
Event Diagnosis of Discrete-Event Systems with
Uniformly and Nonuniformly Bounded Diagnosis Delays

Tae-Sic Yoo and Humberto E. Garcia{tyoo,garcia}@anlw.anl.gov
Systems Modeling, Analysis, and Control Group, Argonne National Laboratory

Abstract— Various notions of diagnosability reported in
literature deal with uniformly bounded finite detection or
counting delays. The uniformity of delays can be relaxed
while delays remain finite. We introduce various notions of
diagnosability allowing nonuniformly bounded finite delays.
A polynomial-time verification algorithm for diagnosability
with nonuniformly bounded finite indefinite-counting delays
is presented. A similar technique is applied to give a compu-
tationally better verification algorithm for diagnosability with
uniformly bounded finite indefinite-counting delays than algo-
rithms previously reported in literature. Finally we develop
a new on-line diagnosis algorithm that has a lower time and
space complexity than on-line diagnosis algorithms reported in
literature for counting the occurrence of repeated/intermittant
faults.

I. INTRODUCTION

The objective of diagnosis is to monitor a system and
infer the occurrences of special behaviors under partial
observations. The special behavior may be specified by
the occurrence of special events, such as faults. In this
context, the problem of fault diagnosis of logical discrete-
event systems has drawn considerable attention recently.
For more literature references regarding fault diagnosis of
logical discrete-event systems, we direct the reader to [1].
In [2], the notion of diagnosability was first introduced,
which is to detect the occurrence of faults within uniformly
bounded finite delays.

In [3], fault counting problems regarding repeated faults
were addressed and three notions of diagnosability counting
the number of the occurrence of faults were introduced.
First the notion ofK-diagnosability characterizes the ca-
pability of counting, with uniformly bounded finite delays,
if at least K faults have occurred. Second the notion of
[1,K]-diagnosability is related to the problem of deciding
within uniformly bounded finite delays if at leastJ faults
have occurred for allJ where 1 ≤ J ≤ K. Finally,
the occurrence of any number of faults can be inferred
within an uniformly bounded finite delays with the no-
tion of [1,∞]-diagnosability. Polynomial-time algorithms
deciding the properties of diagnosability described above
were also provided in [3]. Using the algorithms presented
in [3], the computational complexity of verifyingK- and
[1,K]-diagnosability with uniformly bounded finite delays
is O(K2 · |QA|2 · |ΣA|2) where|QA| is the number of states
of deterministicautomatonA describing the behavior of
system and|ΣA| is the number of events defined overA. On
the other hand, the computational complexity of verifying
[1,∞]-diagnosability with uniformly bounded finite delays

is O(|QA|4 · |ΣA|2) using the algorithm in [3]. These
concepts were motivated by the model-based supervision
of dynamic item/entitity flows network problem arising
in manufacturing systems presented in [4]. However, the
developed algorithms in [3] are of high degree polynomi-
als. Therefore, the implementations of the algorithms have
limited practical use.

To our best knowledge, we first note that all notions of
diagnosability appeared in literature deal with uniformly
bounded finite delays only. The concept of uniformly
bounded delay is useful when a fixed finite maximum
detection delay needs to be guaranteed. However, one may
just want to know if the occurrence of faults can be detected
and/or counted eventually while the uniformity of finite
delays may not hold. In order to capture the nonuniformity
of finite delays, we introduce various notions of diagnos-
ability allowing nonuniformly bounded finite detection or
counting delays. Being implied in the term “nonuniform”,
finite delays are not uniform and may depend on the
trace executed by the system. We relate these notions of
diagnosability allowing nonuniformly bounded finite delays
with the conventional notions of diagnosability allowing
only uniformly bounded finite delays. Furthermore, we
devise a polynomial-time verification algorithm for[1,∞]-
diagnosability allowing nonuniformly bounded finite delays.
Similar verification technique is applied to the verification
of [1,∞]-diagnosability with uniformly bounded finite de-
lay. The new verification algorithm for[1,∞]-diagnosability
with uniformly bounded finite delays carries a lower worst
case time and space computational complexities than those
of the verification algorithms in [3]. We also provide an
on-line diagnosis algorithm for counting the occurrence
of faults, which has a lower time and space complexities
than those of the one reported in [3]. Both verification
and on-line diagnosis algorithms requires the shortest path
computation. Because of the involvement of the shortest
path computation, existing algorithms and heuristics regard-
ing the shortest path computation can be readily applied
[5–7]. Indeed, the theoretical computational saving of our
algorithms partially comes from the application of existing
efficient shortest path computation algorithms in [5, 6].

