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Abstract— In Multi-Retailer Inventory Control the possi-
bility of sharing set up costs motivates communication and
coordination among the retailers. We solve the problem of find-
ing suboptimal distributed reordering policies which minimize
set up, ordering, storage and shortage costs, incurred by the
retailers over a finite horizon. Neuro-Dynamic Programming
(NDP) reduces the computational complexity of the solution
algorithm from exponential to polynomial on the number of
retailers.

I. I NTRODUCTION

We consider a two echelon, one-warehouse multi-retailers
inventory system. Each day, a stochastic demand mate-
rializes at each node. Unfulfilled demand is backlogged.
Retailers observe their own inventory level, communicate
and make decisions whether to reorder or not from ware-
house to fulfill the expected demand. Ordered quantities
plus inventory at hand may not exceed storage capacity at
each store. Reordering occurs by means of a single track
which serves all the retailers. Set up costs are shared among
all retailers who reorders, also calledactive retailers. This
motivates a certain coordination of reordering policies. The
system under concern is depicted in Fig. 1.
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Fig. 1. One-warehouse multi-retailer inventory system

Decentralization of policies under partial information is
the main focus in [6]. In [10] the authors analyze the
benefits of the information sharing on the performance of
the entire chain. In [1] issues are discussed, regarding the
use of different kinds of penalties, transfer prices and cost
sharing schemes to improve the coordination of policies
optimized on a local basis.

In a static context, i.e., for fixed day and fixed inventory
levels, we introduced in [3], a distributed consensus protocol
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[7] for estimating the number of active retailers and coor-
dinating the reordering policies. Each retailer is assumed
to choose a fixedthreshold policy, with thresholdli on the
number of active retailers. In other words one defines its
intention to reorder only if at least otherli − 1 retailers
are willing to do the same. We proved that consensus on
the number of active retailers is asymptotically globally
reached and coordination is the same that if the decision
making process would be centralized, namely, any retailer
has access to the thresholds of all other retailers and chooses
whether to reorder or not. The proposed distributed protocol
has the advantage that the retailers do not communicate their
threshold policy to reach consensus on the number of active
retailers.

This paper extends the aforementioned results to a dy-
namic inventory control context, i.e., where inventory levels
change each day. We show that the threshold policies
assumed in [3], are strictly connected to the well known
(s, S) policies [9], [8]. In some cases, we prove that a
optimal policy, for eachith retailer, is to order only in
conjunction with at least otherli − 1 retailers. We prove
also that the thresholdli can be computed locally by
the ith retailer depending on the current inventory level
and expected demand. This is possible by implementing a
distributed Neuro-Dynamic Programming (NDP) algorithm
polynomial on the number of retailers, which avoid the
curse of dimensionality and reduces errors due to model
uncertainties.

This paper is organized as follows. In Section II we de-
velop a hybrid model for the cooperative inventory control
problem. In Section III we prove that the cost function isK-
convex and hence can be efficiently computed in a reduced
number of points. We show also that threshold policies on
the number of active retailers are optimal. In Section IV
we presents the NDP algorithm. In Section V we provide
conclusions.

II. H YBRID MODEL

In this section we present a novel hybrid model for
the multi-retailer inventory system (see, e.g., Fig. 2). In
particular, in Subsection II-A, we model then decoupled
inventory subsystems. In Subsection II-B, we model the
information flow among the subsystems. In Subsection II-
C, we introduce the structure of the local controllers and
formally state the problem.

A. System Dynamics

Consider a networkG = (V, E); each retailer is a
node vi ∈ V, where i ∈ Γ := {1, 2, ..., n}, and each
communication link is an edgee = (vi, vj) ∈ E ; i, j =
1, 2, ..., n. Let n = |V|, where|S| indicates the cardinality
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Fig. 2. Block Diagram of the closed loop inventory system.

of the setS. The model inputuk
i is the quantity of inventory

ordered by theith retailer at each stagek = 0, 1, ..., N−1.
We model withωk

i the stochastic demand faced by theith
retailer.

The ith inventory subsystem is a finite-state discrete-time
model, that for alli ∈ Γ takes on the form

xk+1
i = xk

i + uk
i − ωk

i .

The inventory at hand plus inventory ordered may not
exceed storage capacity as is expressed in the following
equation

xk
i + uk

i ≤ Cstore.

