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Abstract—This paper addresses the problem of obtaining domain are [2]-[13]. In our previous work [14], we devel-
optimal strategies for searching an unknown environment gped an algorithm for uncertainty reduction in an unknown
given in the form of an uncertainty map. Several strategies, in region using thek-shortest path algorithm. The objective of
the form of variable length look-ahead policies, that depend on he UAV S h . ducti
the level of communication between searchers, are proposed t e_ s was to maXImlze the unlcertamty reduction per
based on Nash equilibrium, security, and cooperative notions Sortie, under the practical constraint that the UAVs have
in game theory. Simulations are carried out for two searchers limited fuel and hence can travel limited depth of the search
on a planar uncertainty map and the performance results are  grea, as they have to return back to base for refuelling.
compared with respect to the type of strategies and the length Here, we formulate the problem of uncertainty reduction

of the look-ahead policies. These simulations show that longer b . ltiol h d obtain stratedies f h
look-ahead policies do not yield better performance than y using muitiple searchers and obtain stralegies for searc

shorter ones, but need high computational effort. The results route determination using a game theoretical framework.
also show that although communication plays a major role, Depending on the level of information and communication

the performance of Nash and security strategies, that do not petween searchers, we propose three strategies and imple-

depend on communication between searchers, are comparable ment them in the form of a finite steps look ahead policies.
with the full-information centralized cooperative case.

Il. PROBLEM FORMULATION
. INTRODUCTION
A. Discretization of the Search Space
Searching for targets in an unknown environment has

. ) L The search space is partitioned into a collection of
been a topic of intense research activity in the search theory ..
X . identical regular hexagonal cells. We use hexagons as the
literature for several decades [1]. Recent efforts to |mprovg

. . X ."basic unit since it offers the flexibility to the searcher to
the efficacy of search and surveillance operations using o . e 7 .
. . \ . ove in six uniformly distributed directions at each time
Unmanned Aerial Vehicles (UAV's) has brought this area : : . .
tep and reach a neighboring cell while expending the same

of work to the forefront. The model that is normally used’ :
for these applications is based on discretization of the sear@ﬂmunt of energy (see Figure 1).
space and time, where the search region is represented
as a collection of cells, and the dynamics of the aerial
vehicles are suppressed [2]. Tagriori knowledge of the
location of the target is represented as an uncertainty map
which could be interpreted as a function of a probability
distribution on the cells constituting the search space. The
uncertainty values associated with each cell reduces as these
cells are visited by a UAV. Hence, the objective of UAVs
would be to decide on a route so as to maximize the re-
duction in uncertainty as it searches in the unknown region.
In this paper, we propose three search strategies based on
notions in game theory in order to reduce uncertainty in a
search space. We consider two UAVs in the search space
and model the Strategies used by the UAV'’s to decide their Fig. 1. Partitioning the search space into hexagonal cells
future actions. We model the problem as a non-zero sum
game and explore noncooperative Nash strategies, security )
strategies, and cooperative strategies. Simulation results &e Uncertainty Map
presented to demonstrate the performance of these strategieShe uncertainty map constitutes of real numbers between
and also the effect of increasing the length of the finit® and 1 associated with each cell in the search space. These
horizon look-ahead policy. numbers represent the undetected mass in that cell, or it
Some relevant papers that address problems in the same@resents the uncertainty with which the location of the
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target is known in that cell. A probabilistic interpretationuncertainty reduction). This problem can be modelled as
of the uncertainty map would be as follows: An uncertaintya two person non-zero sum game with each agent as a
value of 0.6 would imply that any statement about thelayer and the set of paths available to it as the set of
target’s location in cellC; (say) would be true only with strategies. The payoff to an agent can be expressed as a
probability 0.4. An uncertainty value of 0 would imply thatsearch effectiveness matrix.

