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Abstract— This paper addresses the problem of obtaining
optimal strategies for searching an unknown environment
given in the form of an uncertainty map. Several strategies, in
the form of variable length look-ahead policies, that depend on
the level of communication between searchers, are proposed
based on Nash equilibrium, security, and cooperative notions
in game theory. Simulations are carried out for two searchers
on a planar uncertainty map and the performance results are
compared with respect to the type of strategies and the length
of the look-ahead policies. These simulations show that longer
look-ahead policies do not yield better performance than
shorter ones, but need high computational effort. The results
also show that although communication plays a major role,
the performance of Nash and security strategies, that do not
depend on communication between searchers, are comparable
with the full-information centralized cooperative case.

I. INTRODUCTION

Searching for targets in an unknown environment has
been a topic of intense research activity in the search theory
literature for several decades [1]. Recent efforts to improve
the efficacy of search and surveillance operations using
Unmanned Aerial Vehicles (UAV’s) has brought this area
of work to the forefront. The model that is normally used
for these applications is based on discretization of the search
space and time, where the search region is represented
as a collection of cells, and the dynamics of the aerial
vehicles are suppressed [2]. Thea priori knowledge of the
location of the target is represented as an uncertainty map
which could be interpreted as a function of a probability
distribution on the cells constituting the search space. The
uncertainty values associated with each cell reduces as these
cells are visited by a UAV. Hence, the objective of UAVs
would be to decide on a route so as to maximize the re-
duction in uncertainty as it searches in the unknown region.
In this paper, we propose three search strategies based on
notions in game theory in order to reduce uncertainty in a
search space. We consider two UAVs in the search space
and model the strategies used by the UAV’s to decide their
future actions. We model the problem as a non-zero sum
game and explore noncooperative Nash strategies, security
strategies, and cooperative strategies. Simulation results are
presented to demonstrate the performance of these strategies
and also the effect of increasing the length of the finite
horizon look-ahead policy.

Some relevant papers that address problems in the same

domain are [2]-[13]. In our previous work [14], we devel-
oped an algorithm for uncertainty reduction in an unknown
region using thek-shortest path algorithm. The objective of
the UAVs was to maximize the uncertainty reduction per
sortie, under the practical constraint that the UAVs have
limited fuel and hence can travel limited depth of the search
area, as they have to return back to base for refuelling.

Here, we formulate the problem of uncertainty reduction
by using multiple searchers and obtain strategies for search
route determination using a game theoretical framework.
Depending on the level of information and communication
between searchers, we propose three strategies and imple-
ment them in the form of a finite steps look ahead policies.

II. PROBLEM FORMULATION

A. Discretization of the Search Space

The search space is partitioned into a collection of
identical regular hexagonal cells. We use hexagons as the
basic unit since it offers the flexibility to the searcher to
move in six uniformly distributed directions at each time
step and reach a neighboring cell while expending the same
amount of energy (see Figure 1).

. 

Fig. 1. Partitioning the search space into hexagonal cells

B. Uncertainty Map

The uncertainty map constitutes of real numbers between
0 and 1 associated with each cell in the search space. These
numbers represent the undetected mass in that cell, or it
represents the uncertainty with which the location of the



target is known in that cell. A probabilistic interpretation
of the uncertainty map would be as follows: An uncertainty
value of 0.6 would imply that any statement about the
target’s location in cellCi (say) would be true only with
probability 0.4. An uncertainty value of 0 would imply that
everything is known about the cell (that is, one can say with
certainty whether a target is located in that cell or not). On
the other hand, an uncertainty value of 1 would imply that
nothing can be said about the location of a target in that
cell. Hence, a successful search operation is one that visits
those cells that have large uncertainty values. Once a cell
Ci is visited by a UAV at timet, its uncertainty valueUi

reduces toUi(t + 1) = Ui(t)(1 − β), whereβ ∈ [0, 1) is
the uncertainty reduction factor associated with each visit.

C. Searcher Objectives and Constraints

The search space is composed of identical sized cells.
The energy spent by the UAV in moving from one cell to
another is equivalent to one unit step length. The objective
of the UAVs is to select search routes that maximizes
uncertainty reduction. In every time step, the UAV can move
from one cell to the neighboring cell. We also consider the
possibility that the searcher may devote more search effort
in a single cell, in terms of multiple visits, because of higher
uncertainty value there. Each UAV is equipped with sensors
that it uses to collect data or information about a cell. So,
a UAV that spends a certain number of steps (one or more)
in searching any given cell is essentially spending this time
in collecting data about the cell and thus the uncertainty in
that cell reduces as a function of the time spent there.

