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Robust Output Feedback Stabilization for Uncertain Singular
Time Delay Systems

Shugian Zhu, Zhaolin Cheng and Jun’e Feng

Abstract—The robust output feedback stabilization delay systems in the literature. In addition, control laws are

problem for singular time delay system with norm-bounded proposed by using strict LMI approaches, which is much
parametric uncertainties is considered in this paper. All the more efficient in numerical computation.

coefficient matrices except the matrixZ' include uncertainties. - "

The authors derive sufficient conditions about the robust Notation: R P'enOt?S the Set_ of all real ”“mt_’erR’
stability of the two closed-loop systems which are obtained denotes then-dimensional Euclidean spac&™*™ is the
by applying an observer-based controller and a compensator set of alln x m real matrices(C([—7, 0], R™) denotes the
to the singular time delay system respectively. Then the strict gpace of all continuous functions mappipgr, 0] into R™,

linear inequality (LMI) design approaches are developed dia ; i ; ;
- ) g{- - -} is a block-diagonal matrix. For a symmetric
and the desired robust output feedback control laws are given. matrix P = PT, P > 0 (< 0) means thatP is positive

Index Terms— Singular time delay system, robust stabiliza- (negative) definite. The size of the identity matfishould
tion, output dynamic feedback, linear matrix inequality (LMI). to be inferred from the context.

. INTRODUCTION IIl. PROBLEM FORMULATION AND

Control of delay systems has been a topic of recurring _ _ PRELIMlNARlES _
interest over the past decades since time delays are fre-Consider a linear singular system with state delay and

quently encountered in physical processes and very oft@@rametric uncertainties described by

are the causes of instability and poor performance of contrl £i(t) = (A + AA)z(t) + (A, + AA)x(t —7)
systems, see [1]. Recently, increasing attention has beg¢n + (B + AB)u(t)

devoted to the problem of robust stability and robust staby  y(t) = (C + AC)x(t) (1)
lization of linear systems with delayed state and parametric  z(t) = ¢(t), t € [~7,0]

uncertainty, see, e.g., [2]-[4] and the references therein. wherez(t) € R", u(t) € RP, y(t) € R™ are the state,

On the other hand, control of singular systems hagontrol input and measurement output, respectivelyA
been extensively studied in the past years due to th P put, P 4,

fact that singular systems can describe practical physic‘é%’. B ar_ldO are known real constant matrices W'th. appro-
: 9y te dimensions an@ <rank £ = g< n. 7 > 0 is a

processes more comprehensively than regular ones. A gréa . o .
number of results based on the theory of regular systenq’gnStam time delay(t) € C([-r,0], R") is a compatible
vector valued functionAA, AA,, AB and AC are time-

have been extended to the area of singular systems. VerrT\(/ . : ; .
invariant matrices representing norm-bounded parametric

recently, much attention has been paid to singular timencertainties and are assumed to be of the following form:
delay systems. A sufficient condition about the stability o ' 9 ’

the singular time delay systems is derived in [7] and [8][ ANA ANA; AB ] _ { D, } Fo)[ Br E, E,]
independently in terms of linear matrix inequality (LMI). | AC * * Dy ! T

Furthermore, the problems of robust stabilization [7] and o (2a)
guaranteed cost control [8] via state feedback for singular FT(0)F(0) < I;, F(o) € R™. (2b)

time delay systems with norm-bounded uncertainties aignere Dy € R™ Dy, € R™¥i B, € RI*" E. ¢

. . . L b ) b T
discussed respectively. However, when all state variablgg;xn E, € RI*P are known real constant matrices which
are not available for feedback, it is necessary to desigtharacterize how the uncertain parameter8 ) enter the
ogtput feeqiback co_ntroller for system. The purpose Orﬁ_ormal matricesA, A,, B andC. o € ©,0 is a compact
this paper is to design an observer-based output dynamig; in g Furthermore, it is assumed that given any matrix
feedback controller and a compensator such the resultapt. T < 1 there exists & € © such thatF — F(o).

closed-loop systems are robustly stable. To the best of our 4 AA.,AB and AC are said to be admissible if (2) is
knowledge, there are no results on the problems of robu§5ﬂ;ﬁed_ ’

output feedback stabilization for uncertain singular time gnsider the stability of the nominal unforced singular
This work was supported by the project 973 of China under granqelay system of (1)
G1998020300 : _ .
S. Zhu, Z. Cheng and J. Feng are with the School of Mathemat- Ex(t) - Al(t) + A,.x(t N T) (3)
ics and System Sciences, Shandong University, Jinan 250100, P. R. x(t) = ¢(t), te[-T,0]
Chinasduzsq@mail.sdu.edu.cn (S. Zhu),chengzha@jn- . .
pub“C_Sdlcn?nfolnet @ Cheng)’thefengs@gleg_cojm A result has been presented in [7] and [8] simultaneously,
(J. Feng) which is given as a lemma in the following.
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Lemma 178 If there exist a matrix? and a matrix A. Design of observer-based controller (6)