everything is known about the cell (that is, one can say witGomputing the Search Effectiveness Matriet a cell's
certainty whether a target is located in that cell or not). Onncertainty value bel;. Let P!(Cs,), i € {1,2} be

the other hand, an uncertainty value of 1 would imply thathe set of all possible paths of length for agent A,
nothing can be said about the location of a target in thamanating from celC;,. A path P/ (Cs,) € P! (Cs,), j =

i i

cell. Hence, a successful search operation is one that visits2, . . ., |P{(Cs,)| is a sequence of cells
those cells that have large uncertainty values. Once a cell ; Lo s .
C; is visited by a UAV at timet, its uncertainty valud/; Pl (Cs,) =[C",C%C%,..., 01

reduces tUi(t + 1) = Us(t)(1 — 5), wheref € [0,1) i ynereck ¢ ¢ (C is the collection of all cells)C? = C,,
the uncertainty reduction factor associated with each Visitynich is the current position of Aand C*+! € A/(CF)

C. Searcher Objectives and Constraints where N (C*) is the set of all neighboring cells @f*.
Let the uncertainty value of cell* at timet be U (C*, ).

The search space is composed of identical sized Ce”éiven a pathP.j(CS ) of agent A, suppose Ais at cellC!

The energy spent by the UAV in moving from one cell 4t time ¢ then the reduction of uncertainty associated with

a;\otthherdi\t/equ'lvatlent t? o?e unit Etep I;engtthh. 'trhe Ob.Je?t'V@l, and the subsequent updated value of uncertainty, for
ot the LUAVS dls 0 sel ect search rou esh ljJ‘AVmaX'm'zeﬁoth the agents is evaluated as:
uncertainty reduction. In every time step, the can move. o 1. Only Ais at cell C' at timet, then
from one cell to the neighboring cell. We also consider the
possibility that the searcher may devote more search effort vi(t) = U(CY, )3
in a single cell, in terms of multiple visits, because of higher UICHLt+1)=U(Ct) —vi(t)
uncertainty value there. Each UAV is equipped with sensor i .
that it uses to collect data or information about a cell. SO(?ase 2: A and A are both at celC”, then
a UAV that spends a certain number of steps (one or more)  v;(t) = 51&52 UCLH[1— (1= 61)(1 = B2)]
in searching any given cell is essentially spending this time UCLt+1) =U(CHt) — (v1(t) + va(t))
in collecting data about the cell and thus the uncertainty in _ ; i
that cell reduces as a function of the time spent there. SO, given two routes’/(Cy,) and P, (Cs,) of the two
We assume that at any given tintethe UAV's know agents, the reduction in uncertainty achieved hyafeach
the position and route (upto time)) of the other UAv’s Stept (¢t = 1,2,...,q) is given bywv;(t) and is computed
and also the updated uncertainty map. So, at timeach USing Case 1 or Case 2 as the case may be. Note that this
searcher’s objective is to determine its future route. ThePMputation has to be done simult?neous_ly for both agents.
problem can be looked upon as a centralized one if wEhe total benefit to Adue to pathP} (Cs, ) is
assume the searchers to communicate with each other and ' q
decide upon a globally beneficial decision. This would V(P! (Cs,)) = Zvi(t)
be the cooperative solution. In the absence of any such t=1

communications each searcher has to decide its next seaﬁ%he search effectiveness matrig/i has dimension

route in different ways. We will explore decision strategie?PQ(C )| x [P4(C,,)| and every elementni of the
1 S1 2 S2 (k,l)

using a game theoretical model. ) X k
matrix represents the paydft’(P/(Cs,))) obtained by the

D. A Game Theoretical Model agents, when Achooses the patRf(C,,) € P{(C;,) and
We use ¢-step look ahead planning [2], wheie de- A2 selectsP;(Cs,) € P§(Cs,)-

termines the depth of the exploratory search environment

to obtain optimal strategies. In this paper we develop the

model for two agents. We assume that ageptkAows the Every agent computes the search effectiveness matrix. The

current location of agent A and vice versa. Each UAV decision to choose a particular path are based on three

starts with an initial uncertainty map and updates it aftecommon strategies used in game theory.

every time step using information about the route taken bjdoncooperative Nash EquilibriunThis is relevant when

the other agents till that time. So, at any given time thagents do not communicate with each other to decide on

agents have the same uncertainty map and also know ttieir action at timet. So each agent plays a Nash game

past route and present location of the other agents. In thissuming the other agent to be an adversary.

