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ABSTRACT

We present a (suboptimal) filtering algorithm for track-
ing a highly maneuvering target in a cluttered environment
using multiple sensors dealing with possibly asynchronous
(time delayed) measurements. The filtering algorithm is
developed by applying the basic interacting multiple model
(IMM) approach, the probabilistic data association (PDA)
technique, and asynchronous measurement updating to a
state-augmented system for the target motion. A state aug-
mentation approach is developed to estimate the time delay
between local and remote sensors. A multisensor probabilis-
tic data association filter is developed for parallel sensor
processing for target tracking under clutter. The algorithm
is illustrated via a highly maneuvering target tracking sim-
ulation example where two sensors, a radar and an infrared
sensor, are used. Compared with an existing IMMPDA fil-
tering algorithm designed for synchronous (no delay) sensor
measurements processing, the proposed algorithm achieves
considerable improvement in the accuracy of track estima-
tion.

1. INTRODUCTION

We consider the problem of tracking a single maneuvering
target in clutter. This class of problem has received con-
siderable attention in the literature [1, 2, 3, 4, 9]. In target
tracking systems measurements are typically collected in
“scans” or “frames” and then transmitted to a processing
center [5, 6]. Asynchronous (delayed) measurements arise
in a multisensor central tracking system due to communica-
tion network delays, varying preprocessing times at the sen-
sor platforms and possibly lack of sampling time synchro-
nization among sensor platforms. One of the asynchronous
measurement problems is that of out-of-sequence measure-
ments (OOSM) where measurements at various sensors may
arrive out-of-sequence (not in correct time order) at the
central processor. OOSM has been considered using in-
teracting multiple model (IMM) [6, 7, 8]. In this paper we
do not consider OOSM but, instead, consider “in-sequence”
measurements with a fixed but unknown relative time-delay
among sensor measurements. Various sensor measurements
are assumed to be at the same rate but not necessarily time
synchronized. All measurements over one sampling inter-
val (based on the local clock of the central processor) are
collected at the central processor, attributed to one time
instant and processed simultaneously. We exploit interact-
ing multiple model (IMM) and probabilistic data associa-
tion (PDA) techniques. It is assumed that a track has been
formed (initiated) and the objective of this work is to inves-
tigate fixed-but-unknown relative time-delay (measurement
timing mismatch) arising in a multisensor central tracking
system.

In [6], fixed-lag smoothing techniques have been investi-
gated using IMM algorithm combined with PDA filter in
a multiple sensor scenario to propose a combined IMMM-
SPDAF (interacting multiple model multiple sensor proba-
bilistic data association filter). We exploit the basic struc-
ture of [1] in combination with a state-augmented approach
to deal with the fixed-but-unknown relative time-delay. In
[1] and [14] it is assumed that the sensors are collocated and
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(time) synchronized with the sampling rate. In contrast,
the sensor collocation and (time) synchronization are no
longer assumed in this paper. Also, unlike [1, 9, 12] which
have used sequential updating of the state estimates with
measurements (i.e., updating of the state estimates sequen-
tially with measurements from different sensors), we use
parallel updating of the state estimates with measurements
(i.e., updating of the state estimates with all measurements
at the same time). For linear systems, the two updating
methods are algebraically equivalent but for nonlinear fil-
tering, the parallel updating can yield better performance
in spite of higher computational cost [4]. Ref. [14] uses
parallel updating but has some errors: during data asso-
ciation, all measurements at the same time from different
sensors are assumed to be either from clutter or from the
target. The possibility that a measurement from sesnsor
1 may be from target while the measurement from sensor
2 may be clutter-induced (and vice-versa) is implicitly not
allowed in [14] – this is clearly incorrect. Ref. [10] allows
for such distinctions (hypotheses), however, it is limited to
non-manevering targets. In this paper, we also extend the
multisensor approach of [10] to maneuvering targets (see
Step 4 in Sec. 4.).

The paper is organized as follows. Sec. 2 presents the
problem formulation. Sec. 3 describes the state-augmented
system approach. Sec. 4 describes the proposed IMMM-
SPDAF algorithm for asynchronous measurements. Simu-
lation results using the proposed algorithm for a realistic
problem are given in Sec. 5.

