
A Discrete Event Systems Approach to Network
Fault Management: Detection & Diagnosis of

Faults
S. Bhattacharyya, Z. Huang V. Chandra R. Kumar

Electrical & Computer Engineering Department of Technology Electrical & Computer Engineering
University of Kentucky Eastern Kentucky University Iowa State University
Lexington, KY 40506 Richmond, KY 40475 Ames, IA 50011

Abstract— An important aspect of network management is
fault management, i.e., determining, locating, isolating, and
correcting faults in the network. We study modeling of com-
munication network protocols, and their fault detection, fault
identification and fault location in the discrete event systems
diagnosis framework. Our approach provides a systematic way
of performing fault diagnosis in network fault management,
and is illustrated through a network fault diagnosis example.

I. INTRODUCTION

A fault is regarded as a physical condition that causes
a device, a component or, an element to fail to perform
in a required manner. A typical diagnosis system uses the
observations of the system to detect the failure, isolate
(locate) the source of failure, and diagnose the root cause.
Discrete Event System (DES) approach to failure diagnosis
[2], [3], [4], [5], [9], [10], [1] is a systematic method for
timely and accurate diagnosis of failures in event-driven
systems, such as telecommunication networks. The system
behavior is modeled as a a finite state machine. The failure
events form a part of the event set. An occurrence of fault
can be detected/isolated/diagnosed by observing the event-
trace the system executes. The challenge is to detect the
occurrence of failures within bounded delay. We present a
DES framework to represent network protocols, and address
the problem of their fault management.

II. NOTATION AND PRELIMINARIES

A Discrete Event System (DES) [6] is a dynamic system
that evolves in accordance with the abrupt occurrence of
events, at irregular intervals. Let Σ denotes finite set of
events. A concatenation of events is called an event trace.
A language is a collection of traces. Σ∗ is the set of all
finite traces of events of Σ including the empty string ε.
A language is thus a subset of Σ∗.. For a language H , the
notation H called the prefix closure of H , and it consists
of the set of all prefixes of traces in H . H is said to be
prefix closed if H = H . A discrete event system can be
represented by a state machine or automaton consisting of

This work was supported in part by the National Science Foundation un-
der the grants NSF-ECS-0218207, NSF-ECS-0244732 and NSF-EPNES-
0323379, and a DoD-EPSCoR grant from the Office of Naval Research
under the grant N000140110621.

a four tuple, G = (X,Σ, δ, x0), where, X is the set of states,
Σ is the set of events, δ : X × (Σ

⋃
{ε}) → 2X is the state

transition function, and x0 ∈ X is the initial state. G is said
to be deterministic if δ(., ε) = ∅ and |δ(., σ)| ≤ 1 for all
σ ∈ Σ. Otherwise it is nondeterministic. The event behavior
of the discrete event system modeled by G is described by
its generated language: L(G) := {s ∈ Σ∗ | δ(x0, s) 6= ∅}.
Synchronous composition [6] of state machines is used to
represent the concurrent behavior of two interacting discrete
event systems. The synchronous composition of G1 and G2

is denoted G1‖G2.

III. NETWORK FAULT MANAGEMENT APPROACH

A communication network is an event-driven system, in
which events occur at each node, at unknown irregular
intervals of time. Accordingly a communication network
can be regarded as a DES, with each node in the network
represented as a deterministic finite state machine (FSM)
[7], [8]. The normal behavior of the system is modeled by
state machine G0, and the faulty behavior of the system is
modeled by state machines {Gi|i > 0}, where i represents
a system with ith kind of fault. Each Gi contains at most
one fault, reflecting the underlying assumption that at most
one fault can exist at any given time. We can think of the
overall model of the system to be G whose behavior is the
union of the behaviors of Gi≥0.