sense the model is that of a perfect information one. Th8ecurity StrategyAgents do not communicate with each

objective of the agents is to select their next action or pathther to decide on their action at tinte but they adopt

at time ¢ in order to maximize their benefits (maximizeactions to get the best guaranteed individual payoff.
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Satellite/Ajrborne System A mixed strategy ford, is to chooserow 1' with proba-
bility (w.p.) 1, 'row 2", W.p. ya..., 'row |PH(Cs,)|” W.p.
Yipa(c.,)ls SO that,

> owm=1 @

The mixed strategy space fot; is denoted asY”’, while
for A, itis denoted asZ2’. A pair {y* €Y, z* € Z} is said
to constitute anoncooperative (Nash) Equilibrium solution
to the bimatrix game M, M?) in mixed strategiesif the
following inequalities are satisfied y € Y, V z € Z:

Fig. 2. Scenario for the application of noncooperative Nash or security v Ml >y Mzt yeyY
strategies B

y*’M2Z* > y*,MQZ, 2e7

Cooperative Strategyn this strategy, the agents Communi_Computation of 'mixed strategy gquilibrium solution can be
cate with each other and decide coliectively (jointly) to takéJOSeOI as a noniinear programming problem [15] as follows:
. . o ) A pair {y*, z*} constitutes a mixed-strategy Nash Equi-
the best possible action. This is also the centralized Casg, - im solution to a bimatrix gameM?, M?2) if, and only
Nash and secuty Soluions) we assumed that each UAY el €XIsis & pail ", ) stch thatly" <", f*,g°) i
knows the route of the other UAV till the instant of time solution of the following bilinear programming problem:
when the next action is to be taken, but do not communicate min [ylMlz +y M2+ f+ g
with each other to decide on the next possible action jointly vzt
(as in the cooperative case). This scenario is a practicalibject to
one in the following context: Assume that two UAV’s are
searching an unknown region and are tracked by a satellite
or some airborne system which sends this information to
the UAV’s so that they can update their uncertainty maps.
There is no direct communication between the UAV's anavhere 1pa(c, y and 1psc, ) are column vectors of
hence although each UAV is aware of the route of the othelimensions|P{(Cs,)| and|P4(Cs, )|, with all elements 1.
UAV, they do not know each other's contemplated actions. The dimension of the search effectiveness matrix in-
In such a situation the noncooperative Nash Equilibriungreases with;. Hence, computing the mixed strategy equi-
and security strategies are viable choice for a solution. Thirium using the bilinear programming formulation may
scenario is shown is Figure 2. become computationally time consuming.
A. Non-cooperative Strategy using Nash Equilibrium Dominating Strategiefl5]: We may eliminate some rows

We define a non-cooperative bimatrix games for tw@nd .columns that havg no iriﬂuence on the equilibrium
agents [15]. A bimatrix game consists of two search effolution. Wle say tlhat in matrixd/;, ’rowq @ dominates
fectiveness matricesM! = {ml,} and M2 = {m2,}, oW kif mj; > my;, ¥V j = 1,2....[P3(Cs,)| and if,
with each pair of entrie$m,, m?,) denoting the payoff to for at Ie:ast onej-,’ the Sth'C.t me_quality hoids. S’imilarly,
each agent respectively, corresponding to a pair of decisioffy A2: ‘column j' of M is said to dominate "column
made by the players. The players do not cooperate with eath'

f om? > mi, Vi=12,..,|P/C)| and if, for
other and arrive at their decisions independently. In such@ '€ast onei, the strict inequality holds. The dominated
situation the equilibrium solution can be stated as:

strategies (rovk and columri, in the above example) can be
A pair of strategiegrow k*, columnl*} is said to constitute

eliminated without affecting the equilibrium solution. The

a noncooperative (Nash) equilibrium solution to the bimatesultant matrix dimensions will be smaller than the original
q
trix game, if the following pair of inequalities are satisfied,|P1

1 2!
Mz = —f-Lipyc,» M”22 —=g-1ipsc,,)

y=20, 220,y Lpsc.y =1 2 Lpgc.,) =1

(Cs,)| x |P§(Cs,)| and will need less computational
Vk=1,2,...,[PUCs,) andV I =1,2,...,|PLCs,)] time to compute the mixed equilibrium strategy.