The developed verification and on-line diagnosis al-
gorithms are successfully implemented and used for the
model-based detection of routing events in discrete flow
networks discussed in [4].

All proofs are omitted due to space limitations, which
can be found in [1].



II. PRELIMINARIES

In this section, we define the model of discrete-event
systems under consideration and related necessary notation.
First we model the untimed discrete-event system as a
deterministic finite-state automaton:A = (QA,ΣA, δA, qA

0 )
whereQA is the finite state space,ΣA is the set of events,
and qA

0 is the initial state of the system.δA is the partial
transition function andδA(q1, σ) = q2 implies the existence
of a transition from stateq1 to stateq2 with event labelσ.
The superscriptA may be dropped if this is not likely to
cause confusion. The language generated byA is denoted
by L(A) and is defined in the usual manner [8].

To reflect limitations on observation, we define the ob-
servation mask functionM : ΣA → ∆A∪{ε} where∆A is
the set of observed symbols and it may be disjoint withΣA.
The definition ofM can be extended to sequences of events
(traces) inductively as follows:∀s ∈ (ΣA)∗, ∀σ ∈ ΣA,
M(sσ) = M(s)M(σ).

We define a set of events to be diagnosedΣf . In order
to facilitate the fault diagnosis problem of multiple type
of faults, Σf is defined to be the set of fault events and
partitioned into a set of fault types, which is denoted by
Πf with: Πf = {Σfi

: Σf = Σf1
∪̇ . . . ∪̇Σfn

}. The essence
of the framework of this paper (following [2, 3]) is in events
detection and classfication. Here, the events to be detected
and classified are defined as faults/failures in the context of
fault/failure diagnosis. However, the events of interest need
not to be faults or failures but can be any special events of
interests, in general.

Given a traces ∈ L(A), we denote the number of faults
of type i occurred ins by N i

s. The post-languageL(A)/s
is the set of possible suffixes of a traces: L(A)/s = {t ∈
Σ∗ : st ∈ L(A)}.

A. Uniform and Non-uniform Diagnosability

We start by recalling the definition of diagnosability for
detectingthe occurrence of faults that is first appeared in
[2]. Observe that the following definition is based on the
uniformly bounded finite detection delays, which does not
depend on the trace executed by the system. For brevity,
we call the following notion byuniform diagnosability.

Definition 1: A prefix-closed live languageL is said to
be uniformly diagnosable with respect to a mask function
M andΠf on Σf if the following holds:

(∃nd ∈ N)(∀i ∈ Πf )(∀s,N i
s > 0)(∀t ∈ L/s)

[|t| ≥ nd ⇒ De]

whereN is the set of non-negative integers and the diag-
nosability conditionDe is

De : (∀w ∈M−1M(st) ∩ L) [ N i
w > 0 ].

The above definition of diagnosability only deals with
live languages. In general, the behavior of system may
block. In [9], the notion of diagnosability accounting for
blocking was presented. We observe that attaching the self-
loop of the nonfaulty silent eventε at blocking states does

not affect the property of diagnosability presented in [9].
Therefore, the above definition of diagnosability with the
liveness assumption does not lose generality compared to
the one without the liveness assumption presented in [9].
In this spirit, we only consider live language in this paper
without loss of generality.

The following definition relaxes the uniformity of detec-
tion delays by letting the detection delays depend on the
current trace executed by the system.

Definition 2: A prefix-closed live languageL is said
to be nonuniformly diagnosable with respect to a mask
function M andΠf on Σf if the following holds:

(∀i ∈ Πf )(∀s,N i
s > 0)(∃ndi

∈ N)(∀t ∈ L/s)
[|t| ≥ ndi

⇒ De]

whereN is the set of non-negative integers and the diag-
nosability conditionDe is

De : (∀w ∈M−1M(st) ∩ L) [ N i
w > 0 ].

Observe that the difference of the above two definitions is
in the order of quantifiers. By placing the existential quanti-
fier for the detection delay after the universal quantifier for
the current trace, now the detection delay depend on the type
of faults and the current trace executed by the system. It is
clear to see that uniform diagnosability implies nonuniform
diagnosability but not vice versa, in general. An example
showing that the two notions are inequivalent is presented
in [1]. However, if the languageL describing the behavior
of the system is regular, the notions of nonuniform and
uniform diagnosability become equivalent since detection
delays are uniformly bounded byn2 wheren denotes the
number of states of a finite state automaton generatingL.