Q > 0 such that When we apply (6) to the system (1), the closed-loop

EPT = PET >0 (4) system is given by

APT 1 PAT £ Q A, PT Ei(t) = (A+ AA)z(t) + (B + AB)Ki(t)

PAT “0 <0 (5) . + (A + AA))z(t — 1)
T Ez(t) = (LC + LAC)z(t) + (A — LC + BK)i(t)
the singular time delay system (3) is asymptotically stable. + A &(t—T1)
Remark 1:From the definition given in [7], the uncertain z(t) = o(t), te[-1,0]

singular time delay system (1) is said to be robustly stable{  #(¢) = ¢(t), te [-T,0]
if the system (1) withu(¢) = 0 is asymptotically stable for

all admissible uncertainties A and A A, . Define the observer error vecteft) = z(t) — &(t), we get
The ob!ectlve ofbthls pap;)er |sdt%: . cedb Ei(t) = [(A+ AA) + (B + AB)Klz(t)
A. DeS{gn an observer-based dynamic output feedba: " (B+ AB)Ke(t) + (Ar + AA )z (t — 1)
controller. Eé(t) = (AA+ ABK — LAC)z(t) + AAa(t — 7)
Ei(t) = Ai(t) + A 2(t — 7) + Bu(t) +(A—LC — ABK)e(t) + Are(t — )
+ L(y(t) — C2(1)) (6) z(t) = ¢(t), te[-7,0]
u(t) = Ki(t) e(t) = ¢(t) —¥(t), te[—7,0]
j(t) = ¢(t)7 te [_7—7 O] (t) (8)
such that the resultant closed-loop system is robustly stabl@troduce an auxiliary variabler.(t) = [ e(t) } , the

where i(t) € R™ is the observer state vectat, ¢ R"*™  system (8) can be written as
is the observer gain matrix and € RP*" is the controller
g Eoio(t) = (Ao + AA)o(t) + (Apr + AA ot — 7)

gain matrix.
[ e .,
{ zo(t) = [ o(t) — ¥(t) ] , te[-70]

B. Designh a compensator

n(t) = Kun(t) + Kiay(t) 9)

u(t) = Kain(t) (7)  where

1(0) = 1o [E 0] {A+BK _BK ]
such that the resultant closed-loop system is robustly stable, 0 E |7 0 A-LC

wheren(t) € R" is the controller state vector, is to be
decided and) < r < n. A — { A,

. I ],AAC:DlF(a)E+D2F(a)E1

I1l. MAIN RESULTS

- - D - 0
To get the main results of this paper, we first introduce AAc, = D1 F(0)E;, Dy = { Di } Dy = { —LD, }
some useful lemmas.
Lemma 2[_51_Given matricesH, £ and @ of appropriate E=[ By +EK —EK |
dimensions with() symmetrical, then

Q-+ HF(0)E+ (HF(0)E)T <0 Ev=[E 0].E=[E 0] (10)

for all F(o) : FT(0)F(0) < I, if and only if there exists

Lemma 1 shows that the closed-loop system (9) is
a scalare > 0 such that robustly stable, if there exist matricd3. = }Zl }2
2
Q+eHHT + e 'ETE <. andQ. = { %1 5 } > 0 satisfying
2
Lemma 3! Given matrices¥, P and ) of appropriate . .
dimensions witht symmetrical, then the inequality E.P; =FPE; >0 (11a)
U+ PTITQ + QTP < 0 (Ae + AA)PT + Pe(Ac+ AA)T+ Qe x| _
PC(ACT + AACT)T _Qc
is solvable forII if and only if (11b)
WIUW, < 0 ?ffg) t:raet Losrt allAA. and AA... Inequalities (11a) and
WEHWWe <0 J

EPl' =P E" >0 (12a)
where matricedVp and W, are orthogonal complements
of P andQ respectively. EP] = PRET >0 (12b)
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P.AT. Q. |t
D1 Do Flo) 0 EPT E,PT
0 0 0 F(o) E,\PT 0 T
( D1 Do F(o) 0 EPT E.PT )T <0
0 0 0 F(o) E PY 0 ’