2. PROBLEM FORMULATION

We assume that the target dynamics can be modeled by
one of n hypothesized models. The model set is denoted
as Mn := {1, ..., n} and there are total q sensors. The
event that model m is in effect during the sampling period
(tk−1, tk] is denoted by Mm

k . For the mth hypothesized
model (mode), the state dynamics and measurements, re-
spectively, are modeled as

xk = Fm
k,k−1xk−1 +Gm

k,k−1v
m
k−1, (1)

and (local measurement model at the sensor l)

zlk = hm,l(xk) + wm,l
k for l = 1, ..., q, (2)

where xk is the system state at tk and of dimension nx, z
l
k

is the (true) measurement vector (i.e., due to the target)
at sensor l at tk and of dimension nzl, F

m
k,k−1 and Gm

k,k−1

are the system matrices when model m is in effect over
the sampling period (tk−1, tk], and hm,l is the nonlinear
transformation of xk to zlk (l = 1, ..., q) for model m. A
first-order linearized version of (2) is given by

zlk = Hm,l
k xk + wm,l

k for l = 1, ..., q (3)

whereHm,l
k is the Jacobian matrix of hm,l evaluated at some

value of the estimate of state xk (see Sec. 3.). The pro-

cess noise vmk−1 and the measurement noise wm,l
k are mutu-

ally uncorrelated zero-mean white Gaussian processes with
covariance matrices Qm

k−1 and Rm,l
k , respectively. At the

initial time t0, the initial conditions for the system state



under each model m are assumed to be Gaussian random
variables with the known mean x̄m0 and the known covari-
ance Pm

0 . The probability of modelm at t0, µ
m
0 = P{Mm

0 },
is also known. The switching from model M i

k−1 to model
Mm

k is governed by a finite-state stationary Markov chain
with known transition probabilities pim = P{Mm

k |M
i
k−1}.

Henceforth, time tk will be denoted by k.
Assume that there is a fixed but unknown relative time

delay dk (modulo T=sampling interval) at sample time tk
between the local sensor clock and the central processor
clock at sample time tk. [This time delay could be due to
unsynchronized clocks at the two locations or due to in-
herent delay due to congestion, insufficient bandwidth etc.
in the communication link between the remote sensor plat-
form and the central processor.] The measurements from
sensor l are sent to the central processor where all measure-
ments collected between local sampling interval (tk−1, tk]
are attributed to time tk. The state dynamics and measure-
ments reported from the remote sensor platform at time tkdl

(henceforth will be denoted by kdl) to the center processor
at time tk can be modeled as

xkdl
= Fm

kdl,k−1xk−1 +Gm
kdl,k−1v

m
k−1 (4)

and (measurement model of the sensor at the central pro-
cessor)

zlk = hm,l(xkdl
) + wm,l

k (5)

where tkdl
= tk− dkl and dkl is the time difference between

the sampling time at the central processor and the measure-
ment time at the local sensor (assume that 0 ≤ dkl < T ,
where T is sampling time), xkdl

is the system state at tkdl

and of dimension nx, F
m
kdl,k−1

and Gm
kdl,k−1

are the system
matrices when model m is in effect over the timing interval
(tk−1, tkdl

]. See Sec. 5 for a concrete example.

3. STATE-AUGMENTED SYSTEM

Augment xk in (1) to define the augmented state x̄k as

x̄′k := [x′k, v
m′

k , x′k−1, v
m′

k−1] (6)

where x′k denotes the transpose of xk. Assume that there
is a fixed but unknown delay, dkl, between the central pro-
cessor and the remote sensor l platform. Using the above
definitions (1), (6) and the measurement delay, dkl, the aug-
mented state equation may be written more compactly as

x̄k = F̄m
k,k−1x̄k−1 + Ḡm

k,k−1v
m
k (7)

and
dkl = d(k−1)l + vdlk−1 (8)

where vdlk−1 is a small processing noise assumed to be Gaus-
sian noise with zero mean and (very) small but nonzero
variance. Note that the process noise in (7) is vmk (at time
k not at time k − 1). Above equations (7) and (8) can also
be absorbed into another augmented state x̃k as

x̃k :=

[

x̄k

dkl

]

= F̃m
k,k−1x̃k−1 + G̃m

k,k−1ṽ
m
k (9)

where

ṽmk :=

[

vmk

vdlk−1

]