In [3], the notions of K-diagnosability and[1,K]-
diagnosability were introduced in order to count the oc-
currence of repeated faults. These notions appeared in [3]
are based on faults modelled as states. We modify the
definitions of [3] to address faults characterized as events.
Note that the detection delay of the following definitions are
independent of the current trace of the system. For brevity,
we call the following notions by uniformK-diagnosability
and uniform[1,K]-diagnosability.

Definition 3: A prefix-closed live languageL is said to
be uniformlyK-diagnosable with respect to a mask function
M andΠf on Σf if the following holds:

(∃nd ∈ N)(∀i ∈ Πf )(∀s ∈ L,N i
s ≥ K)(∀t ∈ L/s)

[|t| ≥ nd ⇒ DK ]

whereN is the set of non-negative integers and the diag-
nosability conditionDK is

DK : (∀w ∈M−1M(st) ∩ L) [ N i
w ≥ K ].

Definition 4: A prefix-closed live languageL is said to
be uniformly [1,K]-diagnosable with respect to a mask
function M andΠf on Σf if the following holds:

(∃nd ∈ N)(∀i ∈ Πf )(∀J, 1 ≤ J ≤ K)
(∀s ∈ L,N i

s ≥ J)(∀t ∈ L/s) [|t| ≥ nd ⇒ DJ ]



whereN is the set of non-negative integers and the diag-
nosability conditionDJ is

DJ : (∀w ∈M−1M(st) ∩ L) [ N i
w ≥ J ].

Letting the counting delay depend on the current trace
executed by the system and the type of faults, we de-
fine nonuniformK-diagnosability and nonuniform[1,K]-
diagnosability as below.

Definition 5: A prefix-closed live languageL is said to
be nonuniformlyK-diagnosable with respect to a mask
function M andΠf on Σf if the following holds:

(∀i ∈ Πf )(∀s ∈ L,N i
s ≥ K)(∃ndi

∈ N)(∀t ∈ L/s)
[|t| ≥ ndi

⇒ DK ]

whereN is the set of non-negative integers and the diag-
nosability conditionDK is

DK : (∀w ∈M−1M(st) ∩ L) [ N i
w ≥ K ].

Definition 6: A prefix-closed live languageL is said to
be nonuniformly[1,K]-diagnosable with respect to a mask
function M andΠf on Σf if the following holds:

(∀i ∈ Πf )(∀J, 1 ≤ J ≤ K)(∀s ∈ L,N i
s ≥ J)

(∃ndi
∈ N)(∀t ∈ L/s) [|t| ≥ ndi

⇒ DJ ]

whereN is the set of non-negative integers and the diag-
nosability conditionDJ is

DJ : (∀w ∈M−1M(st) ∩ L) [ N i
w ≥ J ].

It is clear that uniform K-diagnosability ([1,K]-
diagnosability) imply nonuniformK-diagnosability ([1,K]-
diagnosability). However, the converse does not hold, in
general. This can be shown by observing that uniform
1-diagnosability and[1, 1]-diagnosability are equivalent to
uniform diagnosability. Again, if we assume the regularity
of system behavior, counting delays are bounded byK ·
|QA|2, which is independent of the current execution of
the system. Thus, a prefix-closed live regular languageL
is nonuniformlyK-diagnosable([1,K]-diagnosable) if and
only if L is uniformly K-diagnosable([1,K]-diagnosable).

It is shown in [3] thatL is uniformly [1,K]-diagnosable
with respect to a mask functionM andΠf on Σf iff L is
uniformly J-diagnosable with respect to a mask function
M and Πf on Σf for all J such that1 ≤ J ≤ K.
The corresponding result of nonuniform diagnosability with
finite counting can be shown as follows:

Proposition 1: A prefix-closed live languageL is
nonuniformly [1,K]-diagnosable with respect to a mask
function M and Πf on Σf iff L is nonuniformly J-
diagnosable with respect to a mask functionM and Πf

on Σf for all J such that1 ≤ J ≤ K.
The notions of diagnosability presented up to this point

are related to finite counting capability. In order to fa-
cilitate indefinite counting with uniformly bounded finite
counting delays, the notions of[1,∞]-diagnosability was
also introduced in [3], which are recalled below with
proper modifications to account for faulty events instead of
faulty states. Note that the counting delay of the following

definition is independent of the current trace of the system.
For brevity, we call the following notion by uniform[1,∞]-
diagnosability.