We assume that at any given timet the UAV’s know
the position and route (upto time (t)) of the other UAV’s
and also the updated uncertainty map. So, at timet, each
searcher’s objective is to determine its future route. The
problem can be looked upon as a centralized one if we
assume the searchers to communicate with each other and
decide upon a globally beneficial decision. This would
be the cooperative solution. In the absence of any such
communications each searcher has to decide its next search
route in different ways. We will explore decision strategies
using a game theoretical model.

D. A Game Theoretical Model

We use q-step look ahead planning [2], whereq de-
termines the depth of the exploratory search environment
to obtain optimal strategies. In this paper we develop the
model for two agents. We assume that agent A1 knows the
current location of agent A2, and vice versa. Each UAV
starts with an initial uncertainty map and updates it after
every time step using information about the route taken by
the other agents till that time. So, at any given time the
agents have the same uncertainty map and also know the
past route and present location of the other agents. In this
sense the model is that of a perfect information one. The
objective of the agents is to select their next action or path
at time t in order to maximize their benefits (maximize

uncertainty reduction). This problem can be modelled as
a two person non-zero sum game with each agent as a
player and the set of paths available to it as the set of
strategies. The payoff to an agent can be expressed as a
search effectiveness matrix.
Computing the Search Effectiveness Matrix:Let a cell’s
uncertainty value beUi. Let Pq

i (Csi
), i ∈ {1, 2} be

the set of all possible paths of lengthq for agent Ai,
emanating from cellCsi

. A pathP j
i (Csi

) ∈ Pq
i (Csi

), j =
1, 2, . . . , |Pq

i (Csi)| is a sequence of cells

P j
i (Csi) = [C1, C2, C3, . . . , Cq]

whereCk ∈ C (C is the collection of all cells),C1 = Csi

which is the current position of Ai and Ck+1 ∈ N (Ck),
whereN (Ck) is the set of all neighboring cells ofCk.

Let the uncertainty value of cellCk at timet beU(Ck, t).
Given a pathP j

i (Csi) of agent Ai, suppose Ai is at cellCl

at time t then the reduction of uncertainty associated with
Cl, and the subsequent updated value of uncertainty, for
both the agents is evaluated as:
Case 1: Only Ai is at cellCl at time t, then

vi(t) = U(Cl, t)βi

U(Cl, t + 1) = U(Cl, t)− vi(t)

Case 2: A1 and A2 are both at cellCl, then

vi(t) = βi

β1+β2
U(Cl, t)[1− (1− β1)(1− β2)]

U(Cl, t + 1) = U(Cl, t)− (v1(t) + v2(t))

So, given two routesP j
1 (Cs1) and P j′

2 (Cs2) of the two
agents, the reduction in uncertainty achieved by Ai at each
step t (t = 1, 2, . . . , q) is given byvi(t) and is computed
using Case 1 or Case 2 as the case may be. Note that this
computation has to be done simultaneously for both agents.
The total benefit to Ai due to pathP j

i (Csi) is

V (P j
i (Csi)) =

q∑
t=1

vi(t)

The search effectiveness matrixM i has dimension
|Pq

1 (Cs1)| × |Pq
2 (Cs2)| and every elementmi

(k,l) of the

matrix represents the payoff(V (P j
i (Csi))) obtained by the

agents, when A1 chooses the pathP k
1 (Cs1) ∈ Pq

1 (Cs1) and
A2 selectsP l

2(Cs2) ∈ Pq
2 (Cs2).

III. SOLUTION METHODS

Every agent computes the search effectiveness matrix. The
decision to choose a particular path are based on three
common strategies used in game theory.
Noncooperative Nash Equilibrium: This is relevant when
agents do not communicate with each other to decide on
their action at timet. So each agent plays a Nash game
assuming the other agent to be an adversary.
Security Strategy: Agents do not communicate with each
other to decide on their action at timet, but they adopt
actions to get the best guaranteed individual payoff.
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Fig. 2. Scenario for the application of noncooperative Nash or security
strategies

Cooperative Strategy: In this strategy, the agents communi-
cate with each other and decide collectively (jointly) to take
the best possible action. This is also the centralized case.