(12¢)
From Lemma 2, (12c) holds if there exists a scalas 0
such that

PcAg:r 7Qc
6|:D1 D2HD1 DQ]T+
0 0 0 0
[ EPT E.PT1"[ EPT E.PT
‘ { E.PT 0 } [ E\PT 0 } <0

(13)

Define matrixA = diag{I, Py ', I, Py ", 1,1,I}, (15) is
equivalent toATA” < 0, i. e.,

I TH Tlg ATP1T 0
T,{2 TQQ 0 P2A7—
P AT 0 —O 0
0 AT P 0 —Q
0 —e(LD)TPT 0 0
(Ey + E2K)PT —By,K E.PT 0
E,PT 0 0 0
0 Py (B, + B,K)T PET T
76P2LD2 7(E2K)T 0
0 P ET 0
0 0 0 <0 (16)
—el 0 0
0 —el 0
0 0 —el |

By Schur complements, (13) is equivalent to the followinth(_}re

inequality:

APT + P.AT + Q.+ eD DT A PT

PCAZ—;— _Qc
eDT 0
EPT E,PT
E,PT 0
¢Dy P.ET P.ET
0 PE' 0
—el 0 0 < 0. (14)
0 —el 0
0 0 —el
Using the expression in (10), inequality (14) can be writteh®
as
[ Fll F12 A,,.PlT 0
rf, PP 0 A, PF
P AT 0 = 0
I'= 0 PAT 0 —Q2
0 —e(LDy)T 0 0
(Ey + BE,K)PT —E,KP]  E Pl 0
E\ PP 0 0 0
0 P (B, + EB,K)T P ET T
76LD2 7P2(E2K)T 0
0 P ET 0
0 0 0 <0 (15)
—el 0 0
0 —el 0
0 0 —el |
with

I = (A+ BK)PF + Pi(A+ BK)T +Q, + eD, DT
Iy = -BKPf +eD, DY

s = (A— LOYPY + Poy(A— LC)T + Qo + eD, DT

Y11 =T11, Y12 = —BK + eD D] P}
Yoy = Po(A—LC)+ (A~ LC)'P{ + Qo +eP, D DT PF

and we still denoteP, = Py ', Qy = Py 'Q.P; " for
simplicity. Correspondingly, (12b) is equivalent to

P,E=FETP! >0. (17)

Based on above analysis, we know that a sufficient
condition guaranteeing the robust stability of the closed-
loop system (9) is that there exist matric®s, P, Q1 >
0,Q2 > 0 and a scalat > 0 such that (12a), (17) and (16)
are satisfied. Using the method dealing with inequalities
(12a) and (17) which was developed in [7], we get a main
sult in the following theorem.

Theorem 1:The closed-loop system (9) is robustly sta-
ble if there exist matricesX; > 0,Y7,Q7 > 0,X; >
0,Y2,Q2 > 0 and a scalak > 0, such that the matrix
inequality (16) holds, in whictP; is substituted by X7 +

Y, ®T and P, is substituted byE” X, + Y,U7. Where,
matrices® € R**("—9) ¥ ¢ R»*("—9) satisfy E® = 0
and ET¥ = 0 respectively, and radk =rank¥ = n — q.

According to Theorem 1, an observer-based controller
can be obtained by solving the matrix inequality (16). How-
ever, it is worth pointing out that (16) is not a linear matrix
inequality, so can not be solved using the LMI Toolbox of
Matlab. However, note that a necessary condition of (16) is

Y11 APl Pi(E: +EK)T PET
P AT —-Q1 P ET 0
(E\ + B,K)PT  E,PT el o | <%
E\PT 0 0 —el
(18)

with P, beingr substituted byEX; + YV1®7. Let Z; =

K(EX, +Y,®T)T, then (18) can be written as
Q11 A.PY PET+ZTEFY P ET
P AT - P,ET 0
T T <0,
E\PT + ExZ, E.P; —el 0
E\Pf 0 0 —el
(19)

where
Oy = AP + PLAT + BZ, + Z] BT + Q) + ¢D, DT
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with P; being substituted bEXl +Y1(I)T. ObViOUSly, (19) with Q15 = T12, Qoo = P2A+ATP2T*ZQC*CTZ%W+Q2

is a strict LMI about matrices); > 0,X; > 0,Y;,Z; and in whichP; is substituted byEX; + Y;®7 and P; is

and a scalat > 0, which can be solved numerically very substituted byE” X, + Yo 07T,

efficiently by using the LMI Toolbox of Matlab. Remark 3:Similar to Remark 1, without loss of general-
Remark 2: Here, without loss of generality, we canity, E7 X, + Y>¥” can be assumed to be nonsingular, so

assumelb X, +Y; @7 is nonsingular, then the controller gainthe observer gain matrix can be obtained by solving LMI

matrix is given byK = Z;(EX; + Y1®7)~T. Otherwise, (21) andL = (ET X, + Yo,U7T)~12Z,.

