
 
 

 

  
Abstract—This paper presents a new approach to reducing 

the seismic responses of spatial structures with 
magneto-rheological (MR) dampers using Genetic Algorithm 
with small populations (µGA). µGA is used to obtain the 
controller for the MR dampers for structural vibration 
reduction that is difficult to be solved by the classical optimal 
control. The advantages of µGA are of global property and 
having little requirement of the conditions of the optimal 
function. Numerical results demonstrate the effectiveness of 
the proposed method in reducing the responses of structure to 
earthquake ground motions. 

I. INTRODUCTION 
Magneto-rheological (MR) fluid is a controllable fluid 
and belongs to the family of smart materials [1], which is 

with suspensions of micro-sized and magnetizable particles. 
Under normal conditions, an MR Fluid is a free-flowing 
liquid with a consistency similar to that of motor oil. 
However, exposure to a magnetic field can transform the 
fluid into a near-solid status in milliseconds. This is because 
the particles in the fluid acquire dipole moments aggregate 
to form chains parallel to the field direction. Just as quickly, 
the fluid can be returned to its liquid state with the removal 
of the field. The change can appear as a very large change in 
effective viscosity. The MR fluid along with electromagnets 
is often used to design controllable dampers, brakes, and 
couplers. Also, the MR fluid technology can provide flexible 
control capabilities in designs that are far less complicated 
and more reliable than conventional electro-mechanical 
products. Consequently, the MR dampers are ideal tools for 
semi-active structural control [2,3].  
 In the application of semi-active control of MR damper, 
the control force of controller is normally passive and 
limited [4, 5]. Thus, the optimization of performance index for 
control is a complex problem. The classically optimal 
method (e.g. gradient descent algorithm etc.) is often not 
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suitable in this case. A new optimization algorithm, Genetic 
Algorithm (GA), provides a new approach to this kind of 
issue, which is a form of random search based on the 
Darwin’s Evolution theory. Since it is an algorithm that 
simulates the evolution rule, it solves the computational 
problem by simulating the evolution rule like “The survival 
of the fittest”, “The weak will perish” etc. Thereby, GA is an 
effective approach to solving the complex problem 
especially for the optimization problem that is difficult to 
solve or cannot be effectively solved by the classically 
optimal method.  This approach does not require much 
information of the system and not require derivative 
operation, either. Therefore, it becomes very effective when 
the optimization function is not differentiable or has no 
gradient information. In a standard GA algorithm, the scale 
of population is about 30 to 200. In theory, if the scale is 
small, the information cannot be processed completely. And 
it will easily fall into the local optimum. However, the small 
population has the advantage of simple computation, fast 
convergence, etc. Here, GA with small population, called as 
µGA, is proposed to obtain the global optimum in a much 
faster fashion [6]. 

GA has already been widely applied in civil engineering. 
Normally, it is mainly applied to calculate the control force 
[7,8] and optimizes the weights of neural network [9]. In this 
paper, µGA is applied in the structural vibration control to 
solve the optimization problem in the semi-active control 
that is difficult to be solved by the classic control method. 
The advantages of µGA are of global property and having 
little requirement of the conditions of the optimal function. 
Numerical results demonstrate the effectiveness of the 
proposed method in reducing the responses of structure to 
earthquake ground motions.  

II. PROBLEM OF STRUCTURAL VIBRATION CONTROL 
The equation of motion for the linear structure of a 

multi-degrees-of-freedom system with control device is as 
follows 
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where { }U is the displacement vector of structure; [ ]M , 

[ ]dC  and [ ]K  are the mass, damping and stiffness 

matrices, respectively; [ ]gH  denotes the position matrix of 

seismic actions; { } { } T
YgXgg XXX 0,, &&&&&& = means the 

seismic acceleration vector with X and Y components 
without rotation; [ ]cH  implies the position matrix of 

control forces; { }F  represents the vector of the control 
forces.  
 
   If the state vector is taken as { } { , }TX U U= & , the motion 

system described in (1) can be written as the following state 
space equation: 
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To show the control effectiveness, the performance index 
is taken as  
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where, )(txi  means the displacement of the ith floor with 

control; maxx denotes the maximum of the ith floor without 
control; Fi  represents the control force of which the ith 
controller can provide and Fimax  is the maximum control 
force. In the semi-active control presented in this paper, the 
control forces are provided by the MR dampers.  

The performance index function J described in (3) is not 
differentiable, thus it cannot be solved directly by the 
classically optimal control method. Here, a method to obtain 
an approximate solution is proposed as follows.    

The precise solution of the optimal problem in (3) can be 
described as the following nonlinear feedback: 

})({}{ XFF −=                                                               (4) 
   Generally, the larger the dimension of system is, the more 
complex the system becomes. Thus, the nonlinear feedback 
in  (4) is difficult to obtain. Therefore, the system will here 
be linearized to obtain the approximate solution.  
   Equation (4) can be rewritten as an expended component 
form: 
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where n is the number of structural floors and m is the 
number of controller, i.e. the number of the degrees of 
freedom to be controlled.  Here, the nonlinear functions f1, f2, 
... , fm will be linearized by the Taylor’s expansion formula of 
the  multi-variables function. And their processes of the 
linearization are given by 
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(6)              
Indeed, the values for high order variables in (6) are 

relatively small and enough to be omitted so that one-order 
terms can be chosen as the approximate values for functions. 
Hence, substitution of  (6) into (5) results in the following 
equation: 
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Consequently, the simplification of  (7) can be rewritten 

as the following expression: 
}]{[}{}{ 10 XFFF −−≈                                              (8)     

where, }{ 0F and ][ 1F  are the constant vector and constant 
matrix to be determined as next section, respectively. 