The ith outputyk
i , referred to as sensed information, is

yk
i = xk

i ,

i.e., each retailer observes only his inventory level.

B. Consensus Protocols

The information flow is managed through adistributed
protocolΠ = {(fi, hi, φi) : for all i ∈ V}

żk
i (τ) = fi(zk

j (τ), for all j ∈ Ni), 0 ≤ τ ≤ T, (1a)

zk
i (0) = hi(yk

i ), (1b)

ak = φi(zk
ss) (1c)

where:

• fi : <n → < describes the dynamics of the transmitted
information of theith node as a function of the infor-
mation both available at the node itself and transmitted
by the other nodes, as expressed in (1a);

• hi : Z → < generates a new transmitted information
vector given his output at the stagek, as described
in (1b);

• φi : < → Z estimates, based on current information,
the aggregate info (1c).

HereNi is the neighborhood of theith retailer,Ni = {j ∈
Γ : (vi, vj) ∈ E}∪{i}, i.e., the set of all the retailersj that
are connected toi and i itself and

zk
ss = lim

τ→T−
zi(kT + τ), for all i ∈ Γ, (2)

represents the steady state value assumed byzk
i (τ) within

the interval[kT, (k + 1)T ].
We refer the reader to [7] for studies on the convergence

of consensus protocols. For given scenario, defined by the
full state vector,xk = {xk

i , for all i ∈ Γ}, the converging
value of the transmitted information,ak

i , plus the sensed
information, yk

i constitute thepartial information vector,
Ik
i = [yk

i , ak
i ] available to theith retailer.

C. Local Predictive Controllers

The local controllers compute the following cost over a
finite horizon

Ji(Îk
i , uk

i ) = E



gi(ÎN

i ) +
N−1∑

k̂=k

(αk̂gi(Î k̂
i , uk̂

i ))



 (3)

whereÎk
i is the predicted information andαk is the discount

factor at stagek. The stage costgi(Îk
i , uk

i , k) is defined as

gi(Îk
i , uk

i , k) = K
ak δ(uk

i ) + cuk
i + pE{max(0,−ŷk+1

i )}
+hE{max(0, ŷk+1

i )} ,

(4)
whereK represents the set up cost,c is the purchase cost
per unit stock,p is the penalty on storage,h the penalty on
shortage, andδ(ui(k)) is zero if theith retailer does not
reorder, and one if he reorders.

As will be clear later on, the idea of the solution
algorithm is to use a simulation-based tunable predictor of
the form

Îk+1
i =

[
ŷk+1

i

âk+1
i

]
=

[
xk

i + uk
i − ω̂k

i

ψi(ak
i , uk

i )

]
(5)

In (4) we assume that the set up cost is equally shared
among the active retailers.

We report hereafter the formalization of the problem
under concern. Given a set of retailers reviewed as dynamic
agents of a network with topologyG = (V, E).

Problem (Local Controllers Synthesis)For each ith
retailer, determine the reordering policyuk

i = µ(Ik
i ), that

minimizes theN -stage individual payoff defined in (3).
Subproblem (Protocols Design)Determine a distributed

protocol Π which maximizes the set of active retailersAΠ.

III. D YNAMIC PROGRAMMING APPROACH

In this section, we prove that the inventory must be or-
dered in quantity thus to fulfill exactly the expected demand
for the upcoming days, as summarized in Theorem 3.1. We
provide an intuitive explanation of such a result.

Let Kk = K
ak the set up cost charged to each retailer that

reorders at stagek, and dk
i = xk

i + uk
i , the instantaneous

inventory position, i.e., the inventory level just after the
order has been issued. Then we claim as follows.
• If the setup costKk decreases with time (in the future

more and more retailers are interested in reordering)
retailers place short term orders. Optimal policies are
multiperiod policies(sk, Sk), with a unique lower and
upper threshold, (see, e.g., Fig. 3).



• On the contrary, if the setup costKk increases with
time (in the future less and less retailers are interested
in reordering), retailers place long-term orders. Op-
timal policies are multiperiod policies(sk, Sk) with
multiple thresholds at different inventory levels (see,
e.g., Fig. 4).
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Fig. 3. Intuitive plot of the cost when the set up cost decreases with time:
single thresholds(sk, Sk).
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Fig. 4. Intuitive plot of the cost when the set up cost increases with time:
multiple thresholds(sk, Sk).