The state behavior of the system is given by state-traces
specifying the sequence of states visited, whereas event
behavior is given by the event traces that can be executed.
For a state trace Π, we use tr(Π) to denote the associated
event trace. Two state-traces Π1, and Π2 with the same event
trace tr(Π1) = tr(Π2) are considered indistinguishable.
Henceforth, we represent the state behavior of Gi by Li,
and event behavior by L(Gi) then

⋃
i≥0

Li is the set of
all possible state traces, and

⋃
i≥0

L(Gi) is the set of all
possible event traces that can be executed by a system.

We consider the simplified version of the network layer
of X.25 protocol taken from [8] to show the models of
different systems {Gi|i ≥ 0} under the representation
method we have discussed. X.25 is a protocol standard
for WAN communications that defines how connections

between user devices and network devices are established
and maintained.

Example 1: A model G0 of the non-faulty behavior for
a part of the X.25 protocol is shown in Figure 1. In G0,
there exist four states S1, S2, S3, and a “dump state” D. The

 2S
Y/R

S 1

A/L
C/D

S 3

0G

Dump State , D

Fig. 1. Normal behavior of the system

system transitions from one state to the other on an observed
input-output pair. The input-output labels used carry the
following meaning: Y: Ready (initialized), R: Call Request,
C: Call Accept, D: Data, A: Acknowledge, and L: Clear
(terminate the call).

We consider input, transition, and output faults.

• An input fault occurs when a state receives an unex-
pected input. A transition to the dump state occurs due
to an input fault, and then the system stops execution.
For example, when S1 receives C as input, an input
fault occurs (Figure 2) and it transitions to the state
D.

• A transition fault occurs when a state transitions to
an unexpected state on an expected input-output pair.
For example, S1 transitions to S3(Figure 4) or remains
at S1 (Figure 3) on input-output pair Y/R due to a
transition fault.

• An output fault occurs when a state transitions to
the expected state but gives an erroneous output. For
example in Figure 5 we see that S1 transitions to S2

(the expected state) but gives a wrong output due to
an output fault. When either a transition or an output
fault occurs, the system continues functioning.

The various faults occurring in the system are modeled
using FSMs in Figures 2-5. G1,G2,G3 model the vari-
ous input faults (Figure 2), G4,G5,G6,G7,G8,G9 model
the various transition faults (Figure 3 and Figure 4), and
G10,G11,G12 model the various output faults (Figure 5),
respectively.

A. Overall System Model

In order to obtain a model for the overall system with nor-
mal and faulty behavior combined, one obvious approach is
to introduce a new initial state SNew. From this state, one
adds ε-transitions to all the initial states of all the systems
Gi, i ≥ 0. This gives the non-deterministic finite state
machine of the system with and without faults. Using the

SS

C/D A/L

12

S3

A/L or C/D

Y/R 2S S 1

S 3

D

White arrow head (): Faulty behavior

A/L
 or

Y/R

D

 1 G : Input fault at state S 1 G 3 : Input fault at state S 2

Black arrow head (): Normal behavior

C/D

S2 Y/R S 1

D

C/D orY/R

S3

G :2 Input fault at state S 3

Fig. 2. Models showing input faults

A/L
C/D

S S

S

 1

3

 2

 1

Y/R Y/R

 4G 1

D

:

Arrows with dark head (): Normal transition

Arrows with White head (): Faulty transition

Transition fault at State S to S G : 5 Transition fault at State S to S 2 2

D

3

C/D S 1 2S

S

A/L

D

C/D

S3
A/L

S2 Y/R S 1

G : 6 Transition fault at State S to S 3 3

Fig. 3. Models showing transition faults

fact that at most one fault can exist at any given time we
can give a more compact and intuitive model of the overall
system as follows.

Algorithm 1: (To build model G of overall system)

1) Since initially there is no fault, initial state S1 is
augmented by the label N .