III. APPLICATION OF µGA TO STRUCTURE CONTROL 
In a standard GA, the knowledge about searching space is 

not needed. Whether the searched solution is good or not is 
judged only by the fitness function. In this case, the seismic 
response of structure during the whole time should be 
computed before the fitness function is calculated. This is 
the most time-consuming part in the application of GA to the 
optimization problem of structure control. The standard GA 
has a large scale of generations and the computation is 
complicated. To simplify the computation, the scale of 
generation may be decreased and new solutions are 
introduced time by time. Since the goal of the optimization 
problem is to find the minimum of the performance index, 
the fitness function used here is defined as[6]: 
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The keys to apply GA to the optimal problem are the 
coding method of the variables and the computation of the 
fitness function. The process of the coding method and 
computation of the fitness function are defined as follows: 

Coding rules: in the algorithm presented here, every 
element in the vector F0 and matrix F1 is coded. Each 
solution is stored as the real data of structure and its number 
represents an element. Binary decoding is implemented only 
during the genetic operation. In another word, each element 
is transferred into the binary string, and the strings are 
combined one by one to form a complete string. After 
computation, the strings will be coded into real numbers. 
Thereby, the coding in this way can avoid the inaccuracy 
that is accompanied by a short string. 

The steps of computation of fitness function are as 
follows: 
(1) The strings for F0 and F1 are decoded into the real 

vector }{ 0F  and matrix ][ 1F ; 

(2) Substituting }{ 0F  and ][ 1F into equation (8), the 
control force {F} can be obtained; 

(3) Then, the response of system over the whole simulating 
period is computed; 

(4) The performance index J is computed according to (3), 
and then J is substituted into (9) to get the value of 
fitness function. 

According to the above discussions, the computational 
process for µGA to optimize the structural control can be 
described below: 
(1) Five populations are randomly chosen, or four of them 

are randomly chosen and the one comes from the 
searching result one step before.  

(2) The so-called “elitist choice” is adopted, which means 
the result that has the best fitness value is inherited 
directly to next generation to keep the information of 
good diagram.  

(3) The other four solutions are chosen according to the 
determined contest rule. Since the scale of population is 
very small, the choice is completely determined 
because the average rule is meaningless. 

(4) The crossover operation is implemented with the 
probability of 1 so as to accelerate the production of 
diagram. 

(5) Check the convergence criterion. If not satisfied, the 
computation process is returned to step (2) and the 
same computational process is again carried out until 
the convergence criterion is satisfied.       

IV. NUMERICAL EXAMPLE FOR STRUCTURAL CONTROL 
   A two-story eccentric structure as shown in the Fig. 1 is 
chosen as numerical example. The floor-frame model in 
computation is applied to obtain the structural response to 
seismic excitation. The in-plane stiffness of floor is assumed 
to be infinite and the mass of each story is concentrated on 
the corresponding floor. The parameters of structure for 
computation are: the masses are m1 = 50000kg and m2 = 
20000kg; rotation inertial moments J1 = 8000 kgm and J2 = 
4600 kgm; eccentric distances Ex1=0.5m, Ey1=Ex2=Ey2= 0; 
translational and rotational stiffness Kx1 = Ky1 = 
1.0020×108N/m, Kx2 = Ky2 = 0.6680×108 N/m, Kθ1 = 
1.1690×108 Nm and Kθ2 = 0.3340×108 Nm; the height of 
layer is 3.6m. 
   The El Centro earthquake wave recoded on May 18, 1945 
in USA is used in the numerical simulation. This wave has 
bi-directional components along X and Y directions. Four 
MR dampers are taken as the damping devices installed in 
the first floor (Fig.1). The support is connected with the 
bottom of supporting column. The plane diagram is shown 
in Fig. 2. Each damper can provide a maximum force of 
20KN.  

 



 
 

 

 
Fig. 1. Diagram of structure with MR Dampers 

The El Centro earthquake wave recoded on May 18, 1945 
in USA is used in the numerical simulation. This wave has 
bi-directional components along X and Y directions. Four 
MR dampers are taken as the damping devices installed in 
the first floor (Fig.1). The support is connected with the 
bottom of supporting column. The plane diagram is shown 
in Fig. 2. Each damper can provide a maximum force of 
20KN. 

 
Fig. 2. Plane Placement of MR damper  

 
   The periods of the structure is obtained as 0.2015s, 
0.1793s, 0.0926s, 0.0851s, 0.0821s and 0.0431s, 
respectively. The displacements in X and Y directions and 
the angular displacement with and without controls are 
shown in Figs. 3-5, respectively. It is clearly seem from 
these figures that structural vibrations are effectively 
reduced using the MR dampers with the control forces 
computed based on the proposed µGA algorithm. 

 
Fig. 3 Comparative time history of effectiveness of vibration reduction in X direction 

 
Fig. 4 Comparative time history of effectiveness of vibration reduction in Y direction 



 
 

 

 
Fig. 5 Comparative time history of effectiveness of vibration reduction in rotational direction 

V. CONCLUSIONS 
In this paper, the optimization problem of a complex 

control system of a spatial structure with MR dampers is 
presented by using the µGA approach, which can suitably 
deal with not only the system of large dimensions, but also 
limited control force. And the performance index is not 
differentiable. And the control force is the complicated 
nonlinear feedback of state variables. To obtain the 
approximate solution, the nonlinear system is firstly 
linearized, and then the µGA is applied to solve the problem. 
A real computational case is given and it has been shown 
that the proposed control method is effective in structural 
vibration reduction using MR dampers based on the 
proposed µGA 
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