Definition 7: A prefix-closed languageL is said to be
uniformly [1,∞]-diagnosable with respect to a mask func-
tion M andΠf on Σf if the following holds:

(∃nd ∈ N)(∀i ∈ Πf )(∀t ∈ L/s)
[|t| ≥ nd ⇒ D∞]

whereN is the set of non-negative integers and the diag-
nosability conditionD∞ is

D∞ : (∀w ∈M−1M(st) ∩ L) [ N i
w ≥ N i

s ].
Letting the counting delay depend on the current trace

executed by the system and the type of faults, we introduce
the notion of nonuniform[1,∞]-diagnosability as below.

Definition 8: A prefix-closed languageL is said to be
nonuniformly [1,∞]-diagnosable with respect to a mask
function M andΠf on Σf if the following holds:

(∀i ∈ Πf )(∀s ∈ L)(∃ndi
∈ N)(∀t ∈ L/s)

[|t| ≥ ndi
⇒ D∞]

whereN is the set of non-negative integers and the diag-
nosability conditionD∞ is

D∞ : (∀w ∈M−1M(st) ∩ L) [ N i
w ≥ N i

s ].
It is clear that uniform [1,∞]-diagnosability implies

nonuniform [1,∞]-diagnosability. Remind that the notions
of uniform diagnosability for finite counting and the cor-
responding notions of nonuniform diagnosability for finite
counting become equivalent if we assume that the language
describing the system behavior is regular. However, this
does not hold when the occurrence of faults are to be
counted indefinitely.

Example 1:Let us consider the regular languageL(A)
generated by the automatonA described in Fig. 1. LetΣf =
{f}. The observation constraint of the system is below.

M(a) = M(b) = M(f) = ε andM(c) = c.

Intuitively, it is clear that if we observe eventc n-times,
then we can infer that fault eventf has occurred at least
n-times. In this sense, we can count the occurrence of fault
eventf eventually as we have more observations of eventc.
Hence,L(A) is nonuniformly[1,∞]-diagnosable. However,
if the executed trace isa(ffc)n, the actual number of
occurrence of fault eventf is 2n. Formally, we can see
that 2nth occurrence of fault eventf in a(ffc)n−1ff
can be counted after the system executesa(ffc)2n for
n ≥ 1. Therefore the minimal counting delay for trace
a(ffc)n−1ff becomes3n + 1, which clearly depends on
tracea(ffc)n−1. Therefore,L(A) is not uniformly [1,∞]-
diagnosable.

The following propositions relate the notions of diag-
nosability regarding finite fault counting and nonuniform
[1,∞]-diagnosability.

Proposition 2: A prefix-closed live languageL is
nonuniformly [1,∞]-diagnosable with respect to a mask
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Fig. 1. AutomatonA for Example 1

function M and Πf on Σf iff L is nonuniformly K-
diagnosable with respect to a mask functionM and Πf

on Σf for all K ∈ N
+.

Proposition 3: A prefix-closed regular live languageL
is nonuniformly[1,∞]-diagnosable with respect to a mask
functionM andΠf onΣf iff L is uniformlyK-diagnosable
with respect to a mask functionM and Πf on Σf for all
K ≥ 1.
When the language describing the behavior of the system is
regular, nonuniform diagnosability is equivalent to uniform
diagnosability. Therefore, we can utilize the verification
algorithm for uniform diagnosability in [10] to verify the
property of nonuniform diagnosability. In the same context,
we can use the algorithms in [3] with minor modifications in
order to verify nonuniformK− and [1,K]−diagnosability.

Though Proposition 3 relates nonuniform[1,∞]-
diagnosability and uniformK-diagnosability where we have
a verification algorithm, the verification algorithm for uni-
form K-diagnosability reported in [3] depends on value
K. Therefore, the direct application of the verification
algorithm for uniformK-diagnosability is not feasible in
order to verify uniform [1,∞]-diagnosability. In the fol-
lowing section, we will develop an algorithm for verifying
the property of nonuniform[1,∞]-diagnosability. A simple
variation of the verification algorithm for the property of
nonuniform [1,∞]-diagnosability will be presented in or-
der to verify uniform[1,∞]-diagnosability. This algorithm
carries a lower time and space computational complexities
than those of the algorithm reported in [3].