In the above strategies (especially in the noncooperative
Nash and security solutions) we assumed that each UAV
knows the route of the other UAV till the instant of time
when the next action is to be taken, but do not communicate
with each other to decide on the next possible action jointly
(as in the cooperative case). This scenario is a practical
one in the following context: Assume that two UAV’s are
searching an unknown region and are tracked by a satellite
or some airborne system which sends this information to
the UAV’s so that they can update their uncertainty maps.
There is no direct communication between the UAV’s and
hence although each UAV is aware of the route of the other
UAV, they do not know each other’s contemplated actions.
In such a situation the noncooperative Nash Equilibrium
and security strategies are viable choice for a solution. This
scenario is shown is Figure 2.
A. Non-cooperative Strategy using Nash Equilibrium

We define a non-cooperative bimatrix games for two
agents [15]. A bimatrix game consists of two search ef-
fectiveness matrices,M1 = {m1

kl} and M2 = {m2
kl},

with each pair of entries(m1
kl,m

2
kl) denoting the payoff to

each agent respectively, corresponding to a pair of decisions
made by the players. The players do not cooperate with each
other and arrive at their decisions independently. In such a
situation the equilibrium solution can be stated as:
A pair of strategies{row k∗, columnl∗} is said to constitute
a noncooperative (Nash) equilibrium solution to the bima-
trix game, if the following pair of inequalities are satisfied,
∀ k = 1, 2, . . . , |Pq

1 (Cs1)| and∀ l = 1, 2, . . . , |Pq
2 (Cs2)|

m1
k∗l∗ ≥ m1

kl∗ , m2
k∗l∗ ≥ m2

k∗l (1)

The pure strategy Nash equilibrium may not exist always,
in which case we need to compute mixed strategies that
guarantee a solution to the noncooperative game.

Mixed Strategies: A mixed strategy for a player is a
probability distribution on the space of its pure strategies.

A mixed strategy forA1 is to choose ’row 1’ with proba-
bility (w.p.) y1, ’row 2’, w.p. y2 . . ., ’row |Pq

1 (Cs1)|’ w.p.
y|Pq

1 (Cs1 )|, so that,

|Pq
1 (Cs1 )|∑

k=1

yk = 1 (2)

The mixed strategy space forA1 is denoted as ’Y ’, while
for A2 it is denoted as ’Z ’. A pair {y∗ ∈ Y, z∗ ∈ Z} is said
to constitute anoncooperative (Nash) Equilibrium solution
to the bimatrix game(M1,M2) in mixed strategies, if the
following inequalities are satisfied∀ y ∈ Y, ∀ z ∈ Z:

y∗
′
M1z∗ ≥ y

′
M1z∗, y ∈ Y

y∗
′
M2z∗ ≥ y∗

′
M2z, z ∈ Z

Computation of mixed strategy equilibrium solution can be
posed as a nonlinear programming problem [15] as follows:

A pair {y∗, z∗} constitutes a mixed-strategy Nash Equi-
librium solution to a bimatrix game(M1, M2) if, and only
if, their exists a pair(f∗, g∗) such that{y∗, z∗, f∗, g∗} is
a solution of the following bilinear programming problem:

min
y,z,f,g

[y
′
M1z + y

′
M2z + f + g]

subject to

M1z ≥ −f · 1|Pq
1 (Cs1 )|, M2′z ≥ −g · 1|Pq

2 (Cs2 )|

y ≥ 0, z ≥ 0, y
′ · 1|Pq

1 (Cs1 )| = 1, z · 1|Pq
2 (Cs2 )| = 1

where 1|Pq
1 (Cs1 )| and 1|Pq

2 (Cs2 )| are column vectors of
dimensions|Pq

1 (Cs1)| and |Pq
2 (Cs2)|, with all elements 1.

The dimension of the search effectiveness matrix in-
creases withq. Hence, computing the mixed strategy equi-
librium using the bilinear programming formulation may
become computationally time consuming.

Dominating Strategies[15]: We may eliminate some rows
and columns that have no influence on the equilibrium
solution. We say that in matrixM1, ’row i’ dominates
row k if m1

ij ≥ m1
kj , ∀ j = 1, 2 . . . , |Pq

2 (Cs2)| and if,
for at least onej, the strict inequality holds. Similarly,
for A2, ’column j’ of M2 is said to dominate ’column
l’ if m2

ij ≥ m2
il, ∀ i = 1, 2, . . . , |Pq

1 (Cs1)|, and if, for
at least onei, the strict inequality holds. The dominated
strategies (rowk and columnl, in the above example) can be
eliminated without affecting the equilibrium solution. The
resultant matrix dimensions will be smaller than the original
|Pq

1 (Cs1)| × |Pq
2 (Cs2)| and will need less computational

time to compute the mixed equilibrium strategy.