, (10)

and F̃m
k,k−1 and G̃m

k,k−1 are appropriately defined (see also
Sec. 5., (41)-(46)). Using the augmented state (9), the coun-
terparts to (2) and (5), respectively, are

zlk = hm,l(x̃k) + wm,l
k = hm,l([I, 0, 0, 0, 0]x̃k) + wm,l

k , (11)

zlk = hm,l(x̃kl
) + wm,l

k

= hm,l([0, 0, Fm
kdl,k−1, G

m
kdl,k−1, 0]x̃k) + wm,l

k (12)

for measurements from local sensor and from remote sensor,
respectively. To keep the notations and details to a bare
minimum, we will consider the case of two sensors only
and furthermore, we will assume that one of the sensors is
either collocated with or is synchronized with the central
processor, so that we will drop the subscript l from dkl.
For more than two sensors, we need to augment x̃k with
additional dk’s (total q − 1): in essence, these delays are
relative to one of the sensors (reference sensor).

The following notations and definitions are used regard-
ing the measurements at sensor l. Note that, in general,
at any time some measurements may be due to clutter
and some due to the target, i.e. there can be more than
a single measurement at time k at sensor l. The mea-
surement set (not yet validated) generated by sensor l at

time k is denoted as Zl
k := {zl(1)k , z

l(2)
k , ..., z

l(ml)
k } where

ml is the number of measurements generated by sensor l

at time k. Variable z
l(i)
k (i = 1,...,ml) is the ith measure-

ment within this set. The validated set of measurements
of sensor l at time k will be denoted by Y l

k , containing m̄l

(≤ ml) measurement vectors. The cumulative set of vali-
dated measurements from sensor l up to time k is denoted
as Zk(l) := {Y l

1 , Y
l
2 , ..., Y

l
k}. The cumulative set of validated

measurements from all sensors up to time k is denoted as
Zk := {Zk(1), Zk(2), ..., Zk(q)} where q is the number of sen-
sors.

Our goal is to find the state estimate

ˆ̃xk|k := E{x̃k|Z
k} (13)

and the associated error covariance matrix

P̃k|k := E{[x̃k − ˆ̃xk|k][x̃k − ˆ̃xk|k]
′|Zk} (14)

where x′k denotes the transpose of xk.

4. IMMMSPDAF ALGORITHM FOR
ASYNCHRONOUS MEASUREMENTS

We now modify the IMM/(J)PDA algorithms of [9] and [12]
to apply to the multi-sensor asynchronous measurements
system. We confine our attention to the case of 2 sensors;
however, the algorithm can be easily adapted to the case of
arbitrary q sensors. We will only briefly outline the basic
steps in “one cycle” (i.e., processing needed to update for
a new set of measurements) of the IMMMSPDA filter.

Assumed available: Given the state estimate
ˆ̃x
m

k−1|k−1 := E{x̃k−1|M
m
k−1, Z

k−1}, the associated covari-

ance P̃m
k−1|k−1, and the conditional mode probability µmk−1

:= P [Mm
k−1|Z

k−1] at time k − 1 for each mode m ∈Mn.

Step 1. Interaction – mixing of the estimate from
the previous time (∀m ∈ Mn) : predicted mode proba-
bility:

µm−k := P [Mm
k |Z

k−1] =
∑

i

pimµ
i
k−1. (15)

mixing probability:

µi|m := P [M i
k−1|M

m
k , Zk−1] = pimµ

i
k−1/µ

m−
k . (16)

mixed estimate:

ˆ̃x
0m

k−1|k−1 := E{x̃k−1|M
m
k , Zk−1} =

∑

i

ˆ̃x
i

k−1|k−1µ
i|m.

