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Abstract— Various notions of diagnosability reported in
literature deal with uniformly bounded finite detection or
counting delays. The uniformity of delays can be relaxed
while delays remain finite. We introduce various notions of
diagnosability allowing nonuniformly bounded finite delays.
A polynomial-time verification algorithm for diagnosability
with nonuniformly bounded finite indefinite-counting delays
is presented. A similar technique is applied to give a compu-
tationally better verification algorithm for diagnosability with
uniformly bounded finite indefinite-counting delays than algo-
rithms previously reported in literature. Finally we develop
a new on-line diagnosis algorithm that has a lower time and
space complexity than on-line diagnosis algorithms reported in
literature for counting the occurrence of repeated/intermittant
faults.

. INTRODUCTION

is O(|Q4|* - |4|?) using the algorithm in [3]. These
concepts were motivated by the model-based supervision
of dynamic item/entitity flows network problem arising
in manufacturing systems presented in [4]. However, the
developed algorithms in [3] are of high degree polynomi-
als. Therefore, the implementations of the algorithms have
limited practical use.

To our best knowledge, we first note that all notions of
diagnosability appeared in literature deal with uniformly
bounded finite delays only. The concept of uniformly
bounded delay is useful when a fixed finite maximum
detection delay needs to be guaranteed. However, one may
just want to know if the occurrence of faults can be detected
and/or counted eventually while the uniformity of finite
delays may not hold. In order to capture the nonuniformity

The objective of diagnosis is to monitor a system andf finite delays, we introduce various notions of diagnos-
infer the occurrences of special behaviors under partiability allowing nonuniformly bounded finite detection or
observations. The special behavior may be specified lypunting delays. Being implied in the term “nonuniform”,
the occurrence of special events, such as faults. In thiimite delays are not uniform and may depend on the
context, the problem of fault diagnosis of logical discretetrace executed by the system. We relate these notions of
event systems has drawn considerable attention recentiifagnosability allowing nonuniformly bounded finite deday
For more literature references regarding fault diagnois evith the conventional notions of diagnosability allowing
logical discrete-event systems, we direct the reader to [I1dnly uniformly bounded finite delays. Furthermore, we
In [2], the notion of diagnosability was first introduced,devise a polynomial-time verification algorithm f@r, co]-
which is to detect the occurrence of faults within uniformlydiagnosability allowing nonuniformly bounded finite deday

bounded finite delays.

Similar verification technique is applied to the verificatio

In [3], fault counting problems regarding repeated faultsf [1, co]-diagnosability with uniformly bounded finite de-
were addressed and three notions of diagnosability cayntitey. The new verification algorithm fdi, oo]-diagnosability
the number of the occurrence of faults were introducedvith uniformly bounded finite delays carries a lower worst
First the notion of K-diagnosability characterizes the ca-case time and space computational complexities than those
pability of counting, with uniformly bounded finite delays, of the verification algorithms in [3]. We also provide an
if at least K faults have occurred. Second the notion obn-line diagnosis algorithm for counting the occurrence
[1, K]-diagnosability is related to the problem of decidingof faults, which has a lower time and space complexities

within uniformly bounded finite delays if at least faults
have occurred for all/J where1l < J < K. Finally,

than those of the one reported in [3]. Both verification
and on-line diagnosis algorithms requires the shorte¢t pat

the occurrence of any number of faults can be inferredomputation. Because of the involvement of the shortest
within an uniformly bounded finite delays with the no-path computation, existing algorithms and heuristics meiga
tion of [1, co]-diagnosability. Polynomial-time algorithms ing the shortest path computation can be readily applied
deciding the properties of diagnosability described abov®—7]. Indeed, the theoretical computational saving of our
were also provided in [3]. Using the algorithms presentedlgorithms partially comes from the application of exigtin

in [3], the computational complexity of verifying- and

[1, K]-diagnosability with uniformly bounded finite delays

efficient shortest path computation algorithms in [5, 6].
The developed verification and on-line diagnosis al-

is O(K?2-|Q4|%-|24?) where|Q“| is the number of states gorithms are successfully implemented and used for the
of deterministicautomatonA describing the behavior of model-based detection of routing events in discrete flow

system and>4| is the number of events defined owron

networks discussed in [4].

the other hand, the computational complexity of verifying All proofs are omitted due to space limitations, which
[1, oc]-diagnosability with uniformly bounded finite delays can be found in [1].
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II. PRELIMINARIES not affect the property of diagnosability presented in [9].

