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Abstract - This paper uses iterative learning control (ILC) to 
remove terminal residual vibrations.  By carefully selecting 
the ILC observation and actuation windows, ILC brings the 
system to rest within a finite time interval using feedforward. 
Experiments conducted on an industrial high-precision set-up 
show that the vibrations can be removed well within half the 
period of the dominant vibration. Estimation of the vibration 
state from different experiments shows that ILC does indeed 
remove the residual vibrations. Analysis of the experimental 
results show that the feedforward profile obtained through 
ILC outperforms feedforward profiles obtained through 
simulation of LQ-state feedback and does not suffer from 
model uncertainty. 

INTRODUCTION 
A high precision system that performs a motion from one 
position to another tends to exhibit vibrations caused by 
excitation of the system vibrational modes. These 
vibrations cause position errors after completion of the 
trajectory, effectively elongating the servo interval. A well 
known way to eliminate residual vibrations is by 
compensation of the dominant system modes, for instance 
with impulse input shaping [2][3][4][5][6][7]. In [1] it was 
shown that an iterative learning controller (ILC) is capable 
of removing these vibrations during the motion of the 
system by superimposing an additional feedforward signal 
on the original feedforward signal. This was however at the 
cost of increasing the maximum actuation force.  
 
In this paper any modifications to the basic feedforward 
will be avoided by activating the ILC only on time intervals 
after the completion of the original motion. The 
feedforward will only be active on the interval t0 to t1, while 
the controller only observes the interval t2 to t3 (Figure 1). 
Different choices of the observation and actuation intervals 
are possible and intervals can overlap. In this paper, t0 is 
defined as the end of the initial feed forward and t3 the end 
of the servo interval.  
 
1. Delft Center for Systems and Control, Delft University of Technology, 
Mekelweg 2, 2628 CD Delft, The Netherlands 
2. Department of Mechanical Engineering, Eindhoven University of 
Technology, Den Dolech 2, 5800 ME Eindhoven, The Netherlands, E-
mail: O.H.Bosgra@TUE.nl 
3. Mapper Lithography BV, Lorentzweg 1, 2628 CJ Delft, The 
Netherlands 

It will be shown that ILC is capable of removing residual 
vibrations well within half the period of the dominant 
system vibration. Furthermore, it also effectively removes 
vibrations caused by unmodeled system dynamics.The 
technique will be illustrated with an application to an 
industrial high precision wafer-stage and the paper will 
analyze the mechanism behind the actual residual vibration. 

ITERATIVE LEARNING CONTROLLER DESIGN 
The iterative learning controller is designed in a similar 
way as in [1]. For a closed loop system shown in Figure 2, 
the mapping from a finite time interval input signal u to a 

finite time interval output signal y is defined by the impulse 
response matrix H. Similarly, the mapping from reference 
yref to the tracking error e is denoted by the matrix S. Please 
refer to [8][9][10] for more details on this description. 
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Figure 1: reference trajectory with actuation and observation 
intervals for ILC  
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Figure 2: Closed loop servo control system 



 

 
Figure 3: Iterative Learning Control scheme with weightings 

 
In order to force the ILC to be active relative to the 
actuation and observation intervals as indicated in Figure 1, 
the ILC scheme from [1] is modified by adding weightings 
matrices W1 and W2, as shown in Figure 3. These weighting 
matrices have the form 
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where the size of I22 and I33 determines the actuation and 
observation intervals respectively. These weighting 
matrices define a new process sensitivity matrix H given by 
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The learning matrix L is the interconnection between the 
error and the update of the next trials’ input. This feedback 
matrix is designed using an LQR design with weightings 
Q=I and R=β. The solution is presented for example in [8] 
and is given by: 
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The error signal ke  is denoted with an overbar because it 
only has non-zero elements for the time range t2 to t3. 
Similarly, the feedforward signal and its update, 
ˆku and ˆkdu only have non-zero entries for the elements 

corresponding to the interval t0 to t1. Because of the nice 
structure of L (similar to the structure of H ) the 
computation of ˆkdu  is numerically not very demanding. 
However, if computational load prohibits fast computation 
of ˆkdu  a less demanding method is presented in [9] where 

ˆkdu  is found by simulation of a Hamiltonian system. 