(17)

covariance of the mixed estimate: P̃ 0m
k−1|k−1 :=

E{[x̃k−1 − ˆ̃x
0m

k−1|k−1][x̃k−1 − ˆ̃x
0m

k−1|k−1]
′|Mm

k , Zk−1}



=
∑

i

{P̃ i
k−1|k−1 + [ˆ̃x

i

k−1|k−1 − ˆ̃x
0m

k−1|k−1]

×[ˆ̃x
i

k−1|k−1 − ˆ̃x
0m

k−1|k−1]
′}µi|m. (18)

Step 2. Predicted state and measurements for sen-
sors 1 and 2 (∀m ∈Mn) : state prediction:

ˆ̃x
m

k|k−1 := E{x̃k|M
m
k , Zk−1} = F̃m

k−1
ˆ̃x
0m

k−1|k−1. (19)

state prediction error covariance:

P̃m
k|k−1 := E{[x̃k − ˆ̃x

m

k|k−1][x̃k − ˆ̃x
m

k|k−1]
′|Mm

k , Zk−1}

= F̃m
k−1P̃

0m
k−1|k−1F̃

m′

k−1 + G̃m
k−1Q

m
k−1G̃

m′

k−1. (20)

The mode-conditioned predicted measurement for sensor l
is

ẑk
m,l := hm,l(ˆ̃x

m

k|k−1). (21)

Using the linearized version (3), the covariance of the mode-
conditioned residual

ν
m,l(i)
k := z

l(i)
k − ẑm,l

k

is given by (assume q=2, the case of 2 sensors)

Sm,1
k := E{νm,1(i)

k ν
m,1(i)′

k |Mm
k , Zk−1}

= H̃m,1
k P̃m

k|k−1H̃
m,1′

k +Rm,1
k , (22)

Sm,2
k := E{νm,2(i)

k ν
m,2(i)′

k |Mm
k , Zk−1}

= H̃m,2
k P̃m

k|k−1H̃
m,2′

k +Rm,2
k (23)

where H̃m,l
k is the first order derivative (Jacobian matrix) of

hm,l(.) evaluated at the state prediction ˆ̃x
m

k|k−1 (see (21)).

Note that (22) and (23) assume that z
l(i)
k originates from

the target.
As mentioned earlier, since our approach also deals with

multiple simultaneous measurements [10, 11] arising from
two separate sensors that are tracking a single target
through a common surveillance region, a method for fu-
sion of multiple measurements has to be devised. In order
to do this, now the combined covariance Sm

k of the mode-
conditioned residual obtained from (22) and (23) also needs
to be considered as

Sm
k :=

[

H̃m,1
k

H̃m,2
k

]

P̃m
k|k−1

[

H̃m,1′

k H̃m,2′

k

]

+

[

Rm,1
k 0

0 Rm,2
k

]

. (24)

Step 3. Measurement validation for sensors 1 and 2
(∀m ∈Mn) : There is uncertainty regarding the measure-
ments’ origins. Therefore, we perform validation for each
target separately. One sets up a validation gate for sensor l
centered at the mode-conditioned predicted measurement,

ẑm,l
k . Let (|A| = det(A)) ma := arg

{

max
m∈Mn

∣

∣Sm,l
k

∣

∣

}

. Then

measurement z
l(i)
k (i=1,2,...,ml) is validated if and only if

[z
l(i)
k − ẑma,l

k ]′[Sma,l
k ]

−1
[z
l(i)
k − ẑma,l

k ] < γ (25)

where γ is an appropriate threshold. The volume of
the validation region with the threshold γ is V l

k :=

cnzl
γnzl/2|Sma,l

k |
1/2

where nzl is the dimension of the mea-
surement and cnzl

is the volume of the unit hypersphere of

this dimension (c1 = 2, c2 = π, c3 = 4π/3, etc.). Choice of
γ is discussed in more detail in [4, Sec. 2.3.2]. After per-
forming the validation for each target separately, we deal
with all the validated data for measurement fusion.

Step 4. State estimation with validated measure-
ment from sensors 1 and 2 (∀m ∈Mn) : From among
all the raw measurements from sensor l at time k, i.e. Z l

k :=

{zl(1)k , z
l(2)
k , ..., z

l(ml)
k }, define the set of validated measure-

ment for sensor l at time k as Y l
k := {yl(1)k , y

l(2)
k , ..., y

l(m̄l)
k }

where m̄l is total number of validated measurement for sen-
sor l at time k and y

l(i)
k := z

l(li)
k where 1≤ l1 < l2 < ... <

lm̄l
≤ ml when m̄l 6=0. Define the association events (hy-

potheses) θi,jk as follows (here we follow [10])

• θ0,0k : none of the measurements in Y 1
k or Y 2

k is target
originated.