In this section. we define the model of discrete-eventherefore, the above definition of diagnosability with the
systems under consideration and related necessary motatity®Ness assumption does not lose generality compared to
First we model the untimed discrete-event system as the one without the liveness assumption presented in [9].

deterministic finite-state automatord:= (Q4, 54,64, ¢&) In this spirit, we only consider live language in this paper

whereQ* is the finite state spac&” is the set of events, Without loss of generality. o
and g2 is the initial state of the systerd” is the partial The following definition relaxes the uniformity of detec-

transition function and4 (g, o) = ¢ implies the existence tion delays by letting the detection delays depend on the
of a transition from state; to stateg, with event labels. ~ CUrrent trace _exe‘:“teq by the system. _ _

The superscriptd may be dropped if this is not likely to  Definition 2: A prefix-closed live languagd. is said
cause confusion. The language generatedibig denoted to be nonuniformly diagnosable with respect to a mask

by £(A) and is defined in the usual manner [8]. function M/ andIl; on Xy if the following holds:
To reflect limitations on observation, we define the ob- (y; ¢ I;)(Vs, Ni > 0)(3ng, € N)(Vt € L/s)
servation mask functiod/ : $4 — A4 U {e} whereA4 is “tT > ng, = D,

the set of observed symbols and it may be disjoint With ) o )
The definition ofM can be extended to sequences of eventghereN is the set of non-negative integers and the diag-
(traces) inductively as followsys € (34)*, Vo e $4, nosability conditionD, is

M(so) = M(s)M (). , D.: (Ywe M~'"M(st)nL) [ N., >0].

we _Cjeflne a set of events to be diagnosed In_order Observe that the difference of the above two definitions is
fo facilitate the faL!'t diagnosis problem of multiple type;, y,q orger of quantifiers. By placing the existential qirant
of f"?“_"ts’dzf_' Is defined to b? the set %f fﬁ\qlt gvents dart‘)q’ier for the detection delay after the universal quantifier fo
part|t|.or|]’1_e Into a S?t of fault types, whic 'ﬁ enoted Dyhe cyrrent trace, now the detection delay depend on the type
Iy with: ITp = {Xy, : Xp =2p,U...UNy, }. The @SSence o o5 and the current trace executed by the system. It is
of the framework of this paper (following [2, 3]) is in eVents ;o5 1 see that uniform diagnosability implies nonumnifor
detection and classfication. Here, the events to be detecﬁggnosability but not vice versa, in general. An example

and classified are defined as faults/failures in the context ghowing that the two notions are inequivalent is presented
fault/failure diagnosis. However, the events of interestah in [1]. However, if the languagé describing the behavior

not to be faults or failures but can be any special events 3k the system is regular, the notions of nonuniform and

interests, in general. uniform diagnosability become equivalent since detection
fG|ve|j a traCQde,E(ﬁ)' we d(:]note thel number of faults yoiays are uniformly bounded by? wheren denotes the
of type i occurred ins by N;. The post-languag€(4)/s  n mber of states of a finite state automaton generating

is the set of possible suffixes of a tragel(A)/s = {t € In [3], the notions of K-diagnosability and|[1, i]-

T* st € L(A)}. diagnosability were introduced in order to count the oc-
A. Uniform and Non-uniform Diagnosability currence of repeated faults. These notions appeared in [3]
. - . . are based on faults modelled as states. We modify the

we §tart by recalling the definition Of d|ggnosab|l|ty fo_rdefinitions of [3] to address faults characterized as events
detectingthe occurrence of faults that is first appeared i

[2]. Observe that the following definition is based on th'i\lote that the detection delay of the following definitionse ar

qndependent of the current trace of the system. For brevity,

A Il the followi i iforndC-di ili
depend on the trace executed by the system. For brevi e call the following notions by unifornk-diagnosability

