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where , )(sa j 3,2,1,0=j  are polynomials of s with 
degrees of 2, 1, 1, 0, respectively. The highest degree of s 
in (1) is 2 and it appears in a only, where there is no 
time delay influence, making (1) a ‘retarded system’ [1-5]. 
The delays are rationally unrelated, i.e., 

)(0 s

=21 / ττ irrational 
number. The problem is to determine the stability mapping 
of this system in { )2,(} 1 ττ=τ  space. Notice the last term 
in the equation, which represents the cross-talk between the 
two delays. 

Abstract— A novel treatment is presented for the stability 
of linear time invariant (LTI) systems with rationally 
independent multiple time delays. The stability analysis of the 
time-delayed systems (TDS) is quite complex, because they are 
infinite dimensional. Multiplicity and ‘rationally independent’ 
feature of the delays makes the problem even more 
challenging compared to the TDS with commensurate time 
delays (where time delays are rationally related). Recently the 
authors introduced a new perspective, which brings a unique, 
exact and structured methodology for the stability analysis of 
commensurate time delayed cases. The transition from this 
class of TDS to those with multiple delays using a similar 
perspective motivates the present study. The new framework 
is described and the enabling propositions are proven. We 
show that this procedure reveals all possible stability regions 
exclusively in the space of independent multiple time delays. 
As an added strength, it does not require the MTDS under 
consideration to be stable for zero delays. We present an 
example numerical case study, which is considered 
prohibitively difficult to solve using the peer methodologies. 

The stability of TDS when there is only one single 
delay has been studied extensively. The investigators 
typically search for the stability switches of the dynamics 
in the space of the time delay, [1, 6-10]. For the 
MTDS stability, we consider extending the unique 
perspective of [8], which is later named the “cluster 
treatment of characteristic roots (CTCR)” [9]. It introduces 
a construct, which determines all the stability intervals in 

, exhaustively. Furthermore it offers a closed form 
expression of 

+ℜ∈τ

+ℜ∈τ
τ  for the number of unstable roots (NU) of 

such systems for any , first time in the literature.  +ℜ∈τ

I. INTRODUCTION AND THE PROBLEM STATEMENT 

This study is on the stability of LTI multiple time delay 
system (LTI-MTDS). We present a new procedure for 

the most generic form of two time-delay and second order 
retarded LTI systems, with the intension of extending it to 
higher order systems with more delays in a later report. 

The primary reason of complication in this 
problem is the transcendentality (infinite dimensionality) of 
equation (1) even when there is a single delay. Multiple 
time delay systems (MTDS) are clearly much more 
cumbersome to solve [2-5]. Therefore all the present 
literature on the subject is limited to tackling considerably 
simple dynamics. For instance, [3, 4] solve the stability 
problem with no cross-talk between the delays and  
containing no damping term, simplifying the involved 
mathematics substantially. The extension of their procedure 
to cases with a damping term and delay cross-talk is 
prohibitively difficult, if not impossible. In this paper, we 
overcome both of these hurdles, using an extension to our 
“Cluster Treatment of Characteristic Roots (CTCR)” 
methodology. The new treatment constitutes the primary 
contribution of the work. In the meantime, since the 
inclusion of these two critical terms result in the most 
general form of the second order dynamics with two-
delays, we hope to have opened a path for a treatment on 

)(0 sa

First, we present some notational definitions. In 
the text , ,  are used for right half, left half and 
the imaginary axis of the complex plane, respectively. 
Consequently,  represents the entire 
complex plane. Vector arrays are denoted with curly 
brackets, e.g. {  
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The most generic form of the characteristic 

equation for a second order dynamics with two time delays 
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MTDS of much higher orders and with more time delays. 

By definition, (1) represents an asymptotically 
stable LTI-MTDS if and only if all its roots are in C . 
Infinitely many such roots exist and finite number of them 
may be in  [11]. They have to be tracked for a complete 
stability assessment. This is obviously a very cumbersome 
task because of the multiple transcendentality (i.e. multiple 
independent delays), and their cross-talk in the dynamics, 
There is very limited literature on the stability of this class 
of systems [2-5]. [2] confines the problem to cases with 
linear  term. [5] suggests a geometric procedure, 
which is inherently inaccurate and incomplete in 
determining the stability mapping in the domain of 

−

+C

)(s

, 21

0a

( )}{ ττ=τ .  For cases with a damping term in , 
none of these procedures can be deployed due to the added 
analytical complications. To the best knowledge of the 
authors, there is no evidence of prior investigation on 
MTDS where multiple delays have cross-talk 
characteristics. All of these limitations are removed in this 
work, albeit for a modest second order dynamics (1). The 
treatment we present is extendable to more complicated 
systems, as we intend to document in the near future. 