III. VERIFICATION OF REPEATED FAULT
DIAGNOSABILITY

Let A be a finite-state automaton generating the behavior
of the system and letM be a mask function for events
defined overΣA. We construct a directed graphG(A,M) =
(V (A), E(A,M)). For notational convenience, we may
drop the dependency notation ofG(A,M), when it is

considered to be clear from the context. The set of vertexes
V is

V ⊆ QA ×QA and (qA
0 , qA

0 ) ∈ V,

and an edge functionw is defined asw : E → 2S where
S = {−1, 0+, 0−, 0, 0̂,+1}. The implication of the directed
graphG will be explained after we complete the description
of G.

Before we proceed to define the edges ofG, for the sake
of readability, let us define the following transition notation:

δA(q1, σ) = q′1 andδA(q2, σ
′) = q′2.

Note that we use eventσ to defineq′1. On the other hand,
eventσ′ is used to defineq′2. Also, observe thatσ and σ′

can be identical.
The notationp

i
→ q below implies that there exist an

edge(p, q) ∈ E and i ∈ S = {−1, 0−, 0, 0̂, 0+,+1} such
thati ∈ w[(p, q)]. Now we define the edges ofG as follows.

For σ, σ′ ∈ ΣP such thatM(σ) = M(σ′) = ε,

(q1, q2)
0
−

→ (q′1, q2) if (σ /∈ Σf ) ∧ (q′1 is defined)

(q1, q2)
0
+

→ (q1, q
′
2) if (σ′ /∈ Σf ) ∧ (q′2 is defined)

(q1, q2)
−1
→ (q′1, q2) if (σ ∈ Σf ) ∧ (q′1 is defined)

(q1, q2)
+1
→ (q1, q

′
2) if (σ′ ∈ Σf ) ∧ (q′2 is defined)

For σ, σ′ ∈ ΣP such thatM(σ) = M(σ′) 6= ε,
(q1, q2)

0
→ (q′1, q

′
2)

if (σ /∈ Σf ) ∧ (σ′ /∈ Σf ) ∧ (q′1 andq′2 are defined)

(q1, q2)
−1
→ (q′1, q

′
2)

if (σ ∈ Σf ) ∧ (σ′ /∈ Σf ) ∧ (q′1 andq′2 are defined)

(q1, q2)
+1
→ (q′1, q

′
2)

if (σ /∈ Σf ) ∧ (σ′ ∈ Σf ) ∧ (q′1 andq′2 are defined)

(q1, q2)
0̂
→ (q′1, q

′
2)

if (σ ∈ Σf ) ∧ (σ′ ∈ Σf ) ∧ (q′1 andq′2 are defined)

Hereafter, we only consider the accessible part of the
weighted, directed graphG from the vertex(qA

0 , qA
0 ) when

G is referred. With the above construction, we have the
directed graphG with the edge functionw.

Now, we explain the implication ofG. The weighted,
directed graphG is designed to track tracess ∈ L(A)
and s′ ∈ L(A) such thatM(s) = M(s′) from the vertex
(qA

0 , qA
0 ). Specifically, the vertex space and the edge relation

are defined to track the traces in the following manner:

QA

︸︷︷︸

s

× QA

︸︷︷︸

s′

.

Observe that the value of edge functionw is designed to
indicate if tracess ands′ are about to track fault events or
not. In particular, whens is about to track a fault event and
s′ is about to track a normal event or nothing (ε), the value
−1 is given to edge. On the other hand, the value+1 is
assigned to edge whens′ is about to track a fault event and
s is about to track a normal event or nothing.0̂ weight is



given when both traces are about to track fault events. If no
fault events are involved,0−, 0+, and0 weights are given
based on the observability of tracked events.

Now we assign value0 to various zero notation0−, 0+,
0̂, and0. With this, we define the weight of edge as follows:
for a given(p, q) ∈ E,

ws[(p, q)] = min(w[(p, q)]).

OverG equipped with the weight functionws, compute the
shortest paths from single source(qA

0 , qA
0 ) to all reachable

vertexes. Denote the shortest path weight of vertexv ∈ V
asshort[v]. We define the following for further argument.