. ) X . i Bhd uniform[1, K]-diagnosability.
we ca]l _the following .”°“°” bWF"form dlagnosfab|l|t.y. Definition 3: A prefix-closed live languagé. is said to
beDl?r:Ii?(l)trlr?wTyl(:jiggzr:sfz(l;felzo\?v?ti I:\éeszr::g?ltj(?%énfasskalfir:gtioa; uniformly K -diagnosable with respect to a mask function
I1 3¢ if the following holds:
M andIl; on X, if the following holds: andll; on X if the following holds
. i dng € N)(Vi € Il5)(Vs € L,N! > K)(Vt € L/s
(3ng € N)(Vi € II;)(Vs, Ni > 0)(Vt € L/s) ( I [|tf|)(> g = D] N /9)
[|t| > ng = De] o
whereN is the set of non-negative integers and the diaq\f-]\l::;gilli Iscg;]?jitsigagf nizn—negatlve integers and the diag-
nosability conditionD, is y K
_ ; Dg: (Ywe M~ 'M(st)ynL) [ N, > K ].
. 1 ) K w
De: (Vu EM M(S.t) NL) Nw >0]. . Definition 4: A prefix-closed live languagé. is said to
The above definition of diagnosability only deals W|thIoe uniformly [1, K]-diagnosable with respect to a mask
live languages. In general, the behavior of system ma !

block. In [9], the notion of diagnosability accounting for inction 11 and 1 on 3 if the following holds:
blocking was presented. We observe that attaching the self- (Fng e N)(Vi € II)(VJ,1 < J < K)
loop of the nonfaulty silent eventat blocking states does (Vs € L,N! > J)(Vt € L/s) [|t| > nq = Dj]
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whereN is the set of non-negative integers and the diagdefinition is independent of the current trace of the system.
nosability conditionD; is For brevity, we call the following notion by uniforifi, co]-
1 i diagnosability.

Dy (Ywe MT M(st)NL) [N, 2 J ]. Definition 7: A prefix-closed languagd. is said to be
Letting the counting delay depend on the current tracSniformly [1, oc]-diagnosable with respect to a mask func-

executed by the system and the type of faults, we d‘?ron M andII; on ¥ if the following holds:
fine nonuniform K -diagnosability and nonuniforniL, K-

diagnosability as below. (3ng € N)(Vi € Iy)(Vt € L/s)

Definition 5: A prefix-closed live languagé is said to [[t] = na = D]
be nonuniformly K-diagnosable with respect to a maskyhereN is the set of non-negative integers and the diag-
function M andIl; on X if the following holds: nosability conditionD.. is

(Vi € I14)(Vs € L, N! > K)(3ng4, € N)(Vt € L/s) Duo: (Vwe M™'M(st)n L) [ N% > N .

[[t] = n4, = Dk] Letting the counting delay depend on the current trace
whereN is the set of non-negative integers and the diagexecuted by the system and the type of faults, we introduce
nosability conditionD x is the notion of nonuniformil, oo}-dlagnosablh_ty as below.

. ) Definition 8: A prefix-closed languagd. is said to be
Di: (Ywe M "M(st)nL) [Ny, > K |. nonuniformly [1, co]-diagnosable with respect to a mask

Definition 6: A prefix-closed live languagé. is said to function M andTl; on X if the following holds:
be nonuniformly[1, K]-diagnosable with respect to a mask ) '
function M andTl; on 3 if the following holds: (Vi € L)(¥s € L)(3Fna, € N)(Vt € L/5)
[It] = na, = Duo

(VZHE er)(IiI)J(’\;tge ‘é/gﬁ‘)tﬁvi < L’:JZSDZ ]‘]) whereN is the set of non-negative integers and the diag-
"d; 5 = s J nosability conditionD. is

whereN is the set of non-negative integers and the diag- D (vw € M~'M(st) N L) [ Ni > NI |
0o - (YW s w = Vg |-

