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Abstract— The robust output feedback stabilization
problem for singular time delay system with norm-bounded
parametric uncertainties is considered in this paper. All the
coefficient matrices except the matrixE include uncertainties.
The authors derive sufficient conditions about the robust
stability of the two closed-loop systems which are obtained
by applying an observer-based controller and a compensator
to the singular time delay system respectively. Then the strict
linear inequality (LMI) design approaches are developed
and the desired robust output feedback control laws are given.

Index Terms— Singular time delay system, robust stabiliza-
tion, output dynamic feedback, linear matrix inequality (LMI).

I. INTRODUCTION

Control of delay systems has been a topic of recurring
interest over the past decades since time delays are fre-
quently encountered in physical processes and very often
are the causes of instability and poor performance of control
systems, see [1]. Recently, increasing attention has been
devoted to the problem of robust stability and robust stabi-
lization of linear systems with delayed state and parametric
uncertainty, see, e.g., [2]-[4] and the references therein.

On the other hand, control of singular systems has
been extensively studied in the past years due to the
fact that singular systems can describe practical physical
processes more comprehensively than regular ones. A great
number of results based on the theory of regular systems
have been extended to the area of singular systems. Very
recently, much attention has been paid to singular time
delay systems. A sufficient condition about the stability of
the singular time delay systems is derived in [7] and [8]
independently in terms of linear matrix inequality (LMI).
Furthermore, the problems of robust stabilization [7] and
guaranteed cost control [8] via state feedback for singular
time delay systems with norm-bounded uncertainties are
discussed respectively. However, when all state variables
are not available for feedback, it is necessary to design
output feedback controller for system. The purpose of
this paper is to design an observer-based output dynamic
feedback controller and a compensator such the resultant
closed-loop systems are robustly stable. To the best of our
knowledge, there are no results on the problems of robust
output feedback stabilization for uncertain singular time
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delay systems in the literature. In addition, control laws are
proposed by using strict LMI approaches, which is much
more efficient in numerical computation.

Notation: R denotes the set of all real numbers,Rn

denotes then-dimensional Euclidean space,Rn×m is the
set of alln ×m real matrices,C([−τ, 0], Rn) denotes the
space of all continuous functions mapping[−τ, 0] into Rn,
diag{· · ·} is a block-diagonal matrix. For a symmetric
matrix P = PT , P > 0 (< 0) means thatP is positive
(negative) definite. The size of the identity matrixI should
to be inferred from the context.

II. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a linear singular system with state delay and
parametric uncertainties described by



Eẋ(t) = (A +4A)x(t) + (Aτ +4Aτ )x(t− τ)
+ (B +4B)u(t)

y(t) = (C +4C)x(t)
x(t) = φ(t), t ∈ [−τ, 0]

(1)

where x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rm are the state,
control input and measurement output, respectively.E, A,
Aτ , B andC are known real constant matrices with appro-
priate dimensions and0 <rank E = q< n. τ > 0 is a
constant time delay,φ(t) ∈ C([−τ, 0], Rn) is a compatible
vector valued function.4A,4Aτ ,4B and4C are time-
invariant matrices representing norm-bounded parametric
uncertainties, and are assumed to be of the following form:[ 4A 4Aτ 4B
4C ∗ ∗

]
=

[
D1

D2

]
F (σ)

[
E1 Eτ E2

]

(2a)
FT (σ)F (σ) ≤ Ij , F (σ) ∈ Ri×j . (2b)

Where, D1 ∈ Rn×i, D2 ∈ Rm×i, E1 ∈ Rj×n, Eτ ∈
Rj×n, E2 ∈ Rj×p are known real constant matrices which
characterize how the uncertain parameters inF (σ) enter the
normal matricesA,Aτ , B and C. σ ∈ Θ,Θ is a compact
set inR. Furthermore, it is assumed that given any matrix
F : FT F ≤ I, there exists aσ ∈ Θ such thatF = F (σ).
4A,4Aτ ,4B and4C are said to be admissible if (2) is
satisfied.