2) Next from the initial state (S1, N), consider all the
possible input-output pairs that can be observed.
For our example, the input-output pairs can be one
among Y/R or C/D or A/L. When the input-output
pair is Y/R, the system transitions to either (S2, N)
indicating a normal behavior, or to (S1, F1) indicat-
ing the transition fault F1, or to (S3, F2) indicating
the transition fault F2. If we observe Y/D or Y/L
(unexpected output on expected input) we know an
output fault has occurred, and the system transitions
to (S2, F5). On A/L the system transitions to state
(D,F4) indicating input fault on A/L. Newly reached
states are recursively considered for further state
transitions in a similar fashion.

3) If a state has a label Fi, i > 0, then since only one
fault can exist at a given time, the ensuing transitions
are non-faulty. Considering (S1, F1), it executes Y/R
and transitions to (S2, F1), where it executes C/D and
transitions to (S3, F1), and finally executes A/L and
transitions back to (S1, F1).

Figure 6 shows the NDFSM built using Algorithm 1.

B. Detectability

Detectability means the ability to detect the occurrence
of a fault within bounded delay.

Definition 1: Given a set of normal state behaviors L0,
a set of all state behaviors L, the pair (L0, L) is said to
be detectable if: (∃n ∈ N)(∀Π ∈ L − L0)(∀Π1 = ΠΠ2 ∈

A/L
C/D

S2

S 3

S S

S

 1

3

 2

Y/R
A/L

 7G : 3

C/D

D

Arrows with dark head (): Normal transition

Arrows with White head (): Faulty transition

Transition fault at state S to S 1 G : 8 Transition fault at state S to S 2 1

C/D

D

A/L

S 1Y/R

D

S3

S 2 Y/R 1S

G : 9 Transition fault at state S to S 3 2

Fig. 4. More models showing transition faults

C/D

S S

S

2 1

3

A/L

Output fault at state S 1 10

D

G :

Arrow with black head (): Normal transition

Arrow with white head (): Faulty transition

Y/D or Y/L

D

S3

C/D
A/D

or
A/R

S1Y/R
S 2

G : 11 Output fault at state S 2

D

 C/R
or
C/L

S3

A/L

Y/R
S1S 2

G : 12 Output fault at state S 3

Fig. 5. Models showing output faults

L, |Π2| ≥ n or Π1 deadlocks) ⇒ (∀Π3 ∈ L, tr(Π1) =
tr(Π3))(Π3 ∈ L − L0)

(If Π is a faulty trace in L − L0, and Π1 is either a
sufficiently long extension, or a deadlocking trace, then
every trace Π3 in L that has the same event trace as Π1, i.e.,
tr(Π3) = tr(Π1), should be a faulty trace.) We apply the
Jiang et al [3] algorithm to determine detectability. Since we
are concerned about the detection of a fault and not it’s fault
type, we modify the non-deterministic finite state machine
we obtained earlier, by replacing each Fi label with label
F . The steps are:

Algorithm 2: (For detectability)

1) Build the NDFSM GD for detectability by replacing
each Fi label by F in G.

2) Construct GD‖GD.
3) Check for ambiguous cycles or ambiguous deadlock

states. (A state in GD‖GD is ambiguous if the two
coordinates carry different fault labels.) Detectable iff
no ambiguous cycles or ambiguous deadlock states.

Example 2: GD for our example is show in Figure 7.
From the synchronous composition of GD with itself (Fig-
ure 8) we find that there are no ambiguous cycles or
deadlocks. So, the system is detectable.

When a system is such that it is not detectable we can
find a detectable sub-system as follows:

Algorithm 3: (To find detectable sub-system)

1) In GD‖GD, identify the traces leading to ambigu-
ous cycles or ambiguous deadlocks. Each trace in
GD‖GD is a pair of indistinguishable trace of GD.

2) Pick any of the indistinguishable traces, and remove
it from GD.