nosability conditionD, is It is clear that uniform][1, co]-diagnosability implies
Dy: (Ywe M *M(st)ynL) [ N> J]. nonuniform [1, oo]-diagnosability. Remind that the notions
It is clear that uniform K-diagnosability [1,k]- of uniform diagnosability for finite counting and the cor-
diagnosability) imply nonuniforniC-diagnosability {1, K]-  responding notions of nonuniform diagnosability for finite
diagnosability). However, the converse does not hold, inounting become equivalent if we assume that the language
general. This can be shown by observing that uniformdescribing the system behavior is regular. However, this
1-diagnosability and1, 1]-diagnosability are equivalent to does not hold when the occurrence of faults are to be
uniform diagnosability. Again, if we assume the regularitycounted indefinitely.
of system behavior, counting delays are boundediby Example 1:Let us consider the regular languagéA)
|Q“|%, which is independent of the current execution ofyenerated by the automatendescribed in Fig. 1. LeE; =
the system. Thus, a prefix-closed live regular language {f}. The observation constraint of the system is below.
is nonuniformly K -diagnosable |1, K]-diagnosablgif and _ _ _ _
only if L is uniformly K—diagnisablc{[l,K]-diagnosabl}a Mfa) = M(b) = M(f) = e and M(c) = c.
It is shown in [3] thatL is uniformly [1, K]-diagnosable Intuitively, it is clear that if we observe eventn-times,
with respect to a mask functio andIl; on X iff L is then we can infer that fault everft has occurred at least
uniformly J-diagnosable with respect to a mask functiom-times. In this sense, we can count the occurrence of fault
M and IIy on X, for all J such thatl < J < K. eventf eventually as we have more observations of event
The corresponding result of nonuniform diagnosabilitytwit Hence,£(A) is nonuniformly[1, oo]-diagnosable. However,
finite counting can be shown as follows: if the executed trace is(ffc)", the actual number of
Proposition 1: A prefix-closed live languagel is occurrence of fault evenf is 2n. Formally, we can see
nonuniformly [1, K]-diagnosable with respect to a maskthat 2n** occurrence of fault evenyf in a(ffc)" " 'ff
function M and II; on X, iff L is nonuniformly J- can be counted after the system executégfc)?" for
diagnosable with respect to a mask functidh and1l; n > 1. Therefore the minimal counting delay for trace
on X for all J such thatl < J < K. a(ffe)"~1ff becomes3n + 1, which clearly depends on
The notions of diagnosability presented up to this pointracea(f fc)" 1. Therefore,L(A) is not uniformly[1, oo]-
are related to finite counting capability. In order to fa-diagnosable.
cilitate indefinite counting with uniformly bounded finite The following propositions relate the notions of diag-
counting delays, the notions df, oo]-diagnosability was nosability regarding finite fault counting and nonuniform
also introduced in [3], which are recalled below with[1, cc]-diagnosability.
proper modifications to account for faulty events instead of Proposition 2: A prefix-closed live languagel is
faulty states. Note that the counting delay of the followinghonuniformly [1, oo]-diagnosable with respect to a mask
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considered to be clear from the context. The set of vertexes
Vs
VCQAxQ"and (¢, ) €V,

and an edge functiplw is defined asw : E — 2° where
S ={-1,07,07,0,0,+1}. The implication of the directed
graphG will be explained after we complete the description
c of G.
Before we proceed to define the edgesbffor the sake
of readability, let us define the following transition naoat

64 (q1,0) = ¢} andd (g, 0") = ¢b.

Note that we use event to defineg;. On the other hand,
evento’ is used to defing). Also, observe that and o’
canbe identical.

Fig. 1. Automaton4 for Example 1 The notationp — ¢ below implies that there exist an
edge(p,q) € E andi € S = {-1,07,0,0,07,+1} such
thati € w[(p, ¢)]. Now we define the edges 6f as follows.

function M and II; on Xy iff L is nonuniformly K-

diagnosable with respect to a mask functidf and I1; Foro, o’ G Yp such thatM (o) = M(o’) =,

onX; for all K € N*. (q17QQ) (ql,qg) if (o ¢ Xf) A (q) is defined)
Proposition 3: A prefix-closed regular live language P /o ;

is nonuniformly[1, co]-diagnosable with respect to a mask (CI17QQ) - (ql,q2) n; (0" ¢ 2) A (({Q.Ide?medd)

function M andIl; onY; iff L is uniformly K -diagnosable (a1, 42) f (q“qf) : (0/6 2p) A ((h/ Is defined)

with respect to a mask functioh/ andII; on X for all (a1,92) = (q1,92) if (0" € Ep) A (g3 is defined)

K >1.