)(0 sa

The above investigations question the conditions 
imparting purely imaginary roots first, in order to assess the 
stability.  These roots display some interesting behavior, 
which are critical to the new methodology. The following 
two propositions summarize these peculiar features, which 
are also the key elements in the CTCR framework [8, 9]. 
They lead to an exhaustive stability study of the system in 
the space of single time delay. The aim of the present work 
is to achieve the same, except one important difference; the 
multiplicity of time delays naturally with cross-talk among 
them. And this transition from single to multiple delays is 
not trivial. 

The text is organized as follows. Section II and III 
present the two underlying propositions with proofs. 
Section IV entails the CTCR perspective. In Section V we 
give an example case study.  

II. SOME PRELIMINARIES AND PROPOSITION I 

We present some observations, definitions and 
properties first:  

Observation 1. If there exists an imaginary root of 
equation (1) at is cω∓=

(} 100

 (‘c’ for crossing) for a given set 
of time delays { ), 20ττ=τ  the same imaginary root 
will also exist at all the countably infinite grid points of 

...,2,1,...,2,1,)2,2(}{ 2010 ==++= kjkj
cc ω

πτ
ω
πττ

 

                              02,02
2010 ≤−≤−

cc ω
πτ

ω
πτ              (2) 

This signifies that 0iτ  is the smallest positive ijτ , 

)(min0 iji ττ = , 2,1=i , ...,2,1,0=j , ( 0>ijτ ). Notice 
that for a fixed cω  the distinct points of (2) generate a grid 
in  space with equal grid size, +ℜ∈ 2}{τ cωπ /2  in both 
dimensions.  
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Observation 2. The grid points of (2) are all earmarked 
with a parameter, . One can show that these grid points 
will form into infinitely many curves in (  space for 
continuously varying c . That is, for cεω , one 
can find the corresponding , and 22 ετ + , 
where . The existence and the correspondence of 

 and  can be determined from the variational form 
of (1): 

    
=s

        (3) 

If one considers all possible variations of , one 
obtains the continuous curves in 

+

2τ  space passing 
through the grid points (2). Again, notice that they are all 
derived from a fundamental curve traced by 

cω)τ 20  
where the notation denotes the imaginary characteristic root 
of  corresponding to the minimum delays of )20,10 τ .  

Definition “kernel curves”: Assume that the set of 
 is determined exhaustively in { ), 21 ττ  

space for all possible ω  values satisfying (1) and (2). 
These curves as a group are called the “kernel curves” of 
system described by the characteristic equation (1). We 
denote these curves by 0℘ . 
Definition “offspring curves”: All the curves which are 
obtained using the point-wise non-linear mapping given by 
equation (2) on the complete set of “kernel curves” are 
defined as the “offspring curves” of the dynamics described 
in (1). The “offspring curves” carry the identical frequency 
signatures of the “kernel curves”, as (2) preserves cω  from 
the kernel to offspring. They are represented by 

, , .  

The “kernel curve” and their “offspring curves”, 
by definition, contain all possible points in {  space, 
which render an imaginary characteristic root. These curves 
need to be exhaustively determined.  

These definitions and the proposition I constitute 
our first root-clustering feature: We study the “kernel 
curve” as the generating core of the infinitely many 
“offspring curves” with their common clustering identifier, 

. Note that  remains unchanged as one moves from a 
point on the “kernel curve” to its projections on the 
“offspring curves” according to (2).  
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Proof. Due to the identity expressed in Property 1, if there 
is a root of (1), 0

1 CΩ ∩∈= is cω∓

),( 21 TT s

 for a certain 
, one can determine the corresponding 

 from (5). For this  and 

+ℜ∈ 2
21 ),( ττ
),( 21 TT icω= , equation 

(4) holds and therefore 0),,( 21 =TTsCE , which implies 

that 2Ω∈= is cω . Same premise can be proven from the 
opposite direction as well. If there exists a root, 

0C2Ω ∩∈= is cω

+ℜ∈ 2
21 ),( kj ττ

 for a given ( , one can find 
the corresponding kernel (  and its offspring 

, 

2ℜ∈2 )T
+ℜ∈ 2

...,

1 ,T

2010 ), ττ
2,1=j ,  according to (2) 

for which the same root 

...,2,1=k
0C1Ω ∩∈= icωs . Therefore the 

property indicated by (10) holds.♦ 

Determination of “Kernel curves” exhaustively. A 
crucial question is the determination of all the “kernel 
curves” exhaustively for all possible . In order to 
achieve this, an interesting mathematical manipulation, so 
called the Rekasius substitution is adopted [10]. It suggests 
the replacement of the transcendental terms with rational 
expressions, 

+ℜ∈cω

      2,1,,
1
1

=ℜ∈
+
−

=− iT
sT
sT

i
i

isiτe                   (4) 

We next present two properties relevant to this operation. 