 S1 , N

 S2 , N

 S1 , F1

 S3, F2

 D , F 3

 D , F4

 S2 , F5

 S1 , F5

 S3 , F5

 S3 , N

 S2 , F6

 S1 , F7

 D , F8

 D , F9

 S1 , F10

 S3 , F10

 S2 , F10

 S3 , F11

 S2 , F12

 D , F13

 D , F14

 S2 , F15

 S3 , F15

 S1 , F15

 S2 , F11

 S1 , F11

 S1 , F12

 S3 , F12

 S3, F1

 S2, F1

 S2, F2

 S1, F2

Y/R

Y/D or Y/L

Y/R

Y/R

C/D

A/L

C/D

A/L

Y/R

A/L

Y/R

C/D

Y/R
C/D

A/L

A/L

Y/R

C/D

C/D

C/D

C/L or C/R

A/L

Y/R

C/D

A/L

A/D or A/R

A/L

Y/R

C/D

A/L

A/L

C/D

C/D
C/D

C/D

A/L

A/L

Y/R

Y/R

 S3 , F6 S1 , F6

 S2 , F7 S3 , F7

C/D Y/R

A/L

Y/R
C/D

A/L

Fig. 6. NDFSM G of overall behavior

 S1 , N

 S2 , N

 S1 , F

 S3, F

 D , F

 S2 , F

 S3 , N

Y/R

Y/D or Y/L

Y/R

Y/R

C/D

C/D

C/D

C/D

C/L or C/R

A/L

A/D or A/R

Y/R

Y/R A/L

A/L

C/D or Y/R

or

C/D or A/L

A/L
C/D

A/L

Fig. 7. NDFSM GD for detectability

C. Diagnosability

Identification of a particular kind of fault is known as
the diagnosis. A system is diagnosable for fault i if it is
possible to identify within bounded delay occurrences of
failures of type i using the observation of events.

Definition 2: A system with state behavior L, and
fault i behavior Li is said to diagnosable for fault
i if: (∃ni ∈ N)(∀Π ∈ L)(∀Π1 = ΠΠ2 ∈
L, |Π2| ≥ ni or Π1 deadlocks) ⇒ (∀Π3 ∈ L, tr(Π3) =
tr(Π1))(Π3 ∈ Li)
(If Π is a trace in L with a failure of type Fi, and Π1 is
either a deadlocking or a sufficiently long extension of Π,
then every trace Π3 in L that has the same event trace as
Π1, i.e., tr(Π3) = tr(Π1), should contain in it a type i
failure.) To check for diagnosability of fault i we apply the
algorithm by Jiang et al [3].

Algorithm 4: (For diagnosability)

1) Construct the non-deterministic finite state machine
GFi by replacing all the fault labels Fj (j 6= i) by N
in G (when we are diagnosing for fault i, fault j can

S
1
 N, S

1
 N

S
2
 N, S

2
 N

S
2
 N, S

1
 F

S
2
 N, S

3
 F

S
1
 F, S

2
 N

S
3
 F, S

2
 N

S
2
 F, S

2
 F

Y/R

C/D or A/L

Y/R

Y/R

Y/R

Y/R

Y/R

Y/R

A/L

S
1
 F, S

3
 F

S
3
 F, S

1
 F

D F, D F

D F, S
2
 F

S
1
 F, D F

S
2
 F, D F

D F, S
1
 F

S
3
 N, S

1
 F

S
3
 N, S

2
 F

S
1
 F, S

3
 N

S
2
 F, S

3
 N

S
2
 F, S

1
 F

S
1
 F, S

2
 F

S
3
 N, S

3
 N

C/D

Y/R

C/D

orA/L

Y/R

Y/R
or

Y/L

YD

A/L

Y/R

Y/R

C/D

Y/R

C/D

A/L

C/D

C/D

C/D

C/L or
C/R

C/D

Y/R

D F, S
3
 F

S
3
 F, D F

S
1
 N, S

2
 F

S
1
 N, S

3
 F

S
2
 F, S

1
 N

S
3
 F, S

1
 N

S
2
 F, S

3
 F

S
3
 F, S

2
 F

A/L

A/L

A/L

A/L

A/L

A/LA/D or

A/L

A/L

C/D

S
3
 F, S

3
 F

S
1
 F, S

1
 F

Y/RA/L

C/D

Fig. 8. GD ‖ GD

be treated as normal).
2) Construct GFi

‖GFi.
3) Check for ambiguous cycles or ambiguous deadlock

states. Diagnosable iff no ambiguous cycles or am-
biguous deadlock states.