When the language describing the behavior of the system isF0" 7 U € Xp such thatM (o) = M (") # e,

regular, nonuniform diagnosability is equivalent to unifo (Q17Q2) (¢1,92)

diagnosability. Therefore, we can utilize the verification if (o & 2¢) A (0" ¢ Xf) A (g7 andg; are defined)

algorithm for uniform diagnosability in [10] to verify the (g1, ¢2) — = (g1, 4%)

property of nonuniform diagnosability. In the same context  if (o e Zf) A (o' ¢ X¢) A (g7 and g, are defined)

we can use the algorithms in [3] with minor modifications in (¢, , qz) (Cha @)

order to verify nonuniformkK — and[1, K]—diagnosability. if (0 ¢ Xf) A (0" €X5) A (¢, and g, are defined)
Though Proposition 3 relates nonunifornil, col- (g1, 2) 0 (dh db)

diagnosability and uniforni’-diagnosability where we have ¥ ’ / / / '

a verification algorithm, the verification algorithm for uni if (o€ Xg) A (0 € 2p) A (g1 andg, are defined)

form K-diagnosability reported in [3] depends on value

K. Therefore, the direct application of the ver|f|cat|onW

algorithm for uniform K -diagnosability is not feasible in

order to verify uniform[1, co]-diagnosability. In the fol-

lowing section, we will develop an algorithm for verifying Now, we explain the implication of?. The weighted,

the property of nonunifornfil, oo]-diagnosability. A simple directed graphG is designed to track traces € L£(A)
variation of the verification algorithm for the property Ofand S, € L(A) such thatM (s)

I m (o o)ly = e H

are deflned to track the traces in the following manner:
carries a lower time and space computatlonal complexities
than those of the algorithm reported in [3]. Q4 x Q* .
~ =~

—

Hereafter, we only consider the accessible part of the
eighted, directed grap&' from the vertex(qg', ¢') when

G is referred. With the above construction, we have the
directed graph with the edge functiono.

s s’

Observe that the value of edge functianis designed to
indicate if tracess and s’ are about to track fault events or

Let A be a finite-state automaton generating the behavioot. In particular, whem is about to track a fault event and
of the system and lefif be a mask function for events s’ is about to track a normal event or nothing, the value
defined oved4. We construct a directed gragh( A, M) = —1 is given to edge. On the other hand, the value is
(V(A),E(A,M)). For notational convenience, we mayassigned to edge whetis about to track a fault event and
drop the dependency notation @f(A, M), when it is s is about to track a normal event or nothingweight is
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given when both traces are about to track fault events. If nmver. To overcome this computational difficulty, on-line
fault events are involved)—, 0", and0 weights are given diagnosis approach was suggested in [2] to handle the
based on the observability of tracked events. case of permanent faults. Rather than constructing whole

Now we assign valué to various zero notation—, 0™,  diagnoser off-line, the state of diagnoser is updated when-
0, and0. With this, we define the weight of edge as follows:ever observations occur. The space and time complexity
for a given(p,q) € E, of updating the state of diagnoser for reporting permanent
_ faults areO(|Q4|) andO(|X| - |Q4]), respectively. For the

ws[(p, g)] = min(wl(p, )])- case of repgate(‘:i)faults, i(t| is‘ re|quir‘()ed to count the occaeren

Over G equipped with the weight functiom,, compute the of faults in order to reach diagnostic results. Based on the
shortest paths from single sourtg}', ¢5') to all reachable algorithm presented in [3], the space and time complexity of
vertexes. Denote the shortest path weight of vertex V' updating the state of diagnoser for counting the occurrence
as short[v]. We define the following for further argument. of faults areO(|Q4|?) and O(|%| - |Q#|?), respectively.

Definition 9: A cycle in G is calledT-cycle whereT’ C In this section, we propose an algorithm improving
S, if for all t € T there is an edgép, q) € E in the cycle the computational complexity of the proposed algorithm
such thatt € w{(p, ¢)]. presented in [3]. Similar to the algorithm in [3], we maimtai

With G, we claim the following results for the verification a set of state and corresponding minimum number of
of nonuniform and unifornil, oo]-diagnosability. occurrence of faults as the state of diagnoser, @&.,€

Theorem 1:£(A) is nonuniformly [1, cc]-diagnosable 29" *N where Qq = {(q1,i1), (q2,2)s- .-, (Gn,in)}. In
w.rt. M and3; iff the following three conditions hold:  [3], tagged fault count numbef does not have to be