• θ0,jk : only y
2(j)
k in Y 2

k is a target measurement, all other

measurements in Y 1
k or Y 2

k are clutter, i = 0, j =
1, ..., m̄2.

• θi,0k : only y
1(i)
k in Y 1

k is a target measurement, all other

measurements in Y 1
k or Y 2

k are clutter, i = 1, ..., m̄1,
j = 0.

• θi,jk : y
1(i)
k and y

2(j)
k in Y 1

k and Y 2
k , respectively, are tar-

get measurements, all other measurements are clutter,
i = 1, ..., m̄1, j = 1, ..., m̄2.

Therefore, there are a total of m̄1m̄2+m̄1+m̄2+1 possible
association hypotheses. Define the mode-conditioned asso-
ciation event probabilities as

βm,i,j
k := P{θi,jk |M

m
k , Y 1

k , Y
2
k , Z

k−1}. (26)

Exploiting the diffuse model for clutter in [1, 4], it turns
out that

βm,0,0
k = C

(1−PD1
PG1)(1−PD2

PG2)
(V 1

k
)m̄1 (V 2

k
)m̄2

, i = 0, j = 0

βm,0,j
k = C

PD2(1−PD1
PG1)N

[

ν
m,2(j)

k
;0,S

m,2
k

]

(V 2
k
)m̄2−1m̄2

,

i = 0, j = 1, ..., m̄2

βm,i,0
k = C

PD1(1−PD2
PG2)N

[

ν
m,1(i)

k
;0,S

m,1
k

]

(V 1
k
)m̄1−1m̄1

,

i = 1, ..., m̄1, j = 0

βm,i,j
k = C

N
[

ν
m,1(i)

k
;0,S

m,1
k

]

N
[

ν
m,2(j)

k
;0,S

m,2
k

]

PD1
PD2

m̄1m̄2(V
1
k
)m̄1−1(V 2

k
)m̄2−1

,

i = 1, ..., m̄1, j = 1, ..., m̄2

(27)
where PD1 and PD2 are the detection probabilities that the
sensors 1 and 2 detect the target, respectively, PG1 and
PG1 are probabilities the target is in the validation region
observed from sensors 1 and 2, respectively, C is a normal-
ization constant such that

∑m̄1

i=0

∑m̄2

j=0
βm,i,j
k = 1 ∀m and

N [x; y, P ] := |2πP |−1/2 exp
[

−
1

2
(x− y)′ P−1 (x− y)

]

.



Define the mode-conditioned innovations νm,i,j
k as

νm,0,0
k =

[

0nz1×1

0nz2×1

]

, i = 0, j = 0

νm,0,j
k =

[

0nz1×1

ν
m,2(j)
k

]

, i = 0, j = 1, ..., m̄2

νm,i,0
k =

[

ν
m,1(i)
k

0nz2×1

]

, i = 1, ..., m̄1, j = 0

νm,i,j
k =

[

ν
m,1(i)
k

ν
m,2(j)
k

]

, i = 1, ..., m̄1, j = 1, ..., m̄2.

(28)
The likelihood function for each mode m is

Λm
k

:= p
[

Y 1
k , Y

2
k |M

m
k , Zk−1

]

=

m̄1
∑

i=0

m̄2
∑

j=0

p
[

Y 1
k , Y

2
k , θ

i,j
k |M

m
k , Zk−1

]

(29)
where

p
[

Y 1
k , Y

2
k , θ

i,j
k |M

m
k , Zk−1

]

= p
[

Y 1
k , Y

2
k |M

m
k , θi,jk , Zk−1

]

P [θi,jk ]

=



















































































(1−PD1
PG1)(1−PD2

PG2)
[V 1

k ]
m̄1 [V 2

k ]
m̄2

, i = 0, j = 0

(1−PD1
PG1)(PD2

PG2)/m̄2

PG2 [V
2
k ]

m̄2−1
×N

[

ν
m,2(j)
k ; 0, Sm,2

k

]

,

i = 0, j = 1, ..., m̄2

(PD1
PG1)(1−PD2

PG2)/m̄1

PG1 [V
1
k ]

m̄1−1
×N

[

ν
m,1(i)
k ; 0, Sm,1

k

]

,

i = 1, ..., m̄1, j = 0

(PD1
PG1)(PD2

PG2)/(m̄1m̄2)