EVALUATION OF THE FEEDFORWARD SIGNAL 
In this section the goal is to evaluate the performance of the 
feedforward found with the iterative learning controller. As 
a first step, the initial states are estimated from experiments 
with different actuation and observation windows using an 
experimental frequency response fit state-space model of 
the system. If the same initial condition x(t0) is found for all 
experiments, this indicates that the motion removed by the 
feedforward is indeed the residual vibration caused by this 
initial condition.  
To find the initial condition x(t0), assume the system to be 
linear time invariant. Furthermore, let an experiment with 
measured feedforward u and output y be given and let x0 be 
the unknown initial condition at time t0. Then the trajectory 
of the output y from t0 to t3 is the result of the initial state x0 
and input u. The trajectory caused by the output, denoted 
by y0, is obtained by simulating the system using a state-
space model of the system: 
 
 ( 1) ( ) ( ),   (0) 0

( ) ( )u

x n Ax n Bu n x
y n Cx n

+ = + =
=

 (4) 

 0( ) ( ) ( )uy n y n y n= −  (5) 
 
The initial condition can be found by solving the 
optimization problem 
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Second, a competitive feedforward is calculated. For a 
discrete time state-space system (4), a feedforward signal 
can be calculated using purely algebraic equations. The 
output of the system (4) is determined by the initial state x0 
and input ff. The problem solved by the point-to-point ILC 
can be written as follows 
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The values y1, …, yi are not relevant from a point-to-point 
control objective point of view, thus the system (7) can be 
reduced to 
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where Ĥ is the left bottom part of the Toeplitz matrix in 
equation (7) and Θ the observability matrix. Let the system 
(4) have m states. Furthermore, assume the system (4) to be 
of minimal order and fully observable, i.e. Ĥ and Θ have 
rank m. Now the goal is to find a ff such that yj=yref for j 
=i+1, …, N. Define 
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In practical applications there is a bound on the input. The 
balance between input and output will here be realized 
using a quadratic cost function, weighing the output error 
against the input effort. This is the finite time LQ problem. 
With weight Q̂  on the error energy and weight R̂  on the 
input effort, the optimal input ff is given by solving 
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Similar to the LQ-ILC weightings, the choice of Q̂ =I and 

R̂ =βI will enable to find a trade-off between input effort 
and output energy. In effect, the LQ-ILC solution is the 
solution to the problem (10). The LQ learning controller L 
minimizes the objective: 
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For the case that yref = 0, the ILC solution is exactly 
equivalent to the solution of (10): For k→∞, the controller 
that minimizes the objective (11) yields the ILC solution 
that minimizes (10). The solution to equation (10) can be 
found using linear matrix equations. The learning controller 
thus solves a set of linear matrix equations in an iterative 
way. Under the assumptions for the system (4), the solution 
to (10) is given by 
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The deadbeat solution is given for the case that β=0, 
i.e. R̂ =0. Let the system (4) have m states, rank ˆˆ TH QΘ=m 

and rank ( )ˆˆ ˆ ˆTH QH R+ =m. The solution ff is thus exact 

when the length of the input ff equals the number of states 
m.  

 
Finally, the ILC performance can be evaluated by applying 
these results to the system and comparing them to the 
results obtained with ILC.  

EXPERIMENTAL RESULTS 
The method described above has been used to eliminate 
oscillations in one direction of a high precision XY 

positioning table of a wafer stepper, a wafer stage (Figure 
4). For a wafer stage, the cycle time is defined as the time 
to move from one position to another, plus the time it takes 
to settle within the desired boundary of ±100nm. The 
reference trajectory and initial feedforward used in the 
experiments are shown in Figure 1, where t0 is 0.2 seconds 
and t3 is 0.3 seconds. The designed step time for this 
motion is 0.0904 seconds. Using only the basic feedforward 
trajectory, it takes an additional 0.02 seconds for the system 
to settle within the accuracy bounds, yielding a cycle time 
of 0.1104 seconds (Figure 5).  
If ILC is applied to the whole interval t0 to t3, the system 

Figure 4: Wafer stage of a wafer stepper 
Picture appearing courtesy of D. de Roover 

Figure 5: vibration error, trial 1 and trial 25, overlapping 
observation and actuation windows, [0.2 : 0.3] 
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settles between the accuracy bounds slightly faster in 
0.0155 seconds (Figure 5). This is at the costs of an 
unacceptably large feed forward signal (Figure 6), caused 
by the ILC efforts to reduce the error at the beginning of 
the interval.  