Consider the stability of the nominal unforced singular
delay system of (1){

Eẋ(t) = Ax(t) + Aτx(t− τ)
x(t) = φ(t), t ∈ [−τ, 0] (3)

A result has been presented in [7] and [8] simultaneously,
which is given as a lemma in the following.



Lemma 1:[7][8] If there exist a matrixP and a matrix
Q > 0 such that

EPT = PET ≥ 0 (4)
[

APT + PAT + Q AτPT

PAT
τ −Q

]
< 0 (5)

the singular time delay system (3) is asymptotically stable.
Remark 1:From the definition given in [7], the uncertain

singular time delay system (1) is said to be robustly stable
if the system (1) withu(t) ≡ 0 is asymptotically stable for
all admissible uncertainties4A and4Aτ .

The objective of this paper is to:
A. Design an observer-based dynamic output feedback

controller:




E ˙̂x(t) = Ax̂(t) + Aτ x̂(t− τ) + Bu(t)
+ L(y(t)− Cx̂(t))

u(t) = Kx̂(t)
x̂(t) = ψ(t), t ∈ [−τ, 0]

(6)

such that the resultant closed-loop system is robustly stable,
where x̂(t) ∈ Rn is the observer state vector,L ∈ Rn×m

is the observer gain matrix andK ∈ Rp×n is the controller
gain matrix.

B. Design a compensator




η̇(t) = K11η(t) + K12y(t)
u(t) = K21η(t)
η(0) = η0

(7)

such that the resultant closed-loop system is robustly stable,
whereη(t) ∈ Rr is the controller state vector,r is to be
decided and0 < r ≤ n.

III. MAIN RESULTS

To get the main results of this paper, we first introduce
some useful lemmas.

Lemma 2:[5] Given matricesH,E andQ of appropriate
dimensions withQ symmetrical, then

Q + HF (σ)E + (HF (σ)E)T < 0

for all F (σ) : FT (σ)F (σ) ≤ I, if and only if there exists
a scalarε > 0 such that

Q + εHHT + ε−1ET E < 0.

Lemma 3:[6] Given matricesΨ, P and Q of appropriate
dimensions withΨ symmetrical, then the inequality

Ψ + PT ΠT Q + QT ΠP < 0

is solvable forΠ if and only if
{

WT
P ΨWP < 0

WT
QΨWQ < 0

where matricesWP and WQ are orthogonal complements
of P andQ respectively.

A. Design of observer-based controller (6)

When we apply (6) to the system (1), the closed-loop
system is given by




Eẋ(t) = (A + ∆A)x(t) + (B + ∆B)Kx̂(t)
+ (Aτ + ∆Aτ )x(t− τ)

E ˙̂x(t) = (LC + L∆C)x(t) + (A− LC + BK)x̂(t)
+ Aτ x̂(t− τ)

x(t) = φ(t), t ∈ [−τ, 0]
x̂(t) = ψ(t), t ∈ [−τ, 0]

Define the observer error vectore(t) = x(t)− x̂(t), we get




Eẋ(t) = [(A + ∆A) + (B + ∆B)K]x(t)
− (B + ∆B)Ke(t) + (Aτ + ∆Aτ )x(t− τ)

Eė(t) = (∆A + ∆BK − L∆C)x(t) + ∆Aτx(t− τ)
+ (A− LC −∆BK)e(t) + Aτe(t− τ)

x(t) = φ(t), t ∈ [−τ, 0]
e(t) = φ(t)− ψ(t), t ∈ [−τ, 0]

(8)

Introduce an auxiliary variablexc(t) =
[

x(t)
e(t)

]
, the

system (8) can be written as




Ecẋc(t) = (Ac + ∆Ac)xc(t) + (Acτ + ∆Acτ )xc(t− τ)

xc(t) =
[

φ(t)
φ(t)− ψ(t)

]
, t ∈ [−τ, 0]