Example 3: For diagnosis of fault F4, figure 9 shows the
model of the state behavior with only fault F4 indicated. In
Figure 10 there are ambiguous deadlock states (DF4, DN),
and (DN,DF4), showing fault F4 is not-diagnosable. To

 S1 , N

 S2 , N

 S3 , N

 D , F4

 D , N

or

Y/R

Y/R

Y/R or A/L

C/D
or

C/D

C/D

C/L
or

A/L

A/L

A/L

Y/L
or

Y/D

Y/R

C/R

C/D
A/L

C/D
or

Y/R

or
or

A/D

A/R

Fig. 9. NDFSM GF4

find the diagnosable part we remove all the transitions
on A/L, excepting the one, which leads to the input fault
F4. The resulting NDFSM, G′

F4
is shown in Figure 11.

Figure 12 considers G′
F4
‖G′

F4
and shows that there are no

ambiguous deadlock states and no ambiguous states in cycle
(as expected). So, we can conclude that G′

F4
is fault F4

diagnosable.

D. The Diagnoser

A diagnoser is a discrete event system which passively
observes the input-output sequence executed by the system
and determines the possible faults that may have occurred.
Each state in the diagnoser carries a label indicating whether
or not a fault might have occurred. It turns out that we
can use our model of overall behavior given as G itself
as a diagnoser. The finite state machine G is an “off-line”

 S1 N , S1 N

S1 N , S2 N

S2 N , S1 N

S3 N , S2 N

S2 N , S3 N

S3 N , S1 N

S1 N , S3 N

S2 N , S2 N

D N , D N

C/D

Y/R

A/L

A/L

A/L

C/D

A/L

A/L

A/L

A/L

S3 N , S3 N

D F
4

 , D F
4

C/D

C/D

C/D

A/L
or
 A/D
 or
 A/R

 Y/R
 or
 Y/L
 or
Y/D

C/D
or
C/L
or
C/R

A/L

A/L

C/D

C/D

C/D

A/L

C/D

A/L

Y/R
Y/R

Y/R
Y/R

Y/R

Y/R

S2 N , D N S1 N , D N

D N , S2 N

D N , S3 N

C/D

D N , S1 N

Y/R

Y/R

S3 N , D N

C/D

C/D

C/D

C/D C/D

Y/R

Y/R

A/L

Y/R Y/R

Y/R

Y/R

D F4 , D N

D N , D F 4

Fig. 10. GF4
‖ GF4

 S1 , N

 S2 , N

 S3 , N

 D , F4

 D , N

or

Y/R

Y/R

Y/R

C/D
or

C/D

C/D

C/L
or

Y/L
or

Y/D

Y/R

C/R

C/D
A/L

C/D
or

Y/R

or
A/D

A/R

Fig. 11. NDFSM G′

F4

diagnoser as it models all the behaviors, and identifies fault
for all possible behaviors. One does not need to consider
the entire G for performing diagnosis on-line. Only the part
reachable by the observed input-output sequence needs to
be considered.

A diagnoser can be local or global, where a local diag-
noser observes the input-output sequence of one node only,
and a global diagnoser observes the input-output sequence
of more than one node. An example of local diagnoser is
shown in Figure 13, where the local observation occurs at
the sender node only. An example of a global diagnoser is
shown in Figure 14, where it observes the behavior at both
the nodes.