1) For allT-cycle, if —1 € T then0 € T or +1 € T.. unique for each state componest In contrast to [3],

2) For allv € {0~ }-cycle, short[v] > 0; this condition the tagged fault count number of our algorithm is unique,

handles unobservable cycles. that is, ¢; # q; if i # j. The tagged integer valug

3) For allv € T-cycle where0 € T C 2{07,0,07}  of stateg; represents the minimum number of faults in

short[v] = 0. the traces that are reachable to stateand consistent

Theorem 2:£(A) is uniformly [1, oo]-diagnosable w.r.t. with the current observed trace. The main routine of the
M and¥; iff the following three conditions hold: algorithm is described in Algorithm 1. In the loop of the

1) For allv € V, short[v] is finite. main routine, MODIFIED—MULTI-SOURCE_S-DIJIKSTRA

2) For allv € {0~ }-cycle, short[v] > 0; this condition and GET-NEW-DIAGNOSER-STATE routines are called.

handles unobservable cycles. Algorithms 2 and 3 describes the two subroutines.

3) For allv € T-cycle where0 € T C 2{07.0.0%} In MODIFIED-MULTI-SOURCES-DIJIKSTRA, succes-

short[v] = 0. sive application of a modified version of Dijikstra algorith

The above results can be utilized for the polynomialiS used to compute the minimum number of the occurrence
time verification of nonuniform and uniform1, oc]- of faults. Elements i), are used as source vertexes in the
diagnosability. Let Q4| = n; and |S4| = ns. The worst modified Dijikstra algorithm. In order to count the number

case time and space computational complexities for ver@f faults with t_h_e quified Dijikstra algorithm, the weight
fying nonuniform and uniforni1, cc]-diagnosability using of faulty_ tran.smo.ns is set to “1”. On thg _other hand, th_e
Theorems 1 and 2 are obtained as follows: zero weight is given to non-faulty transitions. Under this

Theorem 3:Let A be a deterministic automaton. TheWeight setting, the shortest path weight of states implies
nonuniform [1, oo-diagnosability and uniform 1, cc]- the number of faulty events along the shortest path, which

diagnosability of£(A) with respect toM and ¥ can be is minimal by the structure of the weight setting. Note

decided withO(min(n3 - n2,n?)) time and O(min(n? - that only unobservable transitions are considered when the
n%,n7)) space. modified Dijikstra algorithm is applied. With this proceeur

Again we direct the reader to [1] for an illustrating exampléVe identify the minimum number of faulty events in the
demonstrating the constructions of the directed, weighte?PSSible transitions to the states in unobservable reach fr
graph G and the application of verification aIgorithmst-The resulting set of states and_tagged integers are _stored
for the properties of nonuniforrfi, oo]-diagnosability and 8S NewQa. After a new observatiow,, becomes avail-

uniform [1, co]-diagnosability. able, in GET-NEW-DIAGNOSER-STATE(, Q4, 9:1,), we
collect the states of system reached by the observed event
IV. ON-LINE DIAGNOSIS FOR REPEATED o, from the unobservable reach @f;. The corresponding
FAULTS integer values indicating the minimum number faults are

Building the deterministic observer automaton of aipdated based on the weights of possible observed events.
partially-observed automaton takes exponential time ardpdated states and tagged integer values bed@m®&ased
space w.r.t the number of state of the partially-observedn the updatedl,;, the minimum of the tagged integer
automaton. The basic building block of off-line diagnosewalues is reported as the number of faults occurred. The
construction relies on the construction of observer automarocedures from line 3 to 8 of the main routine can be
ton and exponential computational complexity is carrie¢donducted inO((|Z] + log |Q4]) - |Q*|?) by implementing
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the priority queueQ., with a Fibonacci heap [5]. The
space used for realizing diagnoser stat®{$Q|).

V. CONCLUSION 1: For all ¢/ € Q* whereq’ = §(q,t) for some(q,i) €
The previous notions of diagnosability consider only —Qaq and M(t) € €*, setshort[q'] = o0, Q = {¢ :
uniform detection delay. In this paper, we extended these short[q'] = oo}, andQiepmp = 0.
notions by considering nonuniform detection delay. We 2: while Q4 # () do

Algorithm 2 Q; <« MODIFIED-MULTI-SOURCES-
DIJIKSTRA(A, Qq, M)

presented a set of new algorithms verifying various notions3:
of diagnosability regarding repeated faults with uniform 4:
and nonuniform delays. Our algorithms carry a lower time 5:
and space computational complexity than those previouslys:
reported in [3]. We also presented a new on-line diagnosis’:

algorithm that also has a lower time and space complexity

than the previously reported on-line diagnosis algoritom f 8:

repeated faults.
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38.