(9)
where

Ec =
[

E 0
0 E

]
, Ac =

[
A + BK −BK

0 A− LC

]

Acτ =
[

Aτ 0
0 Aτ

]
, ∆Ac = D̄1F (σ)Ē + D̄2F (σ)Ē1

∆Acτ = D̄1F (σ)Ēτ , D̄1 =
[

D1

D1

]
, D̄2 =

[
0

−LD2

]

Ē =
[

E1 + E2K −E2K
]

Ē1 =
[

E1 0
]
, Ēτ =

[
Eτ 0

]
(10)

Lemma 1 shows that the closed-loop system (9) is

robustly stable, if there exist matricesPc =
[

P1 0
0 P2

]

andQc =
[

Q1 0
0 Q2

]
> 0 satisfying

EcP
T
c = PcE

T
c ≥ 0 (11a)

[
(Ac + ∆Ac)PT

c + Pc(Ac + ∆Ac)T + Qc ∗
Pc(Acτ + ∆Acτ )T −Qc

]
< 0

(11b)
such that for all∆Ac and ∆Acτ . Inequalities (11a) and
(11b) are just

EPT
1 = P1E

T ≥ 0 (12a)

EPT
2 = P2E

T ≥ 0 (12b)



[
AcP

T
c + PcA

T
c + Qc AcτP T

c

PcA
T
cτ −Qc

]
+

[
D̄1 D̄2

0 0

] [
F (σ) 0

0 F (σ)

] [
ĒP T

c ĒτP T
c

Ē1P
T
c 0

]
+

(
[

D̄1 D̄2

0 0

] [
F (σ) 0

0 F (σ)

] [
ĒP T

c ĒτP T
c

Ē1P
T
c 0

]
)T < 0.

(12c)
From Lemma 2, (12c) holds if there exists a scalarε > 0
such that

[
AcP

T
c + PcA

T
c + Qc AcτPT

c

PcA
T
cτ −Qc

]
+

ε

[
D̄1 D̄2

0 0

] [
D̄1 D̄2

0 0

]T

+

ε−1

[
ĒPT

c ĒτPT
c

Ē1P
T
c 0

]T [
ĒPT

c ĒτPT
c

Ē1P
T
c 0

]
< 0.

(13)
By Schur complements, (13) is equivalent to the following
inequality:




AcP
T
c + PcA

T
c + Qc + εD̄1D̄

T
1 AcτPT

c

PcA
T
cτ −Qc

εD̄T
2 0

ĒPT
c ĒτPT

c

Ē1P
T
c 0

εD̄2 PcĒ
T PcĒ

T
1

0 PcĒ
T
τ 0

−εI 0 0
0 −εI 0
0 0 −εI




< 0. (14)

Using the expression in (10), inequality (14) can be written
as

Γ =




Γ11 Γ12 AτPT
1 0

ΓT
12 Γ22 0 AτPT

2

P1A
T
τ 0 −Q1 0

0 P2A
T
τ 0 −Q2

0 −ε(LD2)T 0 0
(E1 + E2K)PT

1 −E2KPT
2 EτPT

1 0
E1P

T
1 0 0 0

0 P1(E1 + E2K)T P1E
T
1

−εLD2 −P2(E2K)T 0
0 P1E

T
τ 0

0 0 0
−εI 0 0
0 −εI 0
0 0 −εI




< 0 (15)

with

Γ11 = (A + BK)PT
1 + P1(A + BK)T + Q1 + εD1D

T
1

Γ12 = −BKPT
2 + εD1D

T
1

Γ22 = (A− LC)PT
2 + P2(A− LC)T + Q2 + εD1D

T
1 .