PG1 [V
1
k ]

m̄1−1PG2 [V
2
k ]

m̄2−1
×N

[

νm,i,j
k ; 0, Sm

k

]

,

i = 1, ..., m̄1, j = 1, ..., m̄2.
(30)

Using ˆ̃x
m

k|k−1 (from (19)) and its covariance P̃m
k|k−1 (from

(20)), one computes the partial update ˆ̃x
m

k|k and its co-

variance P̃m
k|k according to the standard PDAF [1], except

that the augmented state is conditioned on θi,jk with data
fusion from sensors 1 and 2. Define the combined mode-
conditioned innovations

νmk :=

m̄1
∑

i=0

m̄2
∑

j=0

βm,i,j
k νm,i,j

k . (31)

Therefore, partial update of the state estimate

ˆ̃x
m,i,j

k|k := E
{

xk|θ
i,j
k ,Mm

k , Zk−1, Y 1
k , Y

2
k

}

= ˆ̃x
m

k|k−1 +Wm,i,j
k νm,i,j

k (32)

where Kalman gains, Wm,i,j
k , are computed as

Wm,0,0
k = 0, for i = 0, j = 0

Wm,i,0
k = P̃m

k|k−1[H̃
m,1′

k [Sm,1
k ]−1 0], for i 6= 0, j = 0

Wm,0,j
k = P̃m

k|k−1[0 H̃m,2′

k [Sm,2
k ]−1], for i = 0, j 6= 0

Wm,i,j
k = P̃m

k|k−1H̃
m′

k [Sm
k ]−1, for i 6= 0, j 6= 0,

(33)

and H̃m′

k =
[

H̃m,1′

k H̃m,2′

k

]

. Therefore, mode-conditioned

update of the state estimate

ˆ̃x
m

k|k := E
{

xk|M
m
k , Zk−1, Y 1

k , Y
2
k

}

=

m̄1
∑

i=0

m̄2
∑

j=0

βm,i,j
k

ˆ̃x
m,i,j

k|k−1

(34)

and covariance of ˆ̃x
m

k|k, P̃
m
k|k :=

P̃m
k|k−1 −

m̄1
∑

i=0, (i,j)6=(0,0)

m̄2
∑

j=0

βm,i,j
k Wm,i,j

k Sm,i,j
k Wm,i,j′

k

+
m̄1
∑

i=0

m̄2
∑

j=0

βm,i,j
k Wm,i,j

k νm,i,j
k νm,i,j′

k Wm,i,j′

k

−

[

m̄1
∑

i=0

m̄2
∑

j=0

βm,i,j
k Wm,i,j

k νm,i,j

][

m̄1
∑

i=0

m̄2
∑

j=0

βm,i,j
k Wm,i,j

k νm,i,j

]′

.

(35)
Step 5. Update of mode probabilities (∀m ∈Mn) :

µmk := P
[

Mm
k |Z

k
]

=
1

C
µm−k Λm

k (36)

where C is such that
∑

m

µmk = 1.

Step 6. Combination of the mode-conditioned esti-
mates (∀m ∈ Mn) : The final augmented state estimate
update at time k is given by

ˆ̃xk|k =
∑

m

ˆ̃x
m

k|kµ
m
k (37)

and its covariance is given by

P̃k|k =
∑

m

{

P̃m
k|k +

[

ˆ̃x
m

k|k − ˆ̃xk|k
] [

ˆ̃x
m

k|k − ˆ̃xk|k
]′
}

µmk .

(38)
From the final augmented state (see (37)), the state filtered
vector x̂k|k and the state smoothing vector x̂k−1|k can be
easily obtained.