A. Searching for Structure:K-convex analysis

To show that the individual objective functions,Ji; i ∈
Γ, have at mostN local minima, we, first, apply the DP
algorithm (6)-(7) to minimize the cost (3). The Bellman’s
equation is then rearranged by defining a new functionH(·)
as in which verifies theKi-convexity property, whereKi is
the maximum set up cost incurred by theith retailer over the
horizon. Exploiting the definition of the inventory position
di and of the set up costKk, we rewrite the stage cost (4)
as

gi(d
k
i , ak) = Kkδ(uk

i ) + cuk
i + pE{max(0,−(dk

i − ωk
i ))}

+hE{max(0, dk
i − ωk

i ))}.

By applying the dynamic programming algorithm, we
have

JN
i (IN

i ) = 0, (6)

Jk
i (Ik

i ) = min
uk

i
∈U

[gi(dk
i , ak) + αk+1E{Jk+1

i (Ik+1
i )}]. (7)

Let us define the new function

Gk
i (dk

i , ak+1) = cdk
i + E{p max(0,−(dk

i − ωk
i ))

+h max(0, dk
i − ωk

i ) + Jk+1
i (Ik+1

i )},

and rewrite the Bellman’s equation (7) as follows

Jk
i (Ik

i ) = −cix
k
i + min

dk
i
≥xk

i

[Kk+Gk
i (dk

i , ak+1), Gk
i (xk

i , ak+1)].

(8)
Note that if we can show thatJk+1

i is Kk-convex then
Gk

i is alsoKk-convex and the Bellman’s equation (8) has
a unique minimizer.

Indeed, it has been proved in [4] thatKk-convexity of
Gk

i (di, ak+1) implies Kk-convexity ofJk
i (Ik

i ).
This represents a sufficient condition that guarantees

optimality of multiperiod(sk
i , Sk

i ) order-up-to policies.
We recall thatsk

i represents the minimum threshold on
inventory level below which retailers reorders to restore
level Sk

i .
Let us remind thatSk

i minimizesGk
i (·, ak+1) and thresh-

old sk
i verifies

Gk
i (sk

i , ak+1) = Gk
i (Sk

i , ak+1) + Kk.

Now, let us callsk
i , the threshold which corresponds to

the assumption that theith retailer is charged the whole set
up cost; namely we haveKk

i = K; i ∈ Γ. At the same way,
let us define withsi the threshold computed as if all retailers
would share equally the setup costs; thus, each retailer is
charged a set up costKk

i = K
n , namely onenth of the entire

costK. We now explicit dependence of thresholdsk
i on set

up costKk
i by defining the functionsk

i ( K
ak ) for which it

holdssk
i ≤ sk

i (·) ≤ sk
i .

Now, let us call

Hk
i (dk

i , ak) = min
yk

i
≥xk

i

[Kk + Gk
i (dk

i , ak+1), Gk
i (xk

i , ak+1)].

In the following, we considerak a parameter and show
that the individual objective function,Jk

i (xi); i ∈ Γ, which
is generically non convex, has all local minima coincide
with the demand summed over one or more days.

Theorem 3.1:Solutions of the Bellman’s equation (7) are
at most N − k different multi period policies(sk

i , Sk
i ),

where Sk
i ∈ {∑M

j=k ωj
i ; M = k, k + 1, ..., N} and

thresholdsk
i verifiesGk

i (sk
i , ak+1) = Gk

i (Sk
i , ak+1)+Kk.

Policy are associated to different intervals of inventory
levels.

Proof: The essential idea is that the cost is piecewise
linear. This is evident in the Bellman’s equation where the
costJk

i is the summation of a piecewise linear stage costgk
i

(with unique global minimum atωk
i ) and a piecewise linear

future cost (with potential local minima atωk
i + Sk+1

i ).
An immediate consequence of the above theorem is that

the set of feasible decisions is finite and each element
represents the exact ordered quantity to fulfill the expected
demand for the upcoming1, 2, ..., N days.

B. Threshold Reordering Policies

The aim is now to show that Nash equilibrium reordering
policies have a threshold structure on the number of retailers
interested in reordering. To see this, we first introduce a



preliminary lemma on single-stage inventory control and
reinterpret the concept of threshold(s, S) in a way more
suitable for a multi-retailer scenario. In particular we change
a threshold on inventory levels into a thresholdl on “how
many retailers are interested in reordering”.