Define matrixΛ = diag{I, P−1
2 , I, P−1

2 , I, I, I}, (15) is
equivalent toΛΓΛT < 0, i. e.,




Υ11 Υ12 AτPT
1 0

ΥT
12 Υ22 0 P2Aτ

P1A
T
τ 0 −Q1 0

0 AT
τ PT

2 0 −Q2

0 −ε(LD2)T PT
2 0 0

(E1 + E2K)PT
1 −E2K EτPT

1 0
E1P

T
1 0 0 0

0 P1(E1 + E2K)T P1E
T
1

−εP2LD2 −(E2K)T 0
0 P1E

T
τ 0

0 0 0
−εI 0 0
0 −εI 0
0 0 −εI




< 0 (16)

where

Υ11 = Γ11, Υ12 = −BK + εD1D
T
1 PT

2

Υ22 = P2(A−LC)+(A−LC)T PT
2 +Q2 + εP2D1D

T
1 PT

2

and we still denoteP2 = P−1
2 , Q2 = P−1

2 Q2P
−T
2 for

simplicity. Correspondingly, (12b) is equivalent to

P2E = ET PT
2 ≥ 0. (17)

Based on above analysis, we know that a sufficient
condition guaranteeing the robust stability of the closed-
loop system (9) is that there exist matricesP1, P2, Q1 >
0, Q2 > 0 and a scalarε > 0 such that (12a), (17) and (16)
are satisfied. Using the method dealing with inequalities
(12a) and (17) which was developed in [7], we get a main
result in the following theorem.

Theorem 1:The closed-loop system (9) is robustly sta-
ble if there exist matricesX1 > 0, Y1, Q1 > 0, X2 >
0, Y2, Q2 > 0 and a scalarε > 0, such that the matrix
inequality (16) holds, in whichP1 is substituted byEX1 +
Y1ΦT and P2 is substituted byET X2 + Y2ΨT . Where,
matricesΦ ∈ Rn×(n−q), Ψ ∈ Rn×(n−q) satisfy EΦ = 0
andET Ψ = 0 respectively, and rankΦ =rankΨ = n− q.

According to Theorem 1, an observer-based controller
can be obtained by solving the matrix inequality (16). How-
ever, it is worth pointing out that (16) is not a linear matrix
inequality, so can not be solved using the LMI Toolbox of
Matlab. However, note that a necessary condition of (16) is



Υ11 AτP T
1 P1(E1 + E2K)T P1E

T
1

P1A
T
τ −Q1 P1E

T
τ 0

(E1 + E2K)P T
1 EτP T

1 −εI 0
E1P

T
1 0 0 −εI


 < 0,

(18)
with P1 being substituted byEX1 + Y1ΦT . Let Z1 =

K(EX1 + Y1ΦT )T , then (18) can be written as



Ω11 AτP T
1 P1E

T
1 + ZT

1 ET
2 P1E

T
1

P1A
T
τ −Q1 P1E

T
τ 0

E1P
T
1 + E2Z1 EτP T

1 −εI 0
E1P

T
1 0 0 −εI


 < 0,

(19)

where

Ω11 = APT
1 + P1A

T + BZ1 + ZT
1 BT + Q1 + εD1D

T
1



with P1 being substituted byEX1 +Y1ΦT . Obviously, (19)
is a strict LMI about matricesQ1 > 0, X1 > 0, Y1, Z1

and a scalarε > 0, which can be solved numerically very
efficiently by using the LMI Toolbox of Matlab.

Remark 2: Here, without loss of generality, we can
assumeEX1+Y1ΦT is nonsingular, then the controller gain
matrix is given byK = Z1(EX1 + Y1ΦT )−T . Otherwise,
we can choose nonsingular matricesM ∈ Rn×n and

N ∈ Rn×n such thatÊ = MEN =
[

Iq 0
0 0

]
. Denote

Â = MAN, Âτ = MAτN, B̂ = MB, D̂1 = MD1, Ê1 =
E1N, Êτ = EτN, X̂1 = N−1X1N

−T , Ŷ1 = MY1, Ẑ1 =
Z1M

T , Q̂1 = MT Q1M, and let Φ̂ = N−1Φ (obviously,
Φ̂ satisfiesÊΦ̂ = 0 and rank̂Φ = n − q). Hence, (18) is
equivalent to