5. SIMULATION EXAMPLE

The following example of tracking a highly maneuvering
target in clutter is considered. The target starts at loca-
tion [21689 10840 40] in Cartesian coordinates in meters.
The initial velocity (in m/s) is [-8.3 -399.9 0] and the tar-
get stays at constant altitude with a constant speed of 400
m/s. Its trajectory is a straight line with constant velocity
between 0 and 20s, a coordinated turn (0.15 rad/s) with
constant acceleration of 60 m/s2 between 20 and 35s, a
straight line with constant velocity between 35 and 55s,
a coordinated turn (0.1 rad/s) with constant acceleration
of 40 m/s2 between 55 and 70s, and a straight line with
constant velocity between 70 and 90s. The target motion
models are patterned and modified after [1]. In each mode
the target dynamics are modeled in Cartesian coordinates
as

x̃k = F̃m
k,k−1x̃k−1 + G̃m

k,k−1ṽ
m
k , (39)

x̃kd
= F̃m

kd,k−1x̃k−1 + G̃m
kd,k−1ṽ

m
k (40)
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Figure 1. True trajectory (xy position) of the maneuvering
target.

where the augmented state of the target consists of position,
velocity, acceleration, and the process noise in each of the
three Cartesian coordinates (x, y, and z) at tk and tk−1 as
well as the delay time dk at tk. Thus both x̃k and x̃kd

are of dimension 25 (nx = 25). Three maneuver models are
considered in the following discussion. The system matrices
F̃k,k−1, G̃k,k−1, F̃kd,k−1 and G̃kd,k−1 are defined as

F̃m
k,k−1 =

[

F̄m
k,k−1 0
0 I

]

, G̃m
k,k−1 =

[

Ḡm
k,k−1 0
0 I

]

(41)

F̃m
kd,k−1 =

[

F̄m
kd,k−1

0
0 I

]

, G̃m
kd,k−1 =

[

Ḡm
kd,k−1

0
0 I

]

(42)
where

F̄m
k,k−1 =

[

Fm
k,k−1 Gm

k,k−1
0 0

]

, Ḡm
k,k−1 =

[

0
I

]

(43)

F̄m
kd,k−1 =

[

Fm
kd,k−1

Gm
kd,k−1

0 0

]

, Ḡm
kd,k−1 =

[

0
I

]

,

(44)
Fm
k,k−1 =block-diag{Fm, Fm, Fm}, Gm

k,k−1 =block-
diag{Gm, Gm, Gm}, Fm

kd,k−1
=block-diag{Fm

d , Fm
d , Fm

d },
Gm
kd,k−1

=block-diag{Gm
d , G

m
d , G

m
d }.

Model 1. Nearly constant velocity model with zero
mean perturbation in acceleration:

F 1 =

[

1 T 0
0 1 0
0 0 0

]

, G1 =

[

T2

2
T
0

]

, (45)

F 1
d =

[

1 (T − dk) 0
0 1 0
0 0 0

]

, G1
d =

[

(T−dk)
2

2
(T − dk)

0

]

(46)

where T is the sampling period. The standard deviation of
the process noise of M1 is 5 m/s2 (as in [1]).
Model 2. Wiener process acceleration (nearly constant
acceleration motion)

F 2 =

[

1 T T2

2
0 1 T
0 0 1

]

, G2 =

[

T2

2
T
1

]

, (47)

F 2
d =

[

1 (T − dk)
(T−dk)

2

2
0 1 (T − dk))
0 0 1

]

, G2
d =

[

(T−dk)
2

2
(T − dk)

1

]

(48)
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Figure 2. Estimation of delay (given unknown but fixed timing
mismatch between two separated sensors) based on 100 Monte
Carlo runs (read left to right, top to bottom). (a) d = 0. (b) d
= 0.1T. (c) d = 0.3T. (d) d = 0.5T. (e) d = 0.7T. (f) d = 0.9T.
(T = sampling rate). Solid curves: estimate averaged over 100
runs; dashed curves: true values.

The standard deviation of the process noise of M 2 is 7.5
m/s2 (as in [1]).
Model 3. Wiener process acceleration (model with large
acceleration increments, for the onset and termination of
maneuvers), with F 3 = F 2, G3 = G2, F 3

d = F 2
d and G3

d =
G2
d. The standard deviation of the process noise of M 3 is

40 m/s2 (as in [1]).
The initial model probabilities are µ10 = 0.8, µ20 = 0.1

and µ30 = 0.1. The mode switching probability matrix is
given by (as in [1])







p11 p12 p13

p21 p22 p23

p31 p32 p33







=







0.8 0.0 0.2

0.0 0.8 0.2

0.3 0.3 0.4







. (49)

