
Lyapunov equations: A survey and some new results, Int. J. Control
64 (1996) 377-389.

C. H. Lee, Upper and lower matrix bounds of the solution for the
discrete Lyapunov equation, IEEE Trans. Automat. Control 41 (1996)
1338-1341.

C. H. Lee, On the matrix bounds for the solution matrix of the discrete
algebraic Riccati equation, IEEE Trans. Circuits Syst. |, 43 (1996) 402-
407.

M. K. Tippert, D. Marchesin, Upper bounds for the solution of the
discrete algebraic Lyapunov equation, Automatica 35 (1999) 1485-
1489.

T. Mori and H. Kokame, On Solution bounds for three types of Lya-
punov matrix equations: Continuous, discrete and unified Equations,
IEEE Trans. Automat. Control 47 (2002) 1767-1770.

J. Heinen, A technique for solving the extended discrete Lyapunov
matrix equation, IEEE Trans. Automat. Control 17 (1972) 156-157.
R. Bitmead, H. Weiss, On the solution of the discrete-time Lyapunov
matrix equation in controllable canonical form, IEEE Trans. Automat.
Control 24 (1979) 481-482.

R. Bitmead, Explicit solutions of the discrete-time Lyapunov matrix
equation and Kalman-Yakubovich equations, IEEE Trans. Automat.
Control 26 (1981) 1291-1294.

A. Barraud, A numerical algorithm to solvéT XA — X = Q, IEEE
Trans. Automat. Control 22 (1977) 883-885.

G.H. Golub, S. Nash, C.F. Van Loan, A Hessenberg-Schur method for
the matrix problemAX + X B = C, IEEE Trans. Automat. Control

24 (1979) 909-913.

K.E. Chu, The solution of the matrix equatiodsX B — CXD = E

and (YA - DZ,YC — BZ) = (E, F), Linear Algebra Appl. 93
(1987) 93-105.

I. Borno. Parallel computation of the solutions of coupled algebraic
Lyapunov equations, Automatica 31 (1995) 1345-1347.

G. H. Golub, C.F. Van Loan, Matrix computations (Third Edition).
Johns Hopkins University Press, Baltimore, MD, 1996.

J.J. Climent, C. Perea, Convergence and comparison theorems for
a generalized alternating iterative method, Applied Mathematics and
Computation 143 (2003) 1-14.

L. Ljung, System ldentification: Theory for the User (2nded), Engle-
wood Cliffs, NJ: Prentice-hall, 1999.

G. Starke, W. Niethammer, SOR fetX — X B = C, Linear Algebra
Appl. 154 (1991) 355-375.

I. Jonsson, B. l&gstdm, Recursive blocked algorithms for solving
triangular systems—Part I: One-sided and coupled Sylvester-type matrix
equations, ACM Transactions on Mathematical Software 28 (2002)
392-415.

I. Jonsson, B. &gstdbm, Recursive blocked algorithms for solving
triangular systems—Part II: Two-sided and generalized Sylvester and
Lyapunov matrix equations, ACM Transactions on Mathematical Soft-
ware 28 (2002) 416-435.

B. Kagstbm, A perturbation analysis of the generalized Sylvester
equationlAR— LB, DR—LE) = (C, F'), SIAM Journal on Matrix
analysis and applications 15 (1994) 1045-1060.

C.R. Johnson, L. Elsner, The relationship between Hadamard and con-
ventional multiplication for positive definite matrices, Linear Algebra
Appl. 92 (1987) 231-240.

G. Corach, D. Stojanoff, Index of Hadamard multiplication by positive
matrices Il, Linear Algebra Appl. 332-334 (2001) 503-517.

S. Xiang, On an inequality for the Hadamard product of an M-matrix
or an H-matrix and its inverse. Linear Algebra Appl. 367 (2003) 17-27.
P. Fischer, J.D. Stegeman, Fractional Hadamard powers of positive
semidefinite matrices, Linear Algebra Appl. (2003) (Article in Press)

5640



	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP14.2
	Page0: 5635
	Page1: 5636
	Page2: 5637
	Page3: 5638
	Page4: 5639
	Page5: 5640