Ω̂11 Âτ (ÊX̂1 + Ŷ1Φ̂)T

(ÊX̂1 + Ŷ1Φ̂T )ÂT
τ −Q̂1

Ê1(ÊX̂1 + Ŷ1Φ̂T )T + E2Ẑ1 Êτ (ÊX̂1 + Ŷ1Φ̂T )T

Ê1(ÊX̂1 + Ŷ1Φ̂T )T 0

(ÊX̂1 + Ŷ1Φ̂T )ÊT
1 + ẐT

1 ET
2 (ÊX̂1 + Ŷ1Φ̂T )ÊT

1

(ÊX̂1 + Ŷ1Φ̂T )ÊT
τ 0

−εI 0
0 −εI


 < 0

(20)
with Ω̂11 = Â(ÊX̂1 + Ŷ1Φ̂T )T + (ÊX̂1 + Ŷ1Φ̂T )ÂT +
B̂Ẑ1 + ẐT

1 B̂T + Q̂1 + εD̂1D̂
T
1 . If EX1 +Y1ΦT is singular,

then ÊX̂1 + Ŷ1Φ̂T = M(EX1 + Y1ΦT )N−T is also a
singular matrix. We can choose a sufficient smallθ > 0
such thatÊX̂1+Ŷ1Φ̂T +θI is nonsingular and satisfies (20)
with Ê(ÊX̂1 + Ŷ1Φ̂T + θI)T = (ÊX̂1 + Ŷ1Φ̂T + θI)ÊT .
If (20) holds, the controller gain matrixK is obtained as
K = Ẑ1(ÊX̂1 + Ŷ1Φ̂T + θI)−T N−1.

Substituting the matricesQ1, Z1, X1, Y1,K and the
scalarε > 0 obtained by solving (19) into (16) and letting
Z2 = (ET X2 + Y2ΨT )L, we get the strict LMI about
Q2, Z2, andY2 as follows:




Ω11 Ω12 AτPT
1 0

ΩT
12 Ω22 0 P2Aτ

P1A
T
τ 0 −Q1 0

0 AT
τ PT

2 0 −Q2

0 −εDT
2 ZT

2 0 0
E1P

T
1 + E2Z1 −E2K EτPT

1 0
E1P

T
1 0 0 0

0 εDT
1 PT

2 0 0

0 P1E
T
1 + ZT

1 ET
2 P1E

T
1 0

−εZ2D2 −(E2K)T 0 εP2D1

0 P1E
T
τ 0 0

0 0 0 0
−εI 0 0 0
0 −εI 0 0
0 0 −εI 0
0 0 0 −εI




< 0

(21)

with Ω12 = Υ12,Ω22 = P2A+AT PT
2 −Z2C−CT ZT

2 +Q2

and in whichP1 is substituted byEX1 + Y1ΦT andP2 is
substituted byET X2 + Y2ΨT .

Remark 3:Similar to Remark 1, without loss of general-
ity, ET X2 + Y2ΨT can be assumed to be nonsingular, so
the observer gain matrix can be obtained by solving LMI
(21) andL = (ET X2 + Y2ΨT )−1Z2.

B. Design of compensator (7)

The closed-loop system of (1) under compensator law (7)
is




[
Ir 0
0 E

] [
η̇(t)
ẋ(t)

]

=
[

K11 K12(C +4C)
(B +4B)K21 A +4A

] [
η(t)
x(t)

]

+
[

0 0
0 Aτ +4Aτ

] [
η(t− τ)
x(t− τ)

]

[
η(t)
x(t)

]
=

[
η0

φ(t)

]
, t ∈ [−τ, 0]

(22)
Introduce an auxiliary variablẽx(t) =

[
ηT (t) xT (t)

]T

and gather all controller parameters into the single variable

K0 =
[

K11 K12

K21 0

]
, then the system (22) can be written

as



Ẽ ˙̃x(t) = (Ã +4Ã)x̃(t) + (Ãτ +4Ãτ )x̃(t− τ)

x̃(t) =
[

η0

φ(t)