The Sensors: Two sensors are used to obtain the mea-
surements. Sensors 1 and 2 are located at [x1, y1, z1]=[-
4000 4000 0] m and [x2, y2, z2]=[5000 0 0] m, respectively,
and the central processor is collocated with sensor 1 plat-
form (we assume that there is no time delay between sen-
sor 1 and central processor and there is fixed but un-
known time delay between sensor 2 and central proces-
sor). The measurements from sensor l for model m are

zlk = hm,l(xk) + wm,l
k for l = 1 and 2, reflecting range and

azimuth angle for sensor 1 (radar) and azimuth and ele-
vation angles for sensor 2 (infrared). The range, azimuth,
and elevation angle transformations, respectively, would be

given by rl = {(x− xl)
2 + (y − yl)

2 + (z − zl)
2}

1/2
, al =

tan−1[(y − yl)/(x− xl)], el =

tan−1[(z − zl)/{(x− xl)
2 + (y − yl)

2}
1/2

], respectively, if
the sensor l were located at [xl yl zl]. As we see from (1),
(2), (4) and (5), the measurements obtained from sensors 1
and 2 can be expressed as

z1k = h1([I, 0, 0, 0, 0]x̃k) + w1
k (50)

z2k = h2([0, 0, Fm
kd,k−1, G

m
kd,k−1, 0]x̃k) + w2

k. (51)

The measurement noise wm,l
k for sensor l is assumed to be

zero-mean white Gaussian with known covariances, R1 =
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Figure 3. RMSE in position using IMMMSPDAF under vari-
ous scenarios of known delay, estimated delay and ignoring delay,
for various delay values (read left to right, top to bottom). (a)
d = 0. (b) d = 0.1T. (c) d = 0.3T. (d) d = 0.5T. (e) d = 0.7T.
(f) d = 0.9T. (T = sampling rate). Solid curves: unknown delay,
proposed approach with filtered state estimate; dotted curves:
unknown delay, proposed approach with one-sample fixed-lag
smoothed state estimate; dashed curves: IMMMSPDAF with
known delay; dot-dash curves: IMMMSPDAF with delay as-
sumed to be zero.

diag[qr, qa1] = diag[400m2, 49mrad2] with qr and qa1 de-
noting the variances for the radar range and azimuth mea-
surement noises, respectively, and R2 = diag[qa2, qe] =
diag[4mrad2, 4mrad2] with qa2 and qe denoting the vari-
ances for the infrared sensor’s azimuth and elevation mea-
surement noises, respectively. The sampling interval was
T=1s and it was assumed that the probability of detection
PD=1 for both sensors.

The Clutter: For generating false measurements in sim-
ulations, the clutter was assumed to be Poisson distributed
with expected number of λ1 = 13×10−6/m-mrad for sensor
1 and λ2 = 7×10−4/m2-mrad for sensor 2 [1, case 1]. These
statistics were used for generating the clutter in all simu-
lations. However, a nonparametric clutter model was used
for implementing all the algorithms for target tracking.

Other Parameters: The gates for setting up the valida-
tion regions for both the sensors were based on the threshold
γ=16. With the measurement vector of dimension 2, this
leads to a gate probability PG=0.997.

Simulation Results: The results were obtained from
100 Monte Carlo runs. Fig. 1 shows the true trajectory
of the target. Fig. 2 shows the delay estimates (given un-
known but fixed timing mismatch between the two sensors)
based on 100 Monte Carlo runs. Fig. 3 shows a comparison
among the performances (root mean-square error in target
positions) of the proposed IMMMSPDAF algorithm dealing
with asynchronous measurements with unknown but fixed
dk, with known d, and the standard IMMMSPDAF algo-
rithm with the assumption that d=0 always applies. It is

seen from Fig. 3 that when the unknown but fixed timing
mismatch dk is more than one fifth of the sampling time, the
performance improvement is significant compared with the
standard IMMMSPDAF algorithm that ignores the time-
delay d (i.e. assumes it to be zero).

6. CONCLUSIONS

We investigated an IMMMSPDAF algorithm with asyn-
chronous measurements (there is an unknown but fixed
timing mismatch between sensor platforms) for tracking
a highly maneuvering target in clutter. The proposed al-
gorithm was illustrated via a simulation example where it
outperformed a standard IMMMSPDAF algorithm that ig-
nored the possible timing mismatch (especially when the
possible timing mismatch is more than one fifth of the sam-
pling interval).
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