Property 1. This Rekasius substitution holds for  
(say 

0C∈s
is cω= ) exactly, with a companion condition relating 

iτ  and :  iT

               ])(tan[2 1 πω
ω

τ jTic
c

i += −  ,        (5) ...,1,0=j
Proposition I: The characteristic equation (1) can have an 
imaginary root only along countably infinite number of 
curves ),( 21 ττ℘ ; . These curves are, in fact, 
generated from a manageably small number (

+ℜ∈ 2
21 ),( ττ

3≤  as proven 
later in a lemma) of curves, which we will call the ‘kernel 
curves’, ),( 10 2ττ℘ . All the remaining curves ),( 21 ττ℘  
are derived from the kernel curves )2,1(0 ττ℘  via a 
nonlinear transformation. 

This equation describes an asymmetric mapping in which 
one  is mapped into countably infinite iT iτ ’s which are 
distributed with a periodicity of cωπ /2 . Proof is simply by 
checking the magnitude and phase equations arising from 
(4) ♦.  

The substitution of (4) into (1) results in a new equation  

                        ),,(),,( 21)4(21 TTsCEsCE via ⇒ττ             (6) 
Proof: The Rekasius substitution preserves the imaginary 
roots while reducing the infinite dimensional 

),,( 21 ττsCE  to four dimensional CE . It is 

obvious that determining 

),,( 21 TTs
0

2 CΩ ∩  for  is 

considerably easier mission than determining 

2ℜ21 ),( ∈TT
0C1Ω ∩  for 

. This is the crucial reason of the proposed 
Rekasius substitution. The question we try to answer 
becomes much simpler: Determine the locus (or loci) of 

 which result in 

+ℜ∈ 2
21 ),( ττ

2
21 ),( ℜ∈TT 0

2 CΩ ∩∈s . To respond to 
this question we use Routh’s array over the characteristic 
equation (7) in parametric form. The resulting array looks 
like Table 1. We take advantage of some subtle features of 
this array [12]. It is known that any 0

2 C∩Ω∈s
)

0) =T

 requires 
that the corresponding  satisfy ,( 21 TT

,(TR

which consists of some fractional polynomial expressions. 
Multiplying (6) with  the polynomial 
form of the characteristic equation is reached: 

)1()1( 21 sTsT ++

                
∑

=

==

++
4

0
2121

2121

),(),,(

)1()1(),,(

k

k
k sTTbTTsCE

sTsTTTsCE
                  (7) 

This expression is a polynomial in s of which the 
coefficients are parametric functions of  and T . We 
define four sets next: 

1T 2

  }0),,(,{ 211 == ττsCEsΩ
(τ

, a set with countably infinite      
members for a given point                          (8) +ℜ∈ 2

21 ), τ

  }),(,{ 2
2111

+ℜ∈= ττΩΩ , the complete topology of ’s 
for the entire 2-D quadrant  

1Ω
+ℜ∈ 2

21 ),( ττ

  }0),,(,{ 212 == TTsCEsΩ
2

21 ),( ℜ∈TT
, a set of four members for a 

given point                                                   (9) 
                                                               (11) 211

This equation represents a well-defined curve in  
space. One important nuance is that equation (11) is always 
satisfied if there is a “symmetric pair” of roots in 

),( 21 TT

2Ω  with 
respect to the origin ( 0=s ). In order for this condition to 
yield imaginary pair (as opposed to symmetrical real roots), 
so called, the “auxiliary equation” 

  }),(,{ 2
2122 ℜ∈= TTΩΩ

1(T
, the complete topology of ’s 

for the entire 2-D space   
2Ω

2
2 ), ℜ∈T

Property 2. All purely imaginary members of the 
topologies 1Ω  for {  and +ℜ∈ 2}τ 2Ω  for {  are 
identical. That is, 