The local diagnoser is built as follows:
Algorithm 5: (For local diagnoser)
1) Initial state is given by (S1, N).
2) On observation of input-output pair ik/ok at state xk

with label lk, the reachable states are computed using
the transition function of G.

Example 4: Consider local observation at sender end.
When the observation Y/R, C/D, A/L, C/D occurs, the
reachable part of automaton G is given in Figure 15. As can
be seen from Figure 15 at this point either F7 has occurred

 S1 N , S1 N

S1 N , S2 N

S2 N , S1 N

S3 N , S2 N

S2 N , S3 N

S3 N , S1 N

S1 N , S3 N

S2 N , S2 N

D N , D N

C/D

Y/R

C/D

or

S3 N , S3 N

D F
4
 , D F

4

C/D

D N , S2 N

D N , S3 N

D N , S1 N
C/D

C/D

A/L
or
 A/D
 or
 A/R

 Y/R
 or
 Y/L
 or
Y/D

C/D

C/D

C/D

C/D

A/L

Y/R
Y/R

Y/R
Y/R

Y/R

Y/R

S2 N , D N S1 N , D N

C/D

Y/R

S3 N , D N

C/D

C/D

Y/R

Y/R

Y/R Y/R

 C/L

C/D
or
C/R

Y/R or C/D

Fig. 12. G′

F4
‖ G′

F4

A/L

R/C

D/A L/Y

c
12

c
21

Y/R

C/D

-/Y

Local diagnoser

Fig. 13. Architecture of a local diagnoser

or fault F6 has occurred.
A global diagnoser can be built by performing an input-

output synchronization of the local observers of the nodes
being observed. For simplicity we consider a global di-
agnoser that observes a pair of nodes. For such a global
observer we use the following notation: xj

i denotes a state
i at node j, F j

i denotes a fault i at node j, (ijk/oj
k, ij′k /oj′

k)
denotes the kth input-output pair at nodes j and j′.

Algorithm 6: (For global diagnoser)

1) Initial state is ((S1, N), (S1, N)).
2) On kth observation (ijk/oj

k, ij
′

k /oj′

k) at states
(xj

k, ljk), (xj′

k , lj
′

k) of the nodes j and j′ a transition
to a new state-pair occurs according to transition
function of G.

Example 5: When the observation Y/R, C/D, A/L, C/D
occurs at node 1, and -/Y, R/C, D/A, L/C occurs at node
2, the reachable part of automaton G is given in Figure 16.
As can be seen from Figure 16 that at this point the fault
F 2

7
has occurred.

IV. CONCLUSIONS

In our work we have shown how discrete event system
can be used to do passive fault detection and diagno-
sis in communication networks. The network nodes were
modeled as finite state machines and the faults considered
were output, input, and transition faults. For the example

A/L

R/C

D/A L/Y

c
12

c
21

Y/R

C/D

-/Y

 Global diagnoser

Fig. 14. Architecture of a global diagnoser

(S1 , N)

(S2 , N)

(S3 , F2)

(S1 , F1)

(S3 , N)

(S2 , F4)

(S1 , F3)

(S1 , N)

(S2 , F6)

(S3 , F5)

(D , F
7
)

(S1 , F6)

Y/R C/D A/L C/D

Fig. 15. A local diagnoser

we considered, we find that all the faults are detectable;
output faults are diagnosable, but input, and transitions
faults are not diagnosable. Also, by using the algorithm
for detectability/diagnosability, the traces which are not
detectable/diagnosable can be identified. After removing
such traces a detectable/diagnosable sub-system can be
obtained. In the algorithm used to build the diagnoser we
did not need to perform any backward analysis as is the case
with the work of [8]. We introduce a method to obtain a
global diagnoser, by extending the notion of local diagnoser.

REFERENCES

[1] L. E. Holloway and S. Chand. Distributed fault monitoring in
manufacturing systems using concurrent discrete-event observations.
Integrated Computer-Aided Engineering, 3(4), 1996.