]
, t ∈ [−τ, 0]

(23)
where,

Ẽ =
[

Ir 0
0 E

]
, Ã = A0+B0K0C0,4Ã = D10F0(σ)E10

Ãτ =
[

0 0
0 Aτ

]
,4Ãτ = D10F0(σ)

[
Eτ0

0

]

A0 =
[

0 0
0 A

]
, B0 =

[
Ir 0
0 B

]
, C0 =

[
Ir 0
0 C

]

D10 =
[

D̄10 B0K0D̄20

]
, E10 =

[
Ē10 + Ē20K0C0

Ē10

]

F0(σ) =
[

F (σ) 0
0 F (σ)

]
, D̄10 =

[
0

D1

]

D̄20 =
[

0
D2

]
, Ē10 =

[
0 E1

]

Ē20 =
[

0 E2

]
, Eτ0 =

[
0 Eτ

]
. (24)

Lemma 1 shows that the closed-loop system (23) is robustly
stable if there exist matrices̃P and Q̃ > 0 such that the
following inequalities

ẼP̃T = P̃ ẼT ≥ 0 (25a)
[

(Ã +4Ã)P̃T + P̃ (Ã +4Ã)T + Q̃ ∗
P̃ (Ãτ +4Ãτ )T −Q̃

]
< 0

(25b)



hold for all 4Ã and4Ãτ . (24b) can be written as for all
F0(σ)

[
ÃP̃T + P̃ ÃT + Q̃ Ãτ P̃T

P̃ ÃT
τ −Q̃

]
+

[
D10

0

]
F0(σ)

[
E10P̃

T Eτ0P̃
T

0

]
+

(
[

D10

0

]
F0(σ)

[
E10P̃

T Eτ0P̃
T

0

]
)T < 0

(26)
FT (σ)F (σ) ≤ Ij implies thatFT

0 (σ)F0(σ) ≤ I2j . From
Lemma 2, we can get a sufficient condition guaranteeing
that (26) holds for allF0(σ) is that there exists a scalar
ε0 > 0 such that

[
ÃP̃ T + P̃ ÃT + Q̃ Ãτ P̃ T

P̃ ÃT
τ −Q̃

]
+ ε0

[
D10

0

][
D10

0

]T

+ε−1
0

[
E10P̃

T Eτ0P̃
T

0

]T [
E10P̃

T Eτ0P̃
T

0

]
< 0.

(27)

By Schur complements, (27) is equivalent to



ÃP̃T + P̃ ÃT + Q̃ Ãτ P̃T

P̃ ÃT
τ −Q̃

ε0D
T
10 0

E10P̃
T Eτ0P̃

T

0

ε0D10 P̃ET
10

0 P̃ET
τ0 0

−ε0I2i 0
0 −ε0I2j


 < 0. (28)

Applying the expression in (24) to (28), it follows that



Ξ Ãτ P̃T ε0B0K0D̄20

P̃ ÃT
τ −Q̃ 0

ε0D̄
T
20K

T
0 BT

0 0 −ε0Ii

(Ē10 + Ē20K0C0)P̃T Eτ0P̃
T 0

Ē10P̃
T 0 0

P̃ (Ē10 + Ē20K0C0)T P̃ ĒT
10

P̃ET
τ0 0

0 0
−ε0Ij 0

0 −ε0Ij




< 0 (29)

with

Ξ = (A0+B0K0C0)P̃
T +P̃ (A0+B0K0C0)

T +Q̃+ε0D̄10D̄
T
10.