we can choose nonsingular matricdd € R™*™ and

y I, 0 B. Design of compensator (7)
NekR such thatls = MEN = { 0 0 ] - Denote The closed-loop system of (1) under compensator law (7)
A= MAN,A; = MA,N,B = MB,Dy = MDy,Ey = is
E\N,E. = E.N,X; = N'XiN~". v, = MYy, 2, = L0 ][ a@)
glMT’Ql A:AMTQ1M7 and letd = N~'® (obviously, { 0 E ] [ z(t)
® satisfiesE® = 0 and rankb = n — ¢). Hence, (18) is K1 Ki12(C + AC) n(t)
equivalent to ~ | (B4+AB)Ky A+ ANA z(t)
o A (BX) + b7 0 0 it =)
ot AE ) 10 avoa [ 262D
_ EXiAne)A, o Q1 n(t) 7
El(E:X1A+AY1(I)7:)’I: +E221 E.,—(EXl +Y1q)T)T |: .’E(t) :l = |: Qb((l)f) P te [_T7 O]
B (EX; +Y,0T)T 0 (22

Introduce an auxiliary variablé(t) = [ n*(t) () |

Nk > FT\ T 5T T % > FT\ T
(EXy + Y107 )Ey + 20 By (BXy+Y107)E, and gather all controller parameters into the single variable

(EX, +V197)ET 0
el 0 <0 g, = { g” K62 ] then the system (22) can be written
0 —el as 2
. o (20 Bi(t) = (A+AA)F) + (A, + AL)F(E -
with Oy = A(BX, + i67)T + (BX, + 7,67)AT + 2y =« ; JZE) + (Ar + AA)E(E —7)
BZ1+ZTBT+Q1 +eD, DT If EX, +Y,97 is singular, z(t) = { ¢((2) ] , te[-T1,0]
then EX, + V107 = M(EX, + Y17)N-T is also a (23)

singular matrix. We can choose a sufficient sntalt> 0

such thatt X, +Y; 7 +61 is nonsingular and satisfies (20)

with B(EX, + V10T + 01)T = (EX; + 18T + 00)ET. [ L

If (20) holds, the controller gain matri¥’ is obtained as 0

K =72,(EX, + V.07 +60)"TN—L. 0

Substituting the matncesQl,Zth,Yl,K and the A = 0

scalare > 0 obtained by solving (19) into (16) and letting

Zy, = (ETX, + Y,9T)L, we get the strict LMI about P B U U B R Cy= I. 0
710 A" o B =10 C

] ,A~ = A0+BoKocU, AA = Dl()Fo(O')Ew

0 . B,
A, } 7AAr=D10F0(U)[ 00 }

Q2, Z>, andY; as follows:

[ Qll ng A-,—Pir 0 = = El() + EQOKOCO
ar, Oy 0 PA, Dy =[ Do BoKoDy |,E10= B
P AT 0 -1 0 P 0 0
0 AZPéT 0 *QQ FQ(J) = |: <U) F :| 7D10 = |: D :|
0 —eD¥ZT 0 0 0 Flo) 1
E\Pl' + EyZy, —-E;K E.Pl 0 _ 0 _
E Pl 0 0 0 D20:|:D2:|7E10:[0 By |
I 0 eDT PT 0 0 )
Eyy=[0 Ey |,E.o=[0 E,|. (24)
0 PET +zTET PET 0 : ) : ]

—€Z2Ds —(B>K)T 0 eP, Dy Lemma 1 shows that the closed-loop system (23) is robustly
0 PET 0 0 stable if there exist matrice® and @ > 0 such that the
0 0 T 0 0 following inequalities

I 0 0 0 <0 . .
—¢ EPT = PET >0 (25a)
0 —el 0 0 ~ o o ~ ~
0 0 —el 0 (A+ AA)fD +P(A+ AA)T +Q * | <o
0 0 0 —el | P(A, + AA)T —-Q
(21) (25b)
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hold for all AA and AA,. (24b) can be written as for all