Pick (¢,7) € Q4 wherei is the minimum.
if i < short[g] then
ShOT{f[q] «— i and Qtemp = Qtemp U {Q}
while Qtemp 7é @ do
Find g € Qtemp Whereshort[q] is the minimum
and removey from Qemp
for each neighbor vertex reached frony with
an unobservable normal evetd
if i < short[q'] then
ShOT’t[q/] — 4 and Qtemp = Qtemp ) {q,}
end if
end for

13: for each neighbor vertex reached frony with
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[8] S. Jiang, R. Kumar, and H. E. Garcia, “Diagnosis of re- 19: Qtemp =10
peated/intermittent failures in discrete event systet&ZE Trans.  59.  end if
on Robotics and Automatiorol. 19, no. 2, pp. 310-323, 2003. .
[4] H.E. Garciaand T. Yoo, “A methodology for detecting rogievents 21 Qa - Qa\{(g,9)}
in discrete flow networks,” ifProc. 2004 Ameri. Contr. Conf2004.  22: end while
[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivekttroduction to . .
Algorithms The MIT Press, 1990. 23: Qa — {(g, short[q]) : g € @}
[6] A. V. Goldberg, “Scaling algorithms for the shortest paftroblem,”
SIAM J. Comput.vol. 24, pp. 494-504, 1995.
[7] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shottes : 3 2 N
paths algorithms: Theory and experimental evaluation,'SIDDA: Algorlthm 3 Qa — GET-NEW-DIAGNOSER STATEA’
ACM-SIAM Symposium on Discrete Algorithms (A Conference ofdd, Ua)
Theoretical and Experimental Analysis of Discrete Aldaris) 1994. . ’ A r_ .
[Online]. Available: citeseer.nj.nec.com/cherkassky@stest.html 1 Forallg' € Q /WherEq N 5(q’({°) for son,1e(q, Z) €
[8] C. G. Cassandras and S. Lafortumetroduction to Discrete Event Qa, setshort[q'] = o0, Q = {q' : short[q'] = oo},
Systems Kluwer Academic Publishers, 1999. and Qtemp =0
[9] T. Yoo and H. E. Garcia, “Computation of fault detectionlaje 2 while Qu # 0 do
in discrete-event systems,” iRroc. DX 2003, 14th International ’ . d7 . .
Workshop on Principles of Diagnosi2003, pp. 207-212. 3 Pick (g,%) € Qq wherei is the minimum
[10] T. Yoo and S. Lafortune, “Polynomial time verification ofad- 4: for each neighbor Verteq’ reached fromg with a
nosability of partially-observed discrete-event systenisEE Trans. _
Automat. Contr.vol. 47, no. 9, pp. 1491-1495, 2002. normal events ?‘t' M(o) = o, do
5: if i < short[q’] then
. / . _ /
Algorithm 1 On-line Diagnosisq, M) 6: ‘Zhﬁrt[q} — i andQremp = Qremp U {d'}
7. ena |
. A
L IQd (4, 0) 8 end for
2 0?:9 q h o . ¢ 9: for each neighbor vertey’ reached fromg with a
3 Find the minimum 4 from  Qq = fault events s.t. M (o) = o, do
'{t(ql,zl),...,(qk,zk)7...,(qn,zn)} and report .. if i + 1 < short|g/] then
IT. / . ’
11: short —i+1, = U
4 Qq — MODIFIED-MULTI-SOURCES- end if [ Qtemp = Qtemp U{q'}
DIJIKSTRA(A, Qq4, M) [5] 13; end for
5 wait until a next observationo(,,) is available 1 Qu— Qu\ {(g,9)}
6: Qg «— GET-NEW-DIAGNOSER-STATEA,Q4,0.,) 15: end while ’
7: end loo '
P 16: Qu — {(q, short[q]) : q € Q}
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