1) B. Security Strategy

Using security strategies agents try to secure their profits
The pure strategy Nash equilibrium may not exist alwaysissuming unpredictable behavior of other agents. For a
in which case we need to compute mixed strategies thBtmatrix game, agent Achooses 'rowk*’ whose smallest
guarantee a solution to the noncooperative game. entry is no smaller than the smallest entry of any other row.
Mixed StrategiesA mixed strategy for a player is a L ) L . o
probability distribution on the space of its pure strategies. V(M) = IMAX LN gy k= arg m,?x{mlm my}
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wherek = 1,2..|PH(Cs,)| andl = 1,2, ..|PL(Cs, )|, k* is
the security strategy for A and MM*!) is the guaranteed
payoff to A;. Similarly, for agent A, the guaranteed payoff
and security strategy are,

V(M?) = mlaxmkin mi, I*= argmlax{mkin mi,}

C. Cooperative Strategy

In this strategy the agents communicate during the deci-
sion process and choose a strategy that maximizes the join
payoff. For two agents, let the search effectiveness matrix
be M = M' + M? = {my}, wherek = 1,...,|P{(Cs,)|
andl =1,...,|Pi(Cs,)| and every element of the matrix
represents the joint payoff to both the agents. A pair of

strategieq row £*, ‘column [*' } is said to be a cooperative gearchers. The initial uncertainty map is created by gener-
strategy, if the following condition is satisfied. ating random numbers between 0 and 100 (thus representing
uncertainty as a percentage). This is shown in Figure 3. The
uncertainty in a cell is shown as the grey area within a cell.
VE=12..|P{(Cs) and¥ I = 1,2,...,|P§(Cs,)|. The percentage of uncertainty in a cell is proportional to the
The information communicated among the agents shoukize of the grey area in the cell. Initially, we assume both the
be kept to the minimum to reduce the computational angearchers to be situated in the same cell. The base station
communication complexity. Hence, the agents communicatecation is marked with a*” in the figure. The search is
only their current position and future actions upgtsteps. limited to 10 steps. The simulation study is carried out for
Each agent computes the search effectiveness matrix indi— 1,2,and 3 steps and the uncertainty reduction factors
vidually rather than communicating these matrices whichssumed arg; = 0.5 and 3, = 0.25. The aim behind such
increases the communication complexity. a simulation is to study the performance of the proposed
strategies and the effect gfon these strategies. In all the
figures, the route of Searcher 1 is shown by a thick white
When there are multiple solutions, the selection of stratgine and that of Searcher 2 is shown by a thin white line.
gies by players becomes a crucial issue. The security Figure 4 shows the search route adopted by two searchers
strategies and cooperative strategies are straightforward fg§ing noncooperative Nash equilibrium strategy. In this
implement. If there exists multiple security strategies, angimulation, there was at least one pure strategy Nash
one of them will guarantee the same payoff level. In factequilibrium for ¢ = 1, hence there was no need to use
the actual payoff is bound to be higher for both players sgixed strategies. Foy = 2 at the starting position there
long as they stick to their security strategies. In the case gfas no pure strategy Nash equilibrium and hence there
multiple cooperative strategies, since players communicajgas a necessity to use mixed strategy to get a solution.
with each other during the decision process, they can deciggr the second step there were multiple pure strategy Nash
on a strategy which is beneficial to the overall goal. Bugquilibriums and a particular solution was chosen based
when multiple solutions occur for pure or mixed strategypn random number generation as described in Section 3.4.
Nash equilibrium, we need to select one of them. SinCerom the third step onwards an unique pure strategy Nash
every agent has the search effectiveness matrix of all thguilibrium was available. Far = 3, for the first two steps
agents, we have to select a solution whose joint payoff d4fiere were no pure strategy Nash equilibrium and mixed
to A; and A, is maximum. The selection of solution doesstrategies had to be used. In fact, there were multiple mixed
not involve any communication with the other agent, bugtrategy Nash solutions and a solution was chosen based on
uses the available data in the search effectiveness matrixandom number generation. Figure 5 shows the routes of
When mixed strategy equilibrium exists, a random numsecurity strategy foy = 1, 2, 3, respectively, while figure 6
ber may be generated according to the probability distribishows the routes for the cooperative strategy. Note that in
tion of the optimal mixed strategy to select the appropriatgigure 5(a) and (b) both searchers follow the same route.
strategy. There can be other kind of selections such asFigure 7 shows the uncertainty reduction graph of various
choosing the strategy that has the highest probability (maxtrategies for 10 search steps. Figure 7(a) isqfet 1, in
imum likelihood). In our simulation, we use the randomthis strategy the graphs of uncertainty reduction for Nash
number generation method. and cooperative strategies are the same, as the search routes
for both the strategies are also same (see Figure 4(a) and
6(a)). From Figures 7 (b) and (c), the security strategy
For the purpose of simulation we consider a regiotis the least beneficial strategy while cooperative strategy
composed of a0 x 10 grid of hexagonal cells with two is the most beneficial and noncooperative strategy is in