B. Security Strategy

Using security strategies agents try to secure their profits
assuming unpredictable behavior of other agents. For a
bimatrix game, agent A1 chooses ’rowk∗’ whose smallest
entry is no smaller than the smallest entry of any other row.

V
¯
(M1) = max

k
min

l
m1

kl, k∗ = arg max
k
{min

l
m1

kl}



wherek = 1, 2..|Pq
1 (Cs1)| and l = 1, 2, ..|Pq

2 (Cs2)|, k∗ is
the security strategy for A1, and V

¯
(M1) is the guaranteed

payoff to A1. Similarly, for agent A2, the guaranteed payoff
and security strategy are,

V
¯
(M2) = max

l
min

k
m2

kl, l∗ = arg max
l
{min

k
m2

kl}

C. Cooperative Strategy

In this strategy the agents communicate during the deci-
sion process and choose a strategy that maximizes the joint
payoff. For two agents, let the search effectiveness matrix
be M = M1 + M2 = {mkl}, wherek = 1, . . . , |Pq

1 (Cs1)|
and l = 1, . . . , |Pq

2 (Cs2)| and every element of the matrix
represents the joint payoff to both the agents. A pair of
strategies{’row k∗’, ’column l∗’} is said to be a cooperative
strategy, if the following condition is satisfied.

mk∗l∗ ≥ mkl

∀ k = 1, 2, . . . , |Pq
1 (Cs1)| and ∀ l = 1, 2, . . . , |Pq

2 (Cs2)|.
The information communicated among the agents should
be kept to the minimum to reduce the computational and
communication complexity. Hence, the agents communicate
only their current position and future actions up toq steps.
Each agent computes the search effectiveness matrix indi-
vidually rather than communicating these matrices which
increases the communication complexity.

D. Selection of Strategies

When there are multiple solutions, the selection of strate-
gies by players becomes a crucial issue. The security
strategies and cooperative strategies are straightforward to
implement. If there exists multiple security strategies, any
one of them will guarantee the same payoff level. In fact,
the actual payoff is bound to be higher for both players so
long as they stick to their security strategies. In the case of
multiple cooperative strategies, since players communicate
with each other during the decision process, they can decide
on a strategy which is beneficial to the overall goal. But
when multiple solutions occur for pure or mixed strategy
Nash equilibrium, we need to select one of them. Since
every agent has the search effectiveness matrix of all the
agents, we have to select a solution whose joint payoff due
to A1 and A2 is maximum. The selection of solution does
not involve any communication with the other agent, but
uses the available data in the search effectiveness matrix.

When mixed strategy equilibrium exists, a random num-
ber may be generated according to the probability distribu-
tion of the optimal mixed strategy to select the appropriate
strategy. There can be other kind of selections such as
choosing the strategy that has the highest probability (max-
imum likelihood). In our simulation, we use the random
number generation method.

IV. SIMULATION RESULTS

For the purpose of simulation we consider a region
composed of a10 × 10 grid of hexagonal cells with two

* Base for
2 Searchers

Fig. 3. Initial Uncertainty Map

searchers. The initial uncertainty map is created by gener-
ating random numbers between 0 and 100 (thus representing
uncertainty as a percentage). This is shown in Figure 3. The
uncertainty in a cell is shown as the grey area within a cell.
The percentage of uncertainty in a cell is proportional to the
size of the grey area in the cell. Initially, we assume both the
searchers to be situated in the same cell. The base station
location is marked with a ’* ’ in the figure. The search is
limited to 10 steps. The simulation study is carried out for
q = 1, 2,and 3 steps and the uncertainty reduction factors
assumed areβ1 = 0.5 andβ2 = 0.25. The aim behind such
a simulation is to study the performance of the proposed
strategies and the effect ofq on these strategies. In all the
figures, the route of Searcher 1 is shown by a thick white
line and that of Searcher 2 is shown by a thin white line.

