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Abstract— This paper documents the development and
experimental evaluation of a practical nonlinear position
controller for a typical industrial pneumatic actuator that
gives good performance for both regulating and reference
tracking tasks. The system is comprised of a low-cost 5-
port proportional valve with flow deadband and a double-rod
actuator exhibiting significant friction. Quantitative feedback
theory is employed to design a simple fixed-gain PI control law
that minimizes the effects of the nonlinear control valve flows,
uncertainty in the physical system parameters and variations
in the plant operating point. Easy to implement nonlinear
modifications to the designed PI control law are then tuned
experimentally in a step-by-step fashion to reduce overshoot
and to negate the effects of the control valve deadband and
actuator friction. Experimental results clearly illustrating the
efficacy of the approach are presented.

I. I NTRODUCTION

Due to their high force output to weight ratios, cleanliness
and comparatively low cost, pneumatic actuators are well
suited for a number of industrially relevant tasks ranging
from point-to-point positioning to high-accuracy servo po-
sitioning and force control. However, complex nonlinear
dynamics, compressibility of air, and the parasitic effects
of actuator friction continue to make servo control of
pneumatic actuators a difficult task.

The nonidealities associated with industrial pneumatic
actuators generally complicate the controller design to the
extent that it is difficult to achieve reasonable perfor-
mance using easy to implement proportional-integral (PI) or
proportional-integral-derivative (PID) control schemes [1].
A number of authors have, however, proposed nonlinear
modifications to conventional control laws that have been
shown to dramatically improve the closed-loop performance
of pneumatic servos. To name a few, Wang et al. [1] devised
a time-delay minimization algorithm aimed at reducing the
dead time associated with static friction as well as a null
offset compensation scheme for negating the effects of
control valve deadband. When used in conjunction with
a simple PID control law and acceleration feedback the
velocity tracking response of the system was observed to
be much improved. Hamiti et al. [2] developed an auto-
tuning PI control scheme to eliminate friction induced hunt-
ing. Using a high-performance servovalve with negligible
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deadband, tracking accuracy on the order of 2 mm and
steady-state errors around 0.5 mm were reported. Ning
and Bone [3] employed a novel proportional plus velocity
plus acceleration control law with friction compensation
for high-accuracy point-to-point positioning of a pneumatic
actuator.

The goal of this work is to develop a practical, yet
accurate position controller for an experimental pneumatic
actuator. The experimental positioning system is comprised
of a low-cost 5-port proportional valve with appreciable
deadband and a linear actuator exhibiting significant fric-
tion. Whereas previous work seems to focus on either
tracking or regulating performance, the primary objective
here is to derive a control strategy that gives good fine
and coarse positioning performance for both regulating and
reference tracking tasks. Towards this objective, quantitative
feedback theory (QFT) [4] is first used to design the gains
of a PI control law to satisfy pointwise tolerances on the
closed-loop frequency response. This enables the selection
of the PI control gains that work best with the pneumatic
system.

Without modifying the designed PI gains, the relative
stability of the designed closed-loop system is improved
by replacing the ordinary integrator in the PI control law
with a nonlinear reset integrator. Then, to negate the effects
of the control valve deadband and actuator friction, which
are not considered explicitly in the QFT synthesis, the
following nonlinear modifications to the designed resetting
PI control strategy are implemented:(i) velocity error trig-
gered integral augmentation, and(ii) set-point acceleration
based overshoot reduction. These modifications, proposed
previously by Sepehri et al. [5], were found here to be
easy to tune and to afford significant improvements in the
closed-loop positioning performance of the experimental
pneumatic actuator.

This paper thus makes the following contributions:
1) An accurate and practical nonlinear position con-

troller is developed that overcomes many of the
nonidealities in a typical low-cost experimental pneu-
matic actuator.

2) A systematic approach to the fixed-gain controller
design is followed: the well-established QFT design
technique is exploited for selection of the best PI con-
troller gains. Nonlinear modifications to the designed
PI controller are introduced in a step-by-step fashion
to further enhance the closed-loop performance.

3) Experimental results clearly illustrating the efficacy
of the approach are presented.



II. EXPERIMENTAL TEST RIG

The test rig, upon which all experiments were carried out,
is shown in Fig. 1. The valve is a low-cost FESTO MPYE-
5 series 5-port three-position solenoid driven proportional
directional flow control valve and the actuator is a FESTO
DNC series double-rod type with a 500 mm stroke. An IBM
compatible personal computer equipped with a Metrabyte
M5312 quadrature incremental encoder card and a DAS-
16F input/output board is used to measure the displacement
of the actuator and transmit the software generated control
signal to the valve.