Definition 9: A cycle in G is calledT -cycle whereT ⊆
S, if for all t ∈ T there is an edge(p, q) ∈ E in the cycle
such thatt ∈ w[(p, q)].

With G, we claim the following results for the verification
of nonuniform and uniform[1,∞]-diagnosability.

Theorem 1:L(A) is nonuniformly [1,∞]-diagnosable
w.r.t. M andΣf iff the following three conditions hold:

1) For all T -cycle, if −1 ∈ T then 0̂ ∈ T or +1 ∈ T .
2) For all v ∈ {0−}-cycle, short[v] ≥ 0; this condition

handles unobservable cycles.
3) For all v ∈ T -cycle where0 ∈ T ⊆ 2{0

−,0,0+},
short[v] = 0.

Theorem 2:L(A) is uniformly [1,∞]-diagnosable w.r.t.
M andΣf iff the following three conditions hold:

1) For all v ∈ V , short[v] is finite.
2) For all v ∈ {0−}-cycle, short[v] ≥ 0; this condition

handles unobservable cycles.
3) For all v ∈ T -cycle where0 ∈ T ⊆ 2{0

−,0,0+},
short[v] = 0.

The above results can be utilized for the polynomial-
time verification of nonuniform and uniform[1,∞]-
diagnosability. Let|QA| = n1 and |ΣA| = n2. The worst
case time and space computational complexities for veri-
fying nonuniform and uniform[1,∞]-diagnosability using
Theorems 1 and 2 are obtained as follows:

Theorem 3:Let A be a deterministic automaton. The
nonuniform [1,∞]-diagnosability and uniform [1,∞]-
diagnosability ofL(A) with respect toM and Σf can be
decided withO(min(n3

1 · n
2
2, n

5
1)) time and O(min(n2

1 ·
n2

2, n
4
1)) space.

Again we direct the reader to [1] for an illustrating example
demonstrating the constructions of the directed, weighted
graph G and the application of verification algorithms
for the properties of nonuniform[1,∞]-diagnosability and
uniform [1,∞]-diagnosability.

IV. ON-LINE DIAGNOSIS FOR REPEATED
FAULTS

Building the deterministic observer automaton of a
partially-observed automaton takes exponential time and
space w.r.t the number of state of the partially-observed
automaton. The basic building block of off-line diagnoser
construction relies on the construction of observer automa-
ton and exponential computational complexity is carried

over. To overcome this computational difficulty, on-line
diagnosis approach was suggested in [2] to handle the
case of permanent faults. Rather than constructing whole
diagnoser off-line, the state of diagnoser is updated when-
ever observations occur. The space and time complexity
of updating the state of diagnoser for reporting permanent
faults areO(|QA|) andO(|Σ| · |QA|), respectively. For the
case of repeated faults, it is required to count the occurrence
of faults in order to reach diagnostic results. Based on the
algorithm presented in [3], the space and time complexity of
updating the state of diagnoser for counting the occurrence
of faults areO(|QA|3) andO(|Σ| · |QA|3), respectively.

In this section, we propose an algorithm improving
the computational complexity of the proposed algorithm
presented in [3]. Similar to the algorithm in [3], we maintain
a set of state and corresponding minimum number of
occurrence of faults as the state of diagnoser, i.e.,Qd ∈
2QA×N where Qd = {(q1, i1), (q2, i2), . . . , (qn, in)}. In
[3], tagged fault count numberi does not have to be
unique for each state componentqi. In contrast to [3],
the tagged fault count number of our algorithm is unique,
that is, qi 6= qj if i 6= j. The tagged integer valueij
of state qj represents the minimum number of faults in
the traces that are reachable to stateqj and consistent
with the current observed trace. The main routine of the
algorithm is described in Algorithm 1. In the loop of the
main routine, MODIFIED-MULTI-SOURCES-DIJIKSTRA
and GET-NEW-DIAGNOSER-STATE routines are called.
Algorithms 2 and 3 describes the two subroutines.