Figure 4 shows the search route adopted by two searchers
using noncooperative Nash equilibrium strategy. In this
simulation, there was at least one pure strategy Nash
equilibrium for q = 1, hence there was no need to use
mixed strategies. Forq = 2 at the starting position there
was no pure strategy Nash equilibrium and hence there
was a necessity to use mixed strategy to get a solution.
For the second step there were multiple pure strategy Nash
equilibriums and a particular solution was chosen based
on random number generation as described in Section 3.4.
From the third step onwards an unique pure strategy Nash
equilibrium was available. Forq = 3, for the first two steps
there were no pure strategy Nash equilibrium and mixed
strategies had to be used. In fact, there were multiple mixed
strategy Nash solutions and a solution was chosen based on
random number generation. Figure 5 shows the routes of
security strategy forq = 1, 2, 3, respectively, while figure 6
shows the routes for the cooperative strategy. Note that in
Figure 5(a) and (b) both searchers follow the same route.

Figure 7 shows the uncertainty reduction graph of various
strategies for 10 search steps. Figure 7(a) is forq = 1, in
this strategy the graphs of uncertainty reduction for Nash
and cooperative strategies are the same, as the search routes
for both the strategies are also same (see Figure 4(a) and
6(a)). From Figures 7 (b) and (c), the security strategy
is the least beneficial strategy while cooperative strategy
is the most beneficial and noncooperative strategy is in
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Fig. 4. Search route for two searchers using the noncooperative Nash equilibrium strategy, (a)q = 1 (b) q = 2 (c) q = 3
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Fig. 5. Search route for two searchers using security strategy, (a)q = 1 (b) q = 2 (c) q = 3
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Fig. 6. Search route for two searchers using cooperative strategy, (a)q = 1 (b) q = 2 (c) q = 3
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Fig. 7. Uncertainty Reduction for noncooperative Nash equilibrium, security and cooperative strategies, (a)q = 1 (b) q = 2 (c) q = 3
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Fig. 8. Uncertainty Reduction forq = 1, 2, 3, (a) noncooperative Nash equilibrium strategy (b) security strategy (c) cooperative strategy



between. The performance of each strategy with respect
to the value ofq, the look ahead window, can be seen in
Figure 8. Figure 8(a) shows thatq = 1 performs better
initially when Nash strategies are used, but higher values
of q perform better when the search routes are longer. In
case of security strategy, shown in Figure 8(b), initially all
values ofq perform equally well, but as the search routes
become longer,q = 1 performs better. This is because,
the search routes adopted by the two searchers are different
and hence the net uncertainty reduction is higher than in the
case ofq(2,3) where the searchers follow the same search
route. In case of cooperative strategy, shown in Figure 8(c),
higher values ofq (2 and 3) give the same performance
while q = 1 performs the worst. However, the effectiveness
of the strategies lie in a narrow band for this example.

From these simulations it appears that increasing the size
of q, with consequent increase in computational burden,
does not yield any substantial benefits. However, with
different placements and larger number of searchers the
strategies may perform differently as the regions of overlaps
will also increase. Also, the search space considered in these
simulations is small and the simulation is carried out only
for 10 steps which is also small and hence the decrease in
uncertainty reduction, as shown in Figures 7 and 8, are not
substantially different for different strategies and different
look ahead steps. To arrive at a more concrete conclusion on
the actual benefit of using game theoretical models requires
the simulation to be carried out on a larger search space and
for larger number of steps. These results will be reported
in future articles.

Computational time: With increase inq the size of the
search effectiveness matrix increases and hence the time to
compute mixed Nash equilibrium solution also increases.
For q = 3 the size of the search effectiveness matrix is
343× 343, the number of variables to be optimized is688,
and the number of constraints is 1374. So, to reduce the
computational time we chose dominated strategies only and
then the size of the matrix reduced to6× 13, with number
of variables to 21 and the number of constraints to 40, for
the first step; and matrix size of7 × 14, with number of
variables to 23 and number of constraints to 44, for the
second step.

V. CONCLUSIONS

We proposed three strategies, cooperative, security
and Nash Equilibrium to design strategies theory for
uncertainty reduction in a search space. The strategies
use the concept ofq-step look ahead planning. From
the results obtained it appears that the increase inq to
large values does not increase the benefits substantially,
but increases the computational time. Hence,q = 2 or
q = 3 would give a compromise between the uncertainty
reduction and computational time required. Here, it was
assumed that the UAVs have complete information about
other UAVs at every time step without loss of information.
In reality there could be appreciable delays in updating

UAVs information [16]. Increasing the number of agents
to N in the search space, increases the complexity of the
strategies. The implementation of cooperative strategy is
straightforward. For security strategies, we may model the
problem as each agent playing against all the rest of the
agents. The extension to Nash equilibrium can also be done
similarly but requires careful and detailed formulation that
are beyond the scope of this paper. These will be reported
in a later paper.
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