Lemma 3.2:(Single-Stage Optimization)For each inven-
tory levelxi there exists a thresholdli ∈ {1, 2, ..., n}, such
that the reordering policy

µi(Ii) =
{

Si − xi if a ≥ li
0 if a < li

(9)

is a Nash equilibrium for the single-stage formulation of
the Multi-retailer Inventory Control Problem.

Proof: From Theorem 3.1, ifN = 1, we have a unique
multi period policy(si, Si). This means that retailers make
decisions according to

µi(Ii) =
{

Si − xi if xi < si

0 if xi ≥ si.
(10)

For givenxi, the idea is to find the minimum value ofli that
verifies the conditionxi < si. This is straightforward for the
two limit cases of “low” and “high” inventory level, namely
xi < si, and xi ≥ si respectively. It is left to prove (10)
for the intermediate casesi ≤ xi ≤ si (see proof in [2]).

As evident from (9) the single-stage formulation of the
Multi-retailer Inventory Control Problem leads to reordering
policies with a threshold structure. Results from Lemma 3.2

can be extended to the multi-stage formulation.
Theorem 3.3:(Multi-Stage Optimization)For each in-

ventory levelxk
i there exists a thresholdlki ∈ {1, 2, ..., n},

such that the reordering policy is

µ(Ik
i ) =

{
Sk

i − xk
i if ak ≥ lki

0 if ak < lki
(11)

is a Nash equilibrium for the multi-stage formulation of
the Multi-retailer Inventory Control Problem.

Proof: The structure of the proof is the same as for
the single-stage inventory problem, in Lemma 3.2. Only,
note that from Theorem 3.1, we now have at mostN − k
different multi period policy(sk

i , Sk
i ), each one associated

to a different interval of inventory levels. The trick of the
prove is to repeat the argument above for each interval.

We then conclude that optimizing the multi-retailer inven-
tory control problem over a multi-stage horizon leads to
Nash equilibrium reordering policies with threshold struc-
ture on the number of active retailers.

C. Local Estimation via Consensus Protocols

In this subsection, we discuss the solution of the subprob-
lem on protocol design. The focus is on consensus protocols
to estimate the number of active retailersak. Indeed, given
the vector l = {li}, collecting the optimal thresholds,
each retailer makes the decision “do not reorder” if his
local estimation is lower than his threshold, as expressed
in Eq. (11). We assume that the transmitted information is

the current estimate of the percentage of retailers who are
interested in reordering. The current estimatezi(·) is re-
initialized to {0, 1} at the beginning of each time interval
[kT, kT + 1] based on the current inventory levelxk

i .
In particular, if theith inventory level is “low”, i.e., the
corresponding thresholdli does not exceed the network
sizen, then the retailer is willing to reorder; he has got no
information yet except his observed inventory level; thus, he
assumes that all other retailers are in the same circumstances
(spatially invariant assumption) and setzk

i = 1, indicating
that everyone is today interested in reordering. On the
contrary, if the inventory level is “high” (li exceedsn), he
is not willing to join the group to order and setzk

i = 0,
indicating that no one is in need to reorder. Thus we can
write

zk
i =

{
0 li(xk

i ) > n
1 otherwise.

(12)

Then, each retailer updates the estimate on-line on the
basis of new estimates data received from neighbors. At
any time, ti, whenever the number of retailers interested
in reordering,ak, goes below his threshold,li, the ith
retailer communicates his decision to “give up” to reorder
by activating an exogenous impulse signal,δi(t− ti). This
exogenous impulse can be activated only one time (once you
exit the group you are no longer allowed to rejoin it) and
only when the all local estimates have reached consensus on
a final value. This occurs everytf , wheretf is an estimate
of the worst case possible settling time of the protocol
dynamics.

Given (12), an average-consensus protocol leads all lo-
cal estimates to converge to the maxak (see [3]). The
continuous-time average-consensus protocol takes on the
form




hi(xk
i ) = li(xk

i ) ≤ n
fi(zk(τ)) = −Li•zk(τ) + δi(t− ti) · uk

i

φ(zk
i (τ)) = n(limt→T− zk

i (τ)).

where L is the Laplacian matrix of the communication
network topology;ti is in turn the time instant where the
current estimate converges to a value below the threshold;
it can be defined by the following logic conditions

ti : s.t.[li(xk
i ) > n] OR [(li(xk

i ) ≤ n)AND(nzi(ti) < li)
AND (ti = ktf , k ∈ N )].