N L

APT + PAT +Q A,PT

PAT —Q
D E.oPT
{ 010 E1oPT % +
DT
(|: DlO :| ( ) |: ElOPT ET%P :|)T < O

(26)
FT(0)F(0o) < I; implies thatF (0)Fy(o) < Iy;. From

Lemma 2, we can get a sufficient condition guaranteeing

that (26) holds for allFy(o) is that there exists a scalar
€o > 0 such that

APT4PAT+Q APT) ., [ Dw ][ Du]"
PAT -0 “l 0 0
- DT - DT
+ep [ EyoP" ET%P :| [ E1o P ET%P :| <0.
(27)
By Schur complements, (27) is equivalent to
APT 4 PAT+G  APT
PAT -Q
EoD,{O 0
~ DT
E10PT ETOP
0
€QD10 IBETO
0 PET, 0
ks 0. 28
—60]% 0 < ( )
0 —60[2]‘
Applying the expression in (24) to (28), it follows that
~:~ ATJ?T GOBOKODzo
PAT —Q 0
eoDI, KT BY 0 —eol;
(Eyo + EQOKOCO)P E,oPT 0
EyoPT 0 0
P(Eu) —|—~E20K000)T PE%
PEZ, 0
0 0 <0 (29
760]j 0
0 —60]]'

with
== (AO+BOKOCO)PT+P(AQ+B0K000)T+Q+50D10D,{0,

From above discussion, we know that if there exist

matricesP,Q > 0 and e, > 0 such that (25a) and (29)
hold simultaneously, the closed-loop system (23) is robust
stable. We can solve (25a) and (29) using the method

[7]. Next, we will give another method to solve (25a) and

(29).

We can find nonsingular matricéd and N such thatF =

MEN = { ITJ" 8 ] and denoteA = MAyN, A, =

It is well known that restricted system equivalent
transformation will not change the stability of a system.

M/LNZBO = MBO;CO = CoN,Dyg = MDyg, Eyg =
EigN,E.g = EoN, P MPN T,Q MQMT Then
(25a) and (29) are equivalent to

BPT = PET >0 (30a)
A ATPT GOBOKODzo
PAT -Q 0
eo DI K] BT § Ov —eol;
(Ero + EQOKOCO)PT EoPT 0
ElOPT 0 0
P(Elo JrVE?QoKoCV'O)T pE%
PE’Z“O 0
0 0 <0 (300)
—6()Ij 0
0 760[j
with
A= (AO+BOKOOO)PT+p(140+BOKOC’0)T+Q+€ODIODTO-

0
0

fying EPT = PET > 0 is of the formP = {

From E:[ I’“Jq ] we know that the matri¥° satis-

Py 0 ]
Py Poo
with P;; € RU+t9x(r+4) Then we can obtain another main
result of this paper in the following theorem.

Theorem 2The closed-loop system (23) is robustly stable
Py 0
. Py Pao
, @ > 0 and a scalag, > 0 satisfying the
inequality (30b).

Next, we will give the design method fdk, based on
above analysis. (30b) can be represented by

if there exist matrices® = with Py, €

Rr+a)x(r+aq)

¥ +efuyY +r'y’m’e <o (31)
where,
AopT + PAg + Q + 60D10DTD /L—PT
PAT -Q
U= 0 0
ElOPT ETOPT
EioPT 0
0 PE], PE]
0 PEL, 0
760]2' 0 0
0 —60I' 0
0 0  —eolj
_[ By 0 0 E 0 g% 0
“IBf oo o0 o | 0 K
ly s_[C 0 0 00
In 0 0 €Dy 0 O
PT 0 0 0 0
0 I 0 0 0
Y=| 0 0 I 0 0.
0 0 0 I 0
0 0 0 0 I
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From Lemma 3, a necessary condition about the existence
of II solving the inequality (31) is

(1]
WE¥We <0 (32a) 2
wEr=Tor—'wyg <0 (32b)
In (32a) and (32b), though the controller gain matfi [3]
is eliminated,P and P~! are included simultaneously. To
get Ky mathematically efficiently using the LMI Toolbox
in Matlab, we can first solve the LMI (32a) foP = [4]
P 0 ,Q > 0 ande > 0. Then substitute the 5]
321 P22
P,Q and¢g into (30b) to get a LMI aboufs,,. Solve (30b) g
for Ky = g” K012 and the output dynamic feedback
21
controller (7) is obtainéd. 7]

IV. CONCLUSIONS

The problems of robust stabilization via observer-baseds]
controller and compensator for uncertain singular systems
with time delay and parametric uncertainties have been
studied. Sufficient conditions about the robust stability of
the closed-loop systems are presented. The control laws
proposed by using strict LMI approaches can guarantee the
resultant closed-loop systems are stable for all admissible
uncertainties.
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