2} ℜ∈T
                                    (12) 0),(),( 2122

2
2121 =+ TTRsTTR

  should have sign agreement between its coefficients, i.e. 0
2

0
1 CΩCΩ ∩≡∩                        (10) 

                                           (13) 0),(),( 21222121 >TTRTTRand for such a root, is cω= , (5) is automatically satisfied. 
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Statements (11) and (13) define a curve in  which 
constitute the complete locus (or loci) containing all 

 points yielding the entire set of imaginary 

characteristic roots 

),( 21 TT

),( 21 TT
0

2 CΩ ∩∈s . And the corresponding 
crossing frequencies are found from (12). Let us denote the 
resultant curve by 

}]0[]0[{),( 22211211 >∩== RRRTTR            (14) 

Every point on ),( 211 TTR  corresponds to an is cω=  as 

per equation (2) and there is no point )),( 221 TT ∉ ,( 11 TTR  
for which an imaginary characteristic root may exist. Thus 

),( 211 TTR  is exhaustive. In fact, ), 21 TT(1R  represents the 
projection of all ),( 21 ττjk℘  on the  space. Using 
these 

),( 21 TT

cω ’s and equation (2) point by point along 

)2T
), 2

,( 11 TR
( 10

, one can construct the respective “kernel curve” 
ττ℘  in ), 21( ττ  space. It is easy to determine for 

every point  the corresponding unique point of 

 using (2), as discussed earlier. Note that 
one should also check if T  (and T2 finite), 

 (and T1 finite), and 

c
T ω|)2

+

T(

ℜ∈

,1

2
20 |)

∞∓

10 ,(
cωττ

→2T
∞→1 ∓

∞→ ∓2, T1T  cause a 

crossing, is cω= . The limiting cases imply  as 
per (4). Then one can detect the respective delays using (5) 
as 

1−→− sie τ

ci j ωπτ /
)2

)1+
,1

2(

0

=
(

. As a result, these operations yields a 
unique ττ℘  ‘kernel curve’ for the system given by 
(1). Departing from this ‘kernel curve’, one can generate 
the complete set of ‘offspring curves’, ),( 21 ττjk℘ , 

, using the point-wise feature stated 
in (2). The given system has imaginary characteristic roots 
only on this set of 

...,2,1=j ...,2,1=k

)2,( 1 ττjk℘ , ...,2,1,0=j , 
. The proposition holds. ♦ ...,,0=k 2,1

Lemma: There can be maximum three curves forming 
),( 210 ττ℘ . 

Proof: ),( 210 ττ℘  has point-wise one-to-one 

correspondence to the curve ),( 211 TTR  as per (2). If one 
looks at the formation of the Routh’s array it becomes 
obvious that  is a multinomial of maximum 

degree 3 in T  (or T ). Thus  represents at 
the most 3 individual curves in space. ♦ 

)2,( 11 TTR

1 2 0),( 211 =TTR
),( 21 TT

icω
=i

([Resgn
s

S
j

Sτ=Tendency =

j

s
τ∂
∂

s cω=

10 <<< ε

)2, 20 kj
cω

πτ +τ

1τ

ω is c
RT

=

k2τ

1τ

...

icω
=sSτ

, 2

s τ −2 ),(

τ

0>

i = sH τ )],([ 2RT
,1,0=j

= −

1τ
(0 τ

Notice that the above proof and the procedures involved 
(e.g., Eq(4), Table 1) are equally valid for the most general 
n dimensional (n delays) system. The reduced dimensional 
representation of (1) in this paper is for ease of conveyance 
only. 

III. PROPOSITION II 
Definition: The root tendency associated with each purely 
imaginary characteristic root, , with respect to one of 
the time delays, iτ , 2,1 , is defined as 

     )]Root
iis

c

j

c
RT

ω

τ

ω ==
     (15) 

where 
is

i

s

c

j
S

ω

τ

=

= .This property indicates the 

direction of transition of the imaginary root at icω  as one 
of the delays increase by ε , , while the other 
one remains fixed. 