We refer the reader to [3] for details on the optimality of
the protocol above.

IV. NDP SOLUTION ALGORITHM

In this section, we cast the hybrid model within the
framework of neuro-dynamic programming.

A. Consensus on Featuresak
i

To review the features as a compact description of the
behavior of the other retailers, we consider i) the NDP
architecture based on feature extraction displayed in Fig. 5
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extract the features.
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Fig. 6. Block Diagram of the closed loop system.

(see e.g. [5]) and ii) the block diagram of the Hybrid Model
displayed in Fig. 6.

The full state vector of the hybrid model,xk becomes,
in the approximation architecture, the input to the feature
extractor. The information flow management block can be
reviewed as the feature extractor. The full state vector
reduces to the partial information vectorIk

i = [yk
i , ak

i ]
available to theith retailer. Each local controller implement
a function approximator, which receives the partial informa-
tion vector and returns the individual cost-to-gõJk

i (Ik
i , r)

over the horizon.

B. Linear Architecture

We assume that the probability distribution over all poten-
tial values assumed byak propagates according to the linear
dynamicsak+1 = akΨk whereΨk = {ψk

ij , i, j ∈ Γ}. In
this case we have i) a matrix of weightsr that coincides with
the transition probability matrix of the predictor, namely,
r = Ψ = {Ψk, k = 1, 2, ..., N}, and ii) basis functions
J̃k+1

i (Ik+1
i , ak+1) representing different future costs asso-

ciated to differentak+1.
The approximation architecture linearly parameterizes the

future costs associated to all possible behaviors of the other
retailers over the horizon. This can be described as

|Z|∑

ak+1=1

Ψk
ak, ak+1 J̃k+1

i (Ik+1
i , ak+1) = ψk

ak•Ĵi

k+1
(Ik+1

i , •)T ,

whereψk
ak• is the row of the transition probabilities fromak

to all possibleak+1, andĴi

k+1
(Ik+1

i , •)T is the transposed
row of the associated future costs.

ω1 4 8 6 5 7 8 4 5 6 8
ω2 0 0 1 7 8 0 6 2 1 4
ω3 0 3 2 0 3 1 1 3 3 0

TABLE I

EXPECTED DEMAND FOR THE UPCOMING TEN DAYS.

C. The NDP Algorithm

This Algorithm is organized in two parts. In the first part
the retailers compute the set of admissible decisionsUk

i

and reachable statesRk
i over the horizon. The second part

presents three steps.

1) Policy improvement. For given predictionΨ, we im-
prove the policy via the stochastic Bellman’s equation
backwards in time

µk
i (Ik

i ) = argminuk
i
∈Uk

i
(xk

i
)

[
gi(Ik

i , uk
i , k)

+αk+1ψak•Ĵi

k+1
(Ik+1

i , •)
]
.

2) Value iteration. The improved policy is valued
through repeated Quasi-Monte Carlo simulations. Ac-
tive exploration guarantees that initial states are suf-
ficiently spread over the local minima. During the
value iteration we compute and store the number of
times a transitionΨij occurs during the repeated finite
length simulations. At the end of each simulation, the
protocol runs over the horizon and returns the training
set for the next step.

3) Temporal Difference. We use the training set to update
the transition probabilities of the predictor.

The tree steps are iteratively repeated until convergence
of policies.

Lemma 4.1:Each iteration of the NDP algorithm, for
given initial statex0, has computational complexity poly-
nomial on the number of retailers, i.e.,O(n2 N R2)

Proof: The proof starts from considering that the
complexity of the algorithm depends essentially on the
complexity of the second part. Here, we write the Bellman’s
equation considering the set of feasible decisionsUk

i , for
each retaileri ∈ Γ, for each stagek = 1, 2, ..., N and for
each decomposed stateIk

i ∈ (Rk
i ×Γ). Thus, complexity is

O(n2 N R2).
Assuming that convergence is achieved in a finite number

of iterations, the Temporal Difference Algorithm returns
stochastic Nash equilibrium policies, paths and costs-to-go.
Further efforts are still to be made, oriented to investigate
the convergence conditions of this algorithm.