To avoid this large feedforward signal, both the observation 
and actuation intervals have been adjusted such that they do 
not overlap, with the end of the actuation interval marking 
the beginning of the observation interval (t1=t2). After all, 
the system is required to be at rest during the observation 
interval, so no correcting feedforward should be necessary. 
Several experiments were performed, where the actuation 
interval was shortened consecutively. The shortest settling 
time was obtained by setting t1=t2=0.204 seconds, forcing 
the vibration error to be within bounds within that same 
interval (Figure 7). The feedforward for several settling 
times is shown in Figure 8. The shortest feedforward 
removes 80% of the settling time and reduces the cycle 
time by 14%! The feedforward profile found this way is 
still below the maximum value of the basis feedforward. 
Although the ILC needs 25 trials to find a feedforward that 
does this, the largest part of the residual error is already 
removed within the first 5 trials (Figure 9). This figure 
shows the sum of the squared error. At trial 25, the largest 
part of this sum is caused by the error of the first 20 
samples. 

EVALUATION OF ILC EXPERIMENT RESULTS 
The results will be evaluated by comparing ILC results with 
the results from a finite time LQ problem. Using the 
experiments with t1=t2=0.204, t1=t2=0.210, t1=t2=0.220 
and no actuation, the initial condition x(t0) was estimated 
for each signal pair using a 32nd order model of the system, 
based on experimental system identification. Figure 10 
shows that the initial states can be estimated consistently 
from the four experiments. For all experiments the 
estimation is based on the first 20 samples, starting at t0. 
The residuals from the optimization in equation (6) are 
plotted in figure 10 and show that the estimation error is 
very small compared to the output trajectories as in Figures 
5, 6 and 8. The motion removed by iterative learning 
control is indeed the residual vibration quantified by the 
initial condition x(t0). 
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Using the state-space model, more information is available 
about the behavior of the system: the dominant mode in the 
residual vibration is the mode that belongs to states 23 and 
24 in Figure 10. This mode has undamped period Tn = 
0.0142 seconds and damping coefficient ζ = 0.585. The 
settling time of 0.004 obtained by ILC is thus well below 
half the period of this mode.  
With the use of the model and the initial condition, a 
feedforward profile is obtained by solving a finite time LQ 
problem. The initial condition estimated from the 
experiment with no actuation was chosen as initial 
condition for the simulation. To find a comparable 
feedforward, the settle time was fixed at the same intervals 
as the experiments: 4, 5 and 10 milliseconds. Then, the 
input weight β was adjusted such that the desired 
feedforward is obtained. The result is shown in Figure 12. 
The strong resemblance with the ILC result (Figure 9) 

confirms that the ILC solution and the finite time LQ 
problem are equivalent. 
  
To check whether the settling time can be reduced any 
further, the deadbeat solution (β=0) will be used as a 
starting point. Because the order of the system model is 32, 
the deadbeat time is 32 samples or 6.4 milliseconds. The 
deadbeat feedforward however exceeds the maximum 
allowed feedforward of 0.1 volt and is therefore not useful 
in practice.  
As a next step, the accuracy bounds on the settling and the 
maximum bounds on the feedforward are maxim, yielding a 
settling time of 3.2 milliseconds for an unconstrained 
feedforward and 3.4 milliseconds for a constrained 
feedforward (Figure 13). This solution is slightly faster then 
the ILC solution.  
When this feedforward is applied to the system, the 
simulation results are not obtained (Figure 14). One 
apparent source for the deviation is the deviation in the 
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initial condition x0. The experiments from which the initial 
condition was estimated were conducted on a different day. 
Variations in room conditions prevented the exact 
replication of the initial condition. The calculated 
feedforward is thus not very robust against varying 
dynamics. ILC offers a way to find a new feedforward 
within a few experiments and this feedforward can directly 
be applied in operations. 
With a settle time of 5 milliseconds, the experimentally 
obtained ILC solution is near the simulated minimum settle 
time of 3.4 milliseconds. Iterative learning control thus 
offers a competitive technique for solving a point-to-point 
solution. The experiment-based nature and straightforward 
application of ILC allows a fast and reliable update of a 
feedforward signal. In this way, it can deal with the varying 
system dynamics that the waferstepper suffers from. 

 CONCLUSIONS 
This paper shows that iterative learning control has the 
potential to reduce the cycle time caused by residual 
vibrations in a point-to-point motion to almost one-third the 
period of the dominant vibration, while leaving the original 
feedforward profile intact. Time weightings on the input 
and output of the controller force the ILC to a feedforward 
profile that brings the system to rest within the given finite 
time interval. The obtained feedforward profile has limited 
amplitude and removes any overshoot in the output. The 
initial condition at the beginning of the time interval can be 
estimated consistently using a model of the system. This 
shows that iterative learning control indeed removes the 
residual vibrations caused by this initial condition. The ILC 
result is very close to the minimum possible settle time. 
Iterative learning control is a fast and reliable way to obtain 
a high level of active suppression of residual vibration.  
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