From above discussion, we know that if there exist
matricesP̃ , Q̃ > 0 and ε0 > 0 such that (25a) and (29)
hold simultaneously, the closed-loop system (23) is robustly
stable. We can solve (25a) and (29) using the method in
[7]. Next, we will give another method to solve (25a) and
(29). It is well known that restricted system equivalent
transformation will not change the stability of a system.
We can find nonsingular matricesM andN such thatĚ =

MẼN =
[

Ir+q 0
0 0

]
and denoteǍ = MA0N, Ǎτ =

MÃτN, B̌0 = MB0, Č0 = C0N, Ď10 = MD̄10, Ě10 =
Ē10N, Ěτ0 = Eτ0N, P̌ = MP̃N−T , Q̌ = MQ̃MT . Then
(25a) and (29) are equivalent to

ĚP̌T = P̌ ĚT ≥ 0 (30a)



Λ̌ Ǎτ P̌T ε0B̌0K0D̄20

P̌ ǍT
τ −Q̌ 0

ε0D̄
T
20K

T
0 B̌T

0 0 −ε0Ii

(Ě10 + Ē20K0Č0)P̌T Ěτ0P̌
T 0

Ě10P̌
T 0 0

P̌ (Ě10 + Ē20K0Č0)T P̌ ĚT
10

P̌ ĚT
τ0 0

0 0
−ε0Ij 0

0 −ε0Ij




< 0 (30b)

with

Λ̌ = (Ǎ0+B̌0K0Č0)P̌
T +P̌ (Ǎ0+B̌0K0Č0)

T +Q̌+ε0Ď10Ď
T
10.

From Ě=
[

Ir+q 0
0 0

]
, we know that the matrix̌P satis-

fying ĚP̌T = P̌ ĚT ≥ 0 is of the formP̌ =
[

P11 0
P21 P22

]

with P11 ∈ R(r+q)×(r+q). Then we can obtain another main
result of this paper in the following theorem.

Theorem 2:The closed-loop system (23) is robustly stable

if there exist matricesP̌ =
[

P11 0
P21 P22

]
with P11 ∈

R(r+q)×(r+q), Q̌ > 0 and a scalarε0 > 0 satisfying the
inequality (30b).

Next, we will give the design method forK0 based on
above analysis. (30b) can be represented by

Ψ + ΘT ΠΣΥ + ΥT ΣT ΠT Θ < 0 (31)

where,

Ψ =




Ǎ0P̌
T + P̌ ǍT

0 + Q̌ + ε0Ď10Ď
T
10 Ǎτ P̌T

P̌ ǍT
τ −Q̌

0 0
Ě10P̌

T Ěτ0P̌
T

Ě10P̌
T 0

0 P̌ ĚT
10 P̌ ĚT

10

0 P̌ ĚT
τ0 0

−ε0Ii 0 0
0 −ε0Ij 0
0 0 −ε0Ij




Θ =
[

B̌T
0 0 0 ĒT

20 0
B̌T

0 0 0 0 0

]
,Π =

[
K0 0
0 K0

]

Σ =
[

Č0 0 0 0 0
0 0 εD̄20 0 0

]

Υ =




P̌T 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I




.



From Lemma 3, a necessary condition about the existence
of Π solving the inequality (31) is

WT
Θ ΨWΘ < 0 (32a)

WT
Σ Υ−T ΨΥ−1WΣ < 0 (32b)

In (32a) and (32b), though the controller gain matrixK0

is eliminated,P̌ and P̌−1 are included simultaneously. To
get K0 mathematically efficiently using the LMI Toolbox
in Matlab, we can first solve the LMI (32a) fořP =[

P11 0
P21 P22

]
, Q̌ > 0 and ε0 > 0. Then substitute the

P̌ , Q̌ andε0 into (30b) to get a LMI aboutK0. Solve (30b)

for K0 =
[

K11 K12

K21 0

]
and the output dynamic feedback

controller (7) is obtained.

IV. CONCLUSIONS

The problems of robust stabilization via observer-based
controller and compensator for uncertain singular systems
with time delay and parametric uncertainties have been
studied. Sufficient conditions about the robust stability of
the closed-loop systems are presented. The control laws
proposed by using strict LMI approaches can guarantee the
resultant closed-loop systems are stable for all admissible
uncertainties.
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