Example 1:Let us consider a group of three retailers and
parametersK = 24, p = 8, h = 1, and c = 2. Retailers
face a stochastic poissonian demand with expected values
over the horizon of ten days as in Table I.

At the first iteration, no communication has occurred
among the retailers and the “policy improvement” returns
the uncoordinated reordering policies displayed in Fig. 7.

The “value iteration” consists in12 simulations of the
inventory system under the improved reordering policies.
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Fig. 7. Uncoordinated reordering policies.

The set of initial states is a stochastic sequence extracted
from a poissonian distribution with mean value respectively,
equal to25, 10, and 6 for the 1st, 2nd, and3rd retailer.
Indeed, we know from deterministic simulation results that
J1 has potential local minima at18, 23, 30, J2 at 1, 8, 16,
andJ3 at 8, 10 as displayed in Figure 9 (solid and dotted
lines). Here, the costs associated to the1st,2nd,3rd and4th
policy improvements when demand is deterministic are rep-
resented by four lines of different colors (blue, red, magenta,
and red). At the end of each simulation the retailers run a
consensus protocol returningak over the horizon. Based
on this new aggregate information, during the “temporal
difference” the retailers update the transition probabilities
of the predictor and a new iteration starts. In this example,
the algorithm eventually converges to a Nash equilibrium in
six iterations returning a coordinated distribution of reorders
over the horizon as shown in Fig. 8. We see from Fig. 9
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Fig. 8. Coordinated reordering policies.

that the costs-to-go at the4th and 5th iteration (green
and red crosses) draw much near to the cost-to-go of the
deterministic problem. We may conclude that the NDP
algorithm possesses satisfying learning capabilities.
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Fig. 9. Costs vs inventory: deterministic (colored lines) and stochastic
demand (colored crosses).

V. CONCLUSION

In this paper we propose an NDP approach to coordinate
the reordering policies of a group of retailers. Coordination
is motivated by the possibility of sharing set up cost when
orders are placed in conjunction. We develop a hybrid model
to describe the inventory subsystems and the information
flow. We designed consensus protocols for the information
flow. Finally we presented a scalable and suboptimal NDP
algorithm.

REFERENCES

[1] S. Axs̈ater, “A framework for decentralized multi-echelon inventory
control”, IIE Transactions, vol. 33, no. 1, 2001, pp. 91-97.

[2] D. Bauso, “Cooperative Control and Optimization: a Neuro-Dynamic
Programming Approach”,Ph. D. ThesisUniversit̀a di Palermo, Dipar-
timento di Ingegneria dell’Automazione e dei Sistemi, Dec. 2003.

[3] D. Bauso and L. Giarrè and R. Pesenti, “Distributed Consensus
Protocols for Coordinating Buyers”,Proc. of the IEEE Conference
on Decision and Control, Maui, Hawaii, Dec. 2003.

[4] D. P. Bertsekas,Dynamic Programming and Optimal Control, 2nd ed.
Bellmont, MA: Athena, 1995.

[5] D. P. Bertsekas and J. N. Tsitsiklis,“Neuro-Dynamic Programming”,
Athena Scientific, Bellmont, MA, 1996.

[6] J. C. Fransoo, M. J. F. Wouters and T. G. de Kok, “Multi-
echelon multi-company inventory planning with limited information
exchange”,Journal of the Operational Research Society, vol. 52, no. 7,
Jul. 2001, pp. 830-838.

[7] R. Olfati Saber and R. M. Murray, “Consensus Protocols for Networks
of Dynamic Agents”,Proc. of American Control Conference, Denver,
Colorado, Jun. 2003.

[8] H. E. Scarf, “Inventory Theory”,Operations Research, vol.50, no.1,
Jan-Feb 2002, pp.189-191.

[9] H. E. Scarf, “The Optimality of(s, S) Policies in the Dynamic
Inventory Problem”,Mathematical Methods in the Social Sciences,
Stanford University Press, Stanford, CA, 1995.

[10] Z. Yu, H. Yan and T. C. E. Cheng, “Modelling the benefits of
information sharing-based partnerships in a two-level supply chain”,
Journal of the Operational Research Society, vol. 53, no. 4, Apr. 2002,
pp. 436-446.


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP11.2
	Page0: 5527
	Page1: 5528
	Page2: 5529
	Page3: 5530
	Page4: 5531
	Page5: 5532