4s  ),( 214 TTb  ),( 212 TTb  0b  
3s  ),( 213 TTb  ),( 211 TTb   
2s  21 1 2( , )R T T  22 1 2 0( , )R T T b=   
1s  1 1 2( , )R T T    
0s  0 1 2 0( , )R T T b=    

 Table 1. Routh’s array for ),,( 21 TTsCE  

Proposition II. Take a crossing frequency, cω , an 
imaginary root caused by infinitely many grid points in 

},{ 21 ττ  defined by 2
10

cω
π

+( , ...,1,0=j , 

...,1,0=k . The root tendency  (or 2τ

s
RT

ω ic=
) 

remains invariant so long as the grid points are selected on 
different ‘offspring curves’ keeping  (or j1τ ) fixed. 
Proof. Without loss of generality we prove the proposition 
for 1τ  keeping 2τ  fixed. We look at the root sensitivity 

given by (15) with respect to  at ),2
210 τ

ω
πτ j
c

+( , 

,2,1,0=j .It can be shown that it is in the form of: 

                     ( )
iscs c

Hi
ω

τω
=

−

=

1
101

      (16) 

where )(sH  is a self-evident quasi-polynomial which 
is invariant with respect to the actual values of 1τ . 

Taking cω , we can use (16) to write (15): 
τ                  iss c

ij

c ωω == }Im{sgn              (17) 
which is invariant for all j1τ , .  ...,2

In other words, the imaginary root always crosses 
either to C (for + 1+RT ) or to C  (for 1−=RT ), when 
one of the delays is kept fixed independent of the actual 
values of the second delay.♦ 

This proposition helps identifying certain sections 
of 0℘  and the ‘offspring curves’ to be marked as 
stabilizing transitions along the  (or 2τ ) axis or vice 
versa. Once we detect completely ).2,1 τ℘ , ),( .21 ττjk℘  
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‘offspring curves’ and the invariant root sensitivities, we 
can determine all possible stability regions in the 
parametric space of time delays {  using the well-known 
D-Subdivision methodology [13]. This implies the 
exhaustiveness of our methodology because it covers the 
complete set of stability regions in the entire semi-infinite 
time delay space entirely. Over an example case we will 
also show the exactness of the methodology; determining 
the precise boundaries of time delays where stability 
switches (i.e., from stable to unstable or vice versa) occur. 

}τ

).2τ

1τ

).2

,( 1τ

Obviously the regions in ),( .21 ττ  space, which 
result 0),( 21 =ττNU

2≥NU
, are declared stable and the others 

with  unstable. This finalizes the complete stability 
analysis of the dynamics with two independent time delays. 
Let’s now give an example case, of which the solution is 
prohibitive using peer methodologies [1-4].  

V. EXAMPLE CASE STUDY 
Take the system of (1) as: 

08)3.72()80.146(

1425.211.7),,(
)(

2
21

2111 =+++++

++=
+−−− sss eeses

sssCE
ττττ

ττ
    (18) In the next section we present the steps of the 

extended CTCR procedure, which is the first structured 
methodology, to the best knowledge of the authors that can 
declare the complete stability mapping of multiple time-
delayed systems in the domain of the delays. 

Non-delayed system has two roots at −  and 95.9 15.5− , 
thus 0)0,0( =NU . As one performs (4), (18) becomes 

({),,( 4 −= sTTs 23 ++ sT

2425.511.15
}6425.201.11{)6425.5
1.3}0425.79.0

2
2

23
1

2
23

21

+++

++++

+

ss
TsssTs
sssCE

  (19) 
IV. CTCR METHODOLOGY 

 The cluster treatment of the characteristic roots (CTCR) 
framework consists of the following steps: 

The parameterized Routh’s array is performed next on (19) 
and  term is generated as per Table 1. It is ),( 211 TTR

),( TTR =

i) The CTCR routine requires an exhaustive detection of 
all those loci in { , which yield }τ is cω=

,( 10

. That is, the 
“kernel curve” and the “offspring curves”. This is the 
first “clustering” operation. As per the earlier lemma, 
the “kernel curve” is analytically well defined and 
numerically manageable. This ).2ττ℘  is the 
generator of the infinitely many and complete set of 
crossing hyperplanes ,( 1τjk℘  as defined earlier. 

         (20) 

As claimed by the earlier lemma, it is of degree 3 in either 
T1 or T2. Thus, there can be at most three curves 
represented by (20) in  space. The constraint (13) 
forms as: 

2
2

2
3

2

12
2

2

3
2

2
12

2
2

3
2

3
1

2
2

2211

41629216216610836

)41625408161595638
91305277()193600132420

84218447933972120()798682
254892172217215(

T.-T.-T.-

T.-T.+T.+
T.T.-T.-

T.+T.T.-
T.+T.