In MODIFIED-MULTI-SOURCES-DIJIKSTRA, succes-
sive application of a modified version of Dijikstra algorithm
is used to compute the minimum number of the occurrence
of faults. Elements inQd are used as source vertexes in the
modified Dijikstra algorithm. In order to count the number
of faults with the modified Dijikstra algorithm, the weight
of faulty transitions is set to “1”. On the other hand, the
zero weight is given to non-faulty transitions. Under this
weight setting, the shortest path weight of states implies
the number of faulty events along the shortest path, which
is minimal by the structure of the weight setting. Note
that only unobservable transitions are considered when the
modified Dijikstra algorithm is applied. With this procedure,
we identify the minimum number of faulty events in the
possible transitions to the states in unobservable reach from
Qd. The resulting set of states and tagged integers are stored
as newQd. After a new observationσm becomes avail-
able, in GET-NEW-DIAGNOSER-STATE(A,Qd, σm), we
collect the states of system reached by the observed event
σm from the unobservable reach ofQd. The corresponding
integer values indicating the minimum number faults are
updated based on the weights of possible observed events.
Updated states and tagged integer values becomeQd. Based
on the updatedQd, the minimum of the tagged integer
values is reported as the number of faults occurred. The
procedures from line 3 to 8 of the main routine can be
conducted inO((|Σ|+ log |QA|) · |QA|2) by implementing



the priority queueQtemp with a Fibonacci heap [5]. The
space used for realizing diagnoser state isO(|QA|).

V. CONCLUSION

The previous notions of diagnosability consider only
uniform detection delay. In this paper, we extended these
notions by considering nonuniform detection delay. We
presented a set of new algorithms verifying various notions
of diagnosability regarding repeated faults with uniform
and nonuniform delays. Our algorithms carry a lower time
and space computational complexity than those previously
reported in [3]. We also presented a new on-line diagnosis
algorithm that also has a lower time and space complexity
than the previously reported on-line diagnosis algorithm for
repeated faults.
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Algorithm 1 On-line Diagnosis(A,M )

1: Qd ← (qA
0 , 0)

2: loop
3: Find the minimum ik from Qd =

{(q1, i1), . . . , (qk, ik), . . . , (qn, in)} and report
it.

4: Qd ← MODIFIED-MULTI-SOURCES-
DIJIKSTRA(A,Qd,M ) [5]

5: wait until a next observation (σm) is available
6: Qd ← GET-NEW-DIAGNOSER-STATE(A,Qd,σm)
7: end loop

Algorithm 2 Qd ← MODIFIED-MULTI-SOURCES-
DIJIKSTRA(A,Qd,M)

1: For all q′ ∈ QA whereq′ = δ(q, t) for some(q, i) ∈
Qd and M(t) ∈ ε∗, set short[q′] = ∞, Q = {q′ :
short[q′] =∞}, andQtemp = ∅.

2: while Qd 6= ∅ do
3: Pick (q, i) ∈ Qd wherei is the minimum.
4: if i < short[q] then
5: short[q]← i andQtemp = Qtemp ∪ {q}
6: while Qtemp 6= ∅ do
7: Find q ∈ Qtemp whereshort[q] is the minimum

and removeq from Qtemp

8: for each neighbor vertexq′ reached fromq with
an unobservable normal eventdo

9: if i < short[q′] then
10: short[q′]← i andQtemp = Qtemp ∪ {q

′}
11: end if
12: end for
13: for each neighbor vertexq′ reached fromq with

an unobservable fault eventdo
14: if i + 1 < short[q′] then
15: short[q′]← i + 1, Qtemp = Qtemp ∪ {q

′}
16: end if
17: end for
18: end while
19: Qtemp = ∅
20: end if
21: Qd ← Qd \ {(q, i)}
22: end while
23: Qd ← {(q, short[q]) : q ∈ Q}

Algorithm 3 Qd ← GET-NEW-DIAGNOSER-STATE(A,
Qd, σo)

1: For all q′ ∈ QA whereq′ = δ(q, σo) for some(q, i) ∈
Qd, set short[q′] = ∞, Q = {q′ : short[q′] = ∞},
andQtemp = ∅

2: while Qd 6= ∅ do
3: Pick (q, i) ∈ Qd wherei is the minimum
4: for each neighbor vertexq′ reached fromq with a

normal eventσ s.t. M(σ) = σo do
5: if i < short[q′] then
6: short[q′]← i andQtemp = Qtemp ∪ {q

′}
7: end if
8: end for
9: for each neighbor vertexq′ reached fromq with a

fault eventσ s.t. M(σ) = σo do
10: if i + 1 < short[q′] then
11: short[q′]← i + 1, Qtemp = Qtemp ∪ {q

′}
12: end if
13: end for
14: Qd ← Qd \ {(q, i)}
15: end while
16: Qd ← {(q, short[q]) : q ∈ Q}
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