5567

Fig. 3. Initial Uncertainty Map
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D. Selection of Strategies

IV. SIMULATION RESULTS
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between. The performance of each strategy with respeddVvs information [16]. Increasing the number of agents
to the value ofq, the look ahead window, can be seen irto N in the search space, increases the complexity of the
Figure 8. Figure 8(a) shows that = 1 performs better strategies. The implementation of cooperative strategy is
initially when Nash strategies are used, but higher valuestraightforward. For security strategies, we may model the
of ¢ perform better when the search routes are longer. joroblem as each agent playing against all the rest of the
case of security strategy, shown in Figure 8(b), initially albgents. The extension to Nash equilibrium can also be done
values ofq perform equally well, but as the search routesimilarly but requires careful and detailed formulation that
become longerg = 1 performs better. This is because,are beyond the scope of this paper. These will be reported
the search routes adopted by the two searchers are differémta later paper.

and hence the net uncertainty reduction is higher than in the

case ofq(2,3) where the searchers follow the same search Acknowledgements:The authors would like to acknowl-
route. In case of cooperative strategy, shown in Figure 8(®@dge the financial support received from the 1ISc-DRDO
higher values ofg (2 and 3) give the same performanceprogram on advanced research in mathematical engineering.

while ¢ = 1 performs the worst. However, the effectiveness
of the strategies lie in a narrow band for this example.

From these simulations it appears that increasing the siz€!
of ¢, with consequent increase in computational burden,
does not yield any substantial benefits. However, with[2]
different placements and larger number of searchers the
strategies may perform differently as the regions of overlapss;
will also increase. Also, the search space considered in these
simulations is small and the simulation is carried out only 4
for 10 steps which is also small and hence the decrease H
uncertainty reduction, as shown in Figures 7 and 8, are not
substantially different for different strategies and different®!
look ahead steps. To arrive at a more concrete conclusion on
the actual benefit of using game theoretical models requires
the simulation to be carried out on a larger search space aggi]
for larger number of steps. These results will be reporte
in future articles.

Computational timeWith increase ing the size of the 7]
search effectiveness matrix increases and hence the time Eo
compute mixed Nash equilibrium solution also increases.
For ¢ = 3 the size of the search effectiveness matrix is[8]
343 x 343, the number of variables to be optimized6izs,
and the number of constraints is 1374. So, to reduce the
computational time we chose dominated strategies only and!
then the size of the matrix reduced@ox 13, with number
of variables to 21 and the number of constraints to 40, fdt0]
the first step; and matrix size af x 14, with number of
variables to 23 and number of constraints to 44, for the

second step. [11]
V. CONCLUSIONS

. ) [12]

We proposed three strategies, cooperative, security

and Nash Equilibrium to design strategies theory for
uncertainty reduction in a search space. The strategi[élgl
use the concept of;-step look ahead planning. From
the results obtained it appears that the increasg o [14]
large values does not increase the benefits substantially,
but increases the computational time. Henge= 2 or [15]
g = 3 would give a compromise between the uncertaint
reduction and computational time required. Here, it waiél
assumed that the UAVs have complete information about
other UAVs at every time step without loss of information.
In reality there could be appreciable delays in updating
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