+

+

),( 21 TT

ii) A second “clustering” is done within the kernel 
hyperplane, ),( .210 ττ℘

),( .210

, utilizing the concept of RT 
(root tendency). Certain segments of the kernel 
hyperplane ττ℘  exhibit certain RT’s along 1τ  
and 2τ  axes and their reflections on the offspring 
exhibit the same features according to Proposition II. 

0
),(
),(

),(),(
21

21
21222121 >=

TTD
TTN

TTRTTR       (21) 

where;

 2
221

2
1

2
2121

2
2

2
12

2
1

444004000400012400

943607200253535560

T-T-T-T-

TT+TT+TT+TTN =
These steps of CTCR ultimately generate a simple 

),( .210 ττ℘  and its infinitely many offspring ),( .21 ττjk℘  

with the earmarking of RT  and 2τRT  on certain 
segments of each offspring. This exclusive tableau renders 
completely the possible root crossing points and their 
contributions to the stability picture. The rest of the 
procedures are following the 2D extensions of our earlier 
described methodology [8]. In essence we deploy the D-
Subdivision method along any path made of segments 
parallel to 1τ  and 2τ  axes, which connects )0,0 2( 1 == ττ  
point to the operating point of interest ),( 21}{ ττ=τ . As 
the path crosses the ,( 1 ττjk

)
℘ ’s we build a quantity 

called the , 21( ττNU . Starting with )0,0 2( 1 == ττNU  
which is the number obtained for the non-delayed systems, 
we add 2 if at a crossing of ).2τjk℘  the 1+=RT  and 
subtract 2 if the . 1−=RT

2121 10109 T-T-TTD =  
0),( 211 =TTR  and the inequality constraint of (21) are 

displayed in Fig 1. A numerical procedure is followed 
along the segments of 1R , which is displayed by (14) to 
generate the corresponding ‘kernel curve’ ),( .210 ττ℘ .  
This ‘kernel curve’ and its ‘offspring curves’ are depicted 
in Fig. 2. The kernel, ), .21(0 ττ℘ , happens to be a closed 
loop oval, confined within a small range of 1τ  and a small 
range of 2τ . This is, however, an exhaustive representation 
of all possible imaginary roots of the system. That is, any 
imaginary characteristic root of (18) can be generated by 
one of the points either on this ‘kernel curve’ or one of its 
‘offspring curves’. No other possible root crossing can 
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exist. This is the first step of the operation, which reveals 
the imaginary crossings in its entirety. 

The second step is to look at the root tendencies at 
these crossings. It is very simple to mark the obvious stable 
region using the D-Subdivision reasoning. As 

, at 0)0,0( =NU )0,0(),( .21 =ττ  point, i.e., the origin is 
stable, as is the shaded regions, in Fig 2.  

The dendrite like formation of the stable region is 
interesting. One of these dendrites is interrupted by the 
kernel ),( .210 ττ℘ . Another interesting point is that all the 
offspring ).,( 21 ττ℘  are also oval shaped except their 
points of closure are outside the ranges given on Fig 2. This 
indicates the concentration of low frequencies around the 
upper ebb of the oval. The root tendency invariance 
property with respect to 2τ  is tested at points A, B and C; 

)2 A,( 1AA ττ , )2,1
A

A ω
πτ +( 2 AτB , )4,( 21

A
AAC

ω
πττ + . 

1−2 =τ
C

2 == τ
B RTRT2τ

ART  are verified. Notice that the 

crossings at these three points take place at the same iAω  

and with 12 −=
τRT , i.e. increasing 2τ  at any one of these 

crossings yields two less unstable roots. This property 
enables us to mark certain regions with the corresponding 
NU (see figure).  

R1 

R21 R22 > 0 

T2 

T1

Figure 1. R1 and the constraint of (21) 

VI. CONCLUSION 
A new procedure is described based on the Cluster 

Treatment of Characteristic Roots (CTCR) perspective in 
analyzing the stability of multiple time-delayed LTI 
dynamics. For simplicity of conveyance we take a two-
delay case into account in this work. It is evident from the 
literature that the stability assessment of this class of 
dynamics remains unsolved yet. The proposed 
methodology detects all the stability regions precisely, in 
the space of the time delays. This is due to the exhaustive 
nature of our approach. To achieve this, we introduce the 
concepts of ‘kernel’ and ‘offspring’ curves, which impart 
the complete portrait of the possible imaginary roots for 
this system. Then we suggest an interesting invariance 
property of the crossings of the roots. Using these two 
clustering properties we cover the entire semi-infinite time 
delay space completely for an exhaustive stability analysis.  
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