Fig. 1. Experimental test rig.

III. N ONLINEAR MATHEMATIC MODEL

A schematic of the experimental test rig for modelling
is shown in Fig. 2 along with the variables of interest.
Assuming adiabatic charging and discharging of the actuator
chambers [6], a set of nonlinear state equations that describe
the dynamic system is
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Fig. 2. Schematic of experimental pneumatic actuator.

In (1), xp is the actuator position andvp is the actuator
velocity. P1, P2, V1, and V2 are the instantaneous actua-
tor chamber absolute pressures and volumes, respectively.
Parameterα is a compressibility flow correction factor,
which accounts for the fact that the pressure-volume work
process is neither adiabatic nor isothermal but somewhere
in between [7].Ff represents the dry friction force andFL

signifies the externally applied load. The magnitudes of the
static friction and Coulomb (sliding friction) were measured
experimentally and were found to be approximately 40 N
and 20 N, respectively.

As suggested by the manufacturer, the dynamics of the
control valve spool are modelled as a first-order lag where
the displacement of the valve spool is denoted byxv andu
is the control signal. In the experimental system, the control
valve saturates at 5 V input and there exists a flow deadband
covering 12% of the range of valve spool displacement.

The nonlinear equation governing the mass flow rate of
air through each control valve orifice is [8]
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

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In (2), Pd is the absolute downstream pressure, whilePu

denotes the absolute upstream pressure. The critical pressure
ratio,Pcr, which delineates between the sonic (choked) and
subsonic flow regimes, was measured experimentally and
found to be 0.2.

A suite of experiments was carried out to identify the
values of the relevant parameters of the experimental test
rig and verify the mathematical model. The remaining
model parameters and their identified nominal values are
summarized in Table I.

IV. L INEAR TRANSFERFUNCTION MODEL

To derive a transfer function representation of the pneu-
matic actuator dynamics, (2) was linearized using a Taylor
series expansion about operating pointo. Neglecting the

TABLE I

IDENTIFIED NOMINAL PARAMETERS OF EXPERIMENTAL TEST RIG.

Parameter Symbol Nominal Value
supply pressure Ps 5 bars

atmospheric pressure Patm 1 bars
total mass of piston, rods, and load M 1.91 kg

viscous damping coefficient b 70 N·sec/m
piston annulus area A 10.6 cm2

ideal gas constant R 287 J/kg·K
temperature of air source T 300 K

ratio of specific heats γ 1.4
pressure-volume work correction factor α 0.89

valve coefficient of discharge Cd 0.7
valve orifice area gradient w 22.6 mm2/mm
valve spool position gain kv 0.25 mm/V

valve first-order time constant τv 4.2 msec



second and higher order terms as well as any control valve
leakages, the mass flows into each actuator chamber are
written as follows

∆ṁ1 = Cf1∆xv − Cp1∆P1

∆ṁ2 = Cf2∆xv + Cp2∆P2

(3)

where ∆ denotes a perturbation from the operating point
value, e.g.∆xv = xv − xvo. ParametersCfi and Cpi are
known as the valve flow gain and flow-pressure coefficient,
respectively. Their specific values depend upon operating
point pressures,P1o and P2o, as well as the operating
point value of valve spool displacement,xvo. Neglecting
control valve deadband and treating the effects of friction
as a disturbing load, the transfer function of the open-loop
system can be obtained by combining and reducing Laplace
transformations of (1) and (3). The transfer function of the
open-loop system is

Xp(s) = G1(s)G2(s)U(s)−G2(s) [Ff (s) + FL(s)] (4)

where

G1(s) =
γRTkvACf1 (γRTCp2 + V2os)

(τvs + 1) (γRTCp1 + V1os) (γRTCp2 + V2os)
+

γRTkvACf2 (γRTCp1 + V1os)

(τvs + 1) (γRTCp1 + V1os) (γRTCp2 + V2os)
(5)

and

G2(s) =
(γRTCp1 + V1os) (γRTCp2 + V2os)

D(s)
(6)

with
D(s) = s (Ms + b) (γRTCp1 + V1os) (γRTCp2 + V2os)+

αγA2s [γRT (P1oCp2 + P2oCp1) + (P1oV2o + P2oV1o) s]
(7)

The nonlinear control valve flows, changes in the system
operating point, as well as uncertainties in the measurement
of any of the physical system parameters give rise to
families of representative plant transfer functions,G(s) =
G1(s)G2 andG2(s). The ranges and nominal values of the
operