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Abstract—In this paper a family of trial-dependent update
laws is studied and constrasted with a class of fixed update
laws. In particular, it is investigated whether the principle of
equivalent feedback extends to trial-dependent update laws. It
turns out that this is not the case. Nonetheless, it is shown that
a well-known performance bound arising in feedback control
architectures, Bode’s Sensitivity Integral, also applies here.

I. INTRODUCTION

In two decades time, the field of Iterative Learning
Control (ILC) has evolved from a simple idea into an
advanced control methodology [14], [10], [11], [3], [12].
Given its distinctive nature and specific application field,
there is little reason to expect that ILC has much in common
with mainstream control methods. However, looks can be
deceiving. Recent publications show that at least causal
ILC is in a very precise sense equivalent with conventional
feedback control [7], [8], [18], [19].

Motivated by these results, the aim of this paper is to
investigate some structural properties of certain types of ILC
algorithms. The discussion includes both trial-dependent
and trial-independent update schemes. A recurring theme
is that of the need for complexity. That is, given a certain
update law, the key question is whether there exists a
concurrent scheme of lower complexity generating the same
control action.

The outline of the paper is as follows. Section 2 serves
as a general introduction to the problem of ILC. Section 3
contains the main results. Conclusions and recommenda-
tions are presented in Section 4, which is followed by an
Appendix containing all the required background material
as well as some new results that are not fit for inclusion in
the main text.

II. ITERATIVE LEARNING CONTROL
A. Problem Statement

Given a plant P : U — Y, y = Pu, together with some
desired output y; € Y. The objective of ILC is to define
an iteration [20] on the space of control inputs U such that
the corresponding sequence of outputs {yx }ren converges
to a limit value ¥ := limy_, oo Yy that is close to y4 in some
sense.

We consider two families of iterations: trial-dependent-
and trial-independent. The first is given in the update
equation below.

upr1 = Qup+ Ley (D)
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Here ey := yq — yi. denotes the current tracking error. () :
U—Uand L:Y — U are taken to be bounded linear
operators acting on the current input, and current tracking
error, respectively.

The affine transition map F' : U — U associated with
the update law (1) is given by

F(uy)
(Q — LP)uy + Lya (2)

Over the years, the update law (1) has received considerable
attention [9], [10], [16], [2], [S]. Issues such as convergence,
robustness and performance have been studied in detail. A
well-known convergence result states that the sequence of
inputs {ug,u1, ...} induced by the recurrence relation (2)
converges to some % € U if F' is contractive. The limit
point % being, of course, a fixed point of F'.
The second class of update laws is given as

Uk+1 =

Qr+1uk + Lit1ex (3)

where @ and Lj are as above, except for the index
“k” (indicating the trial number). For each k£ we define a
transition map Fy : U — U

Upt1r = Frt1(uk)
= (Qr+1— Li1P)ur + Liriya (4

Hence, associated with every element in the class of update
laws (3) there is an ordered set, or sequence of transition
maps {F, Fa,...}.

Under the heading of adaptive (iterative) learning control,
trial-dependent update laws have received some attention
[15], [13], [6], but not quite as much as their trial-
independent counterparts. In order to establish a result on
convergence, in the present paper the sequence {Fy, Fy, ...}
is assumed to be (strongly) convergent. From an analysis
perspective, this is a natural assumption, since there is little
chance the input sequence would converge otherwise. From
a synthesis point of view however, there is no particular
reason why the F}’s should even be treated as design
parameters. In fact, it makes more sense to allow these
“parameters” to be affected by the actual behaviour of the
controlled system. That is to say, in general convergence
cannot just be “assumed”; it needs to be proven.

The analysis of trial-dependent update laws is subtle.
Since F}, is not constant over trials, it does not immediately

Uk+1 =
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make sense to reason about fixed points. It turns out, how-
ever, that the notion of a fixed point and the corresponding
fixed point theory can be extended to strongly converging
sequences of operators. Details can be found in Appendix C.

B. On complexity and equivalent feedback

This section deals with complexity in ILC update rules.
Now what are the compexity issues in ILC? To give an
example, consider once more the class of trial-independent
update laws that was previously introduced in equation (1).
Suppose the iteration converges to some fixed point (u, €) €
U x Y. Itis not hard to see that the pair (@, €) is necessarily
a solution of the “equilibrium equation”

(I-Qu = Le )

In fact, under some well-posedness conditions, it is the
only solution. Note that the solution contains information
about both the asymptotic performance and the control
effort required to obtain it. Clearly, a solution cannot be
determined a priori, since the equation contains terms
involving the unknown plant. Now there are several ways
to determine a solution. One is to just run the given scheme
until it converges. Another way is to implement a feedback
law

(I-Q) " Le ©)

which will yield the exact same solution without the need
to engage in a process of iteration. In other words, the
update law (1) allows for a direct feedback implementa-
tion—provided all operators are causal. On top of that, it
shows that whether the operators are causal or not, different
operator pairs (@, L) can induce the same solution pair
(u,e). Taking the feedback control point of view, these
correspond to different left-coprime factorizations of the
same controller. These, and other structural properties are
discussed in [19].

The bottomline is that the feedback implementation is
much more efficient in terms of computational complexity.
It is not hard to see that this conclusion generalizes to the
class of trial-dependent update laws. In this case the result
is even more striking. Having in fact an infinite number of
design parameters, all the relevant information can still be
condensed into essentially the same simple equation. The
implication is clear: there is no point in exploiting update
laws as exotic as (3) or even (1) unless it is shown that
the complexity one resorts to is strictly necessary. That is
to say, if the resulting control effort cannot be generated
in another, more simple way. The moral of the story is
twofold. First of all, it is interesting to note that despite
the apparent differences in evolution and appearance, ILC
and conventional feedback control have more in common
than one used to think. Second, if ILC is to be recognized
as a serious candidate for specific control applications,
future research should emphasize and exploit its distinctive
properties. It is hard to think of anything more lethal to
ILC’s subsistence than to prove that the same performance

u =

can be obtained through simpler means that obviously do
not make use of the problem’s intrinsic repetitiveness.

As a first step towards the goal outlined above, the next
section introduces a class of update rules whose complexity
appears to be irreducible.

III. A CLASS OF NON-CONTRACTIVE,
TRIAL-DEPENDENT UPDATE LAWS

This section is concerned with the analysis of a subset
of the class of trial-dependent update rules previously
introduced in Section II-A. The particular class of interest
is given as

Uk41 = Uk + Lppreg @)

The operators L, : Y — U, k=1,2,... are assumed to be
causal, bounded and linear. It is furthermore assumed that
Ly, strongly converges to zero (Oy—y).

A. Motivation

Why would this specific class be potentially interesting?
Mainly because the update rule does not suggest a direct
feedback implementation. The question whether or not such
a feedback implementation exists needs futher investigation,
but in any case it is not immediate from the update rule
itself.

Why does this subclass need special treatment? Can it
not be included in a general discussion on the bigger class?
It could be, but then it would loose all its interesting
properties. For in order to establish a result on convergence
for the general class, it seems there is little to resort to
other than Banach’s fixed point theorem, which requires the
transition map, or rather: the sequence of transition maps,
to be contractive. Fact is that this condition is not likely to
be met in case @ = [ for all k, or even if Qi is merely
assumed to converge to I. To illustrate this, rewrite (7) to
get

Upt1 = Frya(ug)
(I = Li41P) ug + Li+1ya ®)
Now {Fy, k > 1} is contractive if and only if the condition
Il - Lt P < 1 ©)

is satisfied for (almost) all k. That is to say, only if LP
is invertible over U, where L is defined as the limit L :=
limy,_, o L. There is no reason to assume that this holds for
general L or that there even exists L for which it does. Now
why should one care about this seemingly special case? The
answer is that this is really the only case of interest because
it is exactly in this case that the equivalent controller is not
defined. This is readily observed from (6).

By considering special subclasses, such as the one in-
troduced in (7), specialized techniques can be deployed in
order to establish results on convergence that do not rely
on the contractivity of the transition map. However, this
comes at a price. In the case of the update rule (7) with
the conditions as stated, one readily observes that as Ly
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tends to zero, F), will tend to identity (I ). Since every
point in the domain of an identity map is a fixed point, it
is immediate that the fixed point is no longer unique and
will thus depend on the initial conditions.

B. Convergence analysis

Next a theorem is presented that gives conditions under
which the class of update rules (7) converges to a bounded
solution. It requires the notion of summable sequences.

Definition 1: Let {Lj} be a sequence of bounded linear
operators. The sequence is said to be summable-in-norm if

Jim ZHLkH < o (10)

Theorem 2 ( Convergence onU): Let {L;} be a se-
quence of causal bounded linear operators from Y to U.
Suppose {Lj} is summable-in-norm. Then the sequence
of control inputs {uy} converges to some bounded input
uwelU.

Note that the assumption that Lj strongly converges to
zero is implicit in the condition that {L;} is summable. In
order to prove Theorem 2, we need the following lemma.

Lemma 3 (Convergence of an infinite product): If a; >
0 for all values of 4, the product Hf 1 (1+a;) and the
series Z _, a; converge or diverge together.

Proof: See [17] [ |

We prove the main theorem.

Proof: [of Theorem 2] Using induction it can be shown
that for £ > 0

k—1
up = H(I—Li+1P)u0+... an
1=0
k—1 k-1
+Z H (I—Li+1P)Lj+1yd
J=0i=j+1

Boundedness is proved term by term. Taking the first term
out, note that

k k
ITT( = LisaP)uoll < JJI = LisaP| fluoll
1=0 i=0
k
< JJa+1ZiallliP]) fluol
1=0

Boundedness follows from the summability assumption and
Lemma 3. The same argument applies for second term,

kook
Z H (I = Liy1P) Lj1ya

J=01i=j5+1
k k
< 3 II a+1ZeadllPID s lHyal
J=01i=75+41
[e%S) k
< [T+ ZaallPD Y 15 lllyall - (12)
i=0 7=0

where both the sum and the product converge by the
assumption of summability (and Lemma 3). [ ]

The next example shows how the result of Theorem 2
can be applied. Let P € R'H, be a stable plant. For k > 1
we define Ly := L/k?. Assume L € RHo. It is easy to
see that {L;} is summable

DLkl > ILil/E?
k=1 k=1

— (=*/6)|L] (13)

Now Theorem 2 says that, no matter what L or P is,
the sequence of inputs {uj} will always converge to a
bounded solution in Hs. Thus, convergence does not depend
on detailed knowledge of the plant. In fact, assuming mere
boundedness is enough. The error ek satisfies e, = Zieq,
where Z, is defined as Z;, := []; 701 (I — Li+1P). This
tells us that the ultimate performance depends on the initial
error eg which, in turn, depends on the initial input ug. To
remove ambiguity, it is henceforth assumed that the initial
input is set to zero, i.e. ugp = 0. Under this assumption eg
equals y4. The transformation

Z = lim Zj (14)

k—oo

which maps y; onto € can be interpreted as an (output)
sensitivity function. In some cases a closed form expression
for Z can be found. As it turns out in our example

sin (= /PG

A plot of Z(jw) for P=1/(st + 1) and L = 1 is given
in Figure 1.

Z(s) = (15)

—-10 —6 -2 2 6 10
wT —

Fig. 1. The “sensitivity function” |Z(jw)| as in (15) for
P=1/(st+1)and L =1.

Tracking is particularly good in the low-frequency range
(up till wT &~ 1). We also observe that | Z(jw)| < 1 for all
w. This suggests that the intial error is never amplified. One
may wonder whether this property is intrinsic to the class of
update rules. But this is not so as can be seen for the case
P =1/(st+1)2, depicted in Figure 2. More generally, the
following proposition shows that Z(s) is constrained by an
integral relation.

Proposition 4 (Sensitivity integral): Assume that P €
RHoo has a pole-zero excess greater than one and let { Ly}
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be a summable sequence in RH . Then Z(s) as defined
in (14) satisfies the following integral relation

o0

log|Z(jw)ldw > 0 (16)

Proof: The_olgey to the proof is Poisson’s integral

formula
1 [ x
F = — F(jw)w———5d
(#) T /m () 22 Fly—w?
where s = x + jy. This formula holds for all complex
functions that are analytic in the closed right half plane and
satisfy
PR
lim ————~— = 0
Rl—{noo R
The idea is to apply this identity to the complex function
log|Z(s)|. However, since Z(s) is allowed to have zeroes
in the closed right half plane (CRHP), the condition on ana-
lyticity may not be satisfied. This problem is circumvented
by considering instead Z = B~ Z, where B is a Blaschke
product containing all the CRHP zeroes {z;} of Z, counted
according to their multiplicity
H S — Z;
s+ z;

B

B(s) =

The function log|Z| is analytic in the CRHP. Applying
Poisson’s integral formula gives

00 o 22
/ 10g|Z(Jw)|mdw =

e rxlog|Z(x))|

Note that since B is inner, |Z| equals |Z| along the
imaginary axis. Hence, as x tends to infinity, the left hand
side tends to the sensitivity integral. The right hand side
can be split into two parts

rzlog|Z(z)| = nzlog|Z(z)|+ wxlog|B~ ()|

Taking the limit, the first term on the right hand side
vanishes under the assumption that P has pole excess
greater than one. The second term tends to

lim log|B~!(x)] = lim 1ogH st
00 z—00 Lz —x
1+2
= lim 1og2xlog T =
= 2) Rez
> 0
This concludes the proof. [ ]

The result in Theorem 4 is sometimes referred to as the
waterbed effect. What it says is that if the (initial) error is
attenuated in one region, it is amplified in another. It also
shows that under the present conditions the error can never
be zero over a whole frequency range, because in order to
satisfy the sensitivity integral, it would mean that the error
would grow unbounded in another region.

—10 —6 -2 2 6 10

Fig. 2. The “sensitivity function” |Z(jw)| as in (15) for
P=1/(st+1)%2and L = 1.

C. Equivalent Feedback

Does the update scheme (7) allow for a direct feed-
back implementation or not? And if so, what can be said
about the corresponding controller structure? Suppose an
equivalent feedback controller exists and call it K. The
corresponding closed-loop sensitivity function is given as
S:=1/(1+4 PK). Setting S = Z and solving for K gives
1-Z7

ZP
To get an idea of what this amounts to, consider the next
example. Take Ly = L for k = 1 and L = 0 for all
other k. It is easy to verify that Z = (1 — LP). The
equivalent controller K is given as K = L /1 — LP. Using
the theory of Youla parameterization, it can be verified that
K is stablilizing for all L € RH. It is also clear that
in order to implement /K, exact knowledge of the plant
is required. It appears that this is a general property. For
suppose that the equivalent controller would be determined
by the design parameters Lj only. Now let L; be fixed
and vary P over the space of all bounded linear operators.
By Theorem 2 the input % and hence the error e would be
bounded for all P. But this implies that the same equivalent
controller would have to be stabilizing for all P. There is
but one controller for which this is true and that is the zero
controller. From (17) it is clear that K = 0 if and only
if Z = 1. It is also not hard to see that Z = 1 if and
only if L; = 0 for all k. The conclusion is thus that the
computational scheme (7) has irreducible complexity for all
but one set of admissable parameter values.

K = (17)

IV. CONCLUSIONS

In this paper, a class of trial-dependent update laws
was studied and contrasted with the more familiar class
of fixed update rules. We argued that since ILC’s raison
d’étre originates from the idea of exploiting repetitiveness,
one should look for classes of algorithms that do just that.
That is to say, we should constrain attention to those that
are not (obviously) equivalent with conventional feedback
or feedforward architectures. One such class of algorithms
was introduced in this paper. It was shown that for this
class an equivalent feedback controller could not be defined
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independent of any plant knowledge. Nonetheless, the corre-
sponding sensitivity function was still shown to be subject to
performance constraints similar to those arising in feedback
architectures.

APPENDIX

The majority of the material in this section was taken
from refereces [1] and [4].

A. Contractions and fixed point theory

Let (X, d) be a metric space. A map F': X — X is said
to be Lipschitzian if there exists a constant « > 0 such that

d(F(z), F(z"))

for all x,7’ € X. The smallest o for which (18) holds is
said to be the Lipschitz constant for F. If L < 1 we say
that F' is a contraction, whereas if L = 1, we say that F' is
nonexpansive.

Definition 5 (Fixed point): Givenamap F : X — X. A
point € X is a fixed point of F' if it satisfies F'(v) = «.

A map F': X — X may have more than one fixed point,
or none at all. The following theorem gives a sufficient
condition for F' to have a unique fixed point in X, along
with an iterative procedure to compute it.

Theorem 6 (Banach’s Fixed Point Theorem): Let (X, d)
be a complete metric space and let ' : X — X be a
contraction. Then F' has a unique fixed point £ € X.
Moreover, for any z € X we have

< ad(z,2) (18)

lim F*"(z) =2

n—oo

19)

B. Operator Theory

Henceforth it is assumed that X is a complete normed
vector space. In addition, only mappings from X into itself
are considered.

Definition 7 (Linear operator): An operator F' is linear
if, for all z,2’ € X and all scalars « it holds that F'(z +
2') = Fx+ F2/, and F(ax) = aFx.

Definition 8 (Affine operator): An operator F' is affine if
the associated operator Fj(x) := F(z) — F(0), is linear.

Definition 9 (Bounded linear operator): F' is a bounded
linear operator if it is linear and there exists a real number
¢ such that for all z € X, ||Fz|| < c||z].

Note that every bounded linear operator is Lipschitzian.

Definition 10 (Bounded affine operator): Let F be an
affine operator. F' is a bounded affine operator if the
associated linear operator Fj is bounded in the sense of
Definition 9.

Definition 11 (Strong convergence): Let {F,,,n > 1} be
a sequence of bounded affine operators. If

|Fnz — Fz|| — 0 (20)

as n — oo for all x € X then we say that F;, converges
strongly to F'.

In a complete vector space X, a necessary and sufficient
condition for a sequence {F,x,n > 1} to converge to a

limit point in X is that the sequence is Cauchy, i.e. for any
€ > 0 there exists N € N such that for all m,n > N

|Fnx — Fozl| < e 21

From this it is clear that a necessary condition for the
sequence {F,,n > 1} to converge strongly to a limit F’
is that the sequence {F,z,n > 1} is Cauchy for every
z € X. This fact will prove useful later on.

C. Fixed point theory: extensions

We present some extensions to the classical fixed point
theory. For notational convenience we adopt the shorthand
notation

(i) -

n=1

FN(FNfl("'Fl(fC)"'))

Definition 12 (Fixed point): Let {F,,,n > 1} be a se-
quence of bounded affine operators that strongly converges
to a limit F' := lim,,_ o, F,, (see Definition 11). We say
that a point x € X is a fixed point of the sequence
of operators {F,} if it is a fixed point of F, i.e. if
limy, o0 || Fn(z) — z|| = 0.

Definition 13 (Contraction): Let {F,,n > 1} be a
strongly converging sequence of bounded affine operators,
and let L,, denote the Lipschitz constant of the associated
linear operator F),(z) — F,(0). We say that {F,} is con-
tractive if sup,, L,, < 1.

We have the following result.

Theorem 14: Let X be a Banach space and let {F},, n >
1} be a strongly converging sequence of bounded affine
operators on X. Define F' := lim,, .o F},. Suppose {F,}
is contractive. Then there exists a unique fixed point x € X
such that F'(z) = z. Furthermore, for any = € X, we have
that

(22)

i)

n=1
Proof: Let us prove uniqueness first. Suppose by

contradiction that F' has two fixed points z,2’ € X and
x # 7. Let L, denote the Lipschitz constant of the linear
operator (F,);. Observe that

|Foz — Fod|| < Ly |z — 2| (23)

Hence

nli_{I;oHan_an/H < L||a:—a:/H (24)
where L := sup,, L, < 1. On the other hand
[Pz — Foa' — (z = 2')|| < [|[Fox — 2| + || Foa” — /|| (25)
implies that
(26)

lim ||F,z — F,2'|| = ||z — 2/
n—oo

Equations (24) and (26) cannot both hold true, unless = =
2’. But this contradicts our starting assumption. Hence we
conclude that F' has only one fixed point.
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Next we verify that = as defined by (22) is a fixed point
of F'.To that end, let us assume that the right hand side of
(22) converges. Then, by definition

N—-1
L }TF = gm AR )en

By assumption, the left hand side of (27), acting on =,
converges to Z. The claim is that the right hand side, acting
on z, converges to F(Z). This can be shown as follows.
Take any x € X, define z,, := ([[;_, F>,) (), and observe

that HFN({ENfl) —F(Q)H
= |[Fn(zn-1) — Fn(Z) + Fn(2) — F(2)||
< | Fn(zn-1) — Fn(@)] + |[Fn(2) — F(2)
= |[Fn(anv-1—2)|| +|1Fn(2) — F(2)]|
< Lyllan—1 -2+ [|[Fn(2) - F(2)| (28)

Here we used the fact that F'y is bounded and affine over its
domain. Recall that L is uniformly bounded by some L <
1 because {F,,} is contractive. As N tends to infinity both
terms on the right hand side of (28) vanish. The first because
by assumption x_; converges to Z and the second because
{F,} is strongly converging. This shows that Fy(xn_1)
tends to F'z. We conclude that Z is indeed a fixed point of
F.

Next we show that the sequence (Hﬁ;l FN) (x) con-
verges for all x € X. To that end, take any z € X and
define x,, as before. Decompose the affine operator F;, into
a an affine part (F),),, and a linear part (F,); as follows:

Fn(x) = (Fn)lx + (Fn)a (29)
We arrive at the following expression for x,,

Ty =
i=1 =j

Define A := sup,, ||(Fy)q|| and recall that ||(

is uniformly bounded by some L < 1. Thus

Fn)l || - Ln

IN

(£

n—1
Lol + [ Y L7

J=0

Ln
" — A
ool + (=1 )

Clearly the right hand side of (30) is bounded and hence
{x,} is bounded. What remains is to show that ||z, —x,_1 ||

(30)

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

H( i 1] xo+ Z H lJrl)l (Fj)a + (Fn)a [16]

(17]

[18]

[19]

[20]

will tend to zero as n — oo. We have that ||z, — 2,1 ||
- ||Fn($n—1)_Fn(xn—Q)"'Fn(xn—Q)_Fn—lxn—ZH
< N Fa(@a—1) = Fa(@n-2) || + [[Fn(@n—2) — Foo1(zn-2)||
< L Hxn,1 - fanH + | Fr(zn—2) — anl(fan)H

The second term on the right hand side vanishes as n tends
to infinity. This is because {F,z,n > 1} is Cauchy for
all x € X. Consequently, since L < 1, ||z, — x,—1]| will
converge zero. This completes the proof. [ ]
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