[2] Z. Huang, V. Chandra, S. Jiang, and R. Kumar Modeling of
discrete event systems with faults using a rules based modeling
formalism. Mathematical and Computer Modeling of Dynamical
Systems, 9(3):233–254,2003.

[3] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial
algorithm for testing diagnosability of discrete event systems. IEEE
Transactions on Automatic Control, 46(8):1318-1321, 2001.

[4] S. Jiang and R. Kumar. Failure diagnosis of discrete event systems
with linear-time temporal logic fault specifications. IEEE Transac-
tions on Automatic Control, To appear, 2004.

[5] S. Jiang, R. Kumar, and H. E. Garcia. Diagnosis of repeated failures
in discrete event systems. IEEE Transactions on Robotics and
Automation, 19(2):310-323, 2003.

[6] R. Kumar and V. K. Garg. Modeling and Control of Logical Discrete
Event Systems. Kluwer Academic Publishers, Boston, MA, 1995.

[7] D. Lee, A. Netravali, K. Sabnani, B. Sugla, and A. John. Passive
test and application to network management. In Proceedings of 1997
IEEE International Conference on Network Protocols, 1997.

[8] R. Miller and K. Arisha. Fault identification in networks using a cfsm
model by passive testing. Technical report, Department of Computer
Science University of Maryland, College Park, USA, 2001.

(S ,N) (S ,N)

1

1
2

2
1

(S ,F) (S ,F)
2
1

2
 1 1 1

2

(S ,N) (S ,F)
1
2

 2
 2 2

 2

(S ,N) (S ,F)
1
2

 2
 3 1

 2

1
(S ,F) (S ,N)

1
3

2

 1 2

1
(S ,F) (S ,F)

1
1

2
 2 1 2

2

1
(S ,F) (S ,N)

1
1

2

 1 1

1
(S ,F) (S ,F)

1
3

2
 3 2 1

2

1
(S ,F) (S ,F)

1
3

2
 2 2 2

2

(S ,N) (S ,N)
1
3

2
2

1
(S ,F) (S ,N)

1
2

2

 2 3

1
(S ,F) (S ,N)

1
1

2

 2 4

1
(S ,F) (S ,F)

1
2

2
 1 3 3

2

1(S ,F) (S ,F)1
2

2
 3 3 4

2

(S ,N) (S ,F)

 3
1

1
2 2

 3

(S ,N) (S ,F) 3
1

3
2 2

 4

1(S ,F) (S ,F)1
1

2
 1 4 3

2

1(S ,F) (S ,F)1
1

2
 3 4 4

2

(S ,N) (S ,N)
1
1

2
3

1
(S ,F) (S ,N)

1
3

2

 3 5

1
(S ,F) (S ,N)

1
2

2

 3 6

1
(S ,F) (S ,F)

1
3

2
 2 5 5

2

1
(S ,F) (S ,F)

1
2

2
 2 6 5

2

(S ,N) (S ,F) 1
1

2
2 2

 5

(S ,N) (S ,F) 1
1

1
2 2

 6

1
(S ,F) (S ,F)

1
3

2
 1 5 6

2

1
(S ,F) (S ,F)

1
2

2
 1 6 6

2

1
(D ,F) (S ,F)

1 2
 1 8 7

2

1
(S ,F) (S ,F)

1
3

2
 1 6 7

2

(S ,N) (S ,N)
1
11

2
1

Fig. 16. A global diagnoser

[9] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen, and
D. Teneketzis. Diagnosability of discrete event systems. IEEE
Transactions on Automatic Control, 40(9):1555–1575, September
1995.

[10] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen, and D.
Teneketzis Failure Diagnosis Using Discrete Event Models. IEEE
Transactions on Control Systems Technology, 4(2):105–124, 1996.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrM17.3
	Page0: 5108
	Page1: 5109
	Page2: 5110
	Page3: 5111
	Page4: 5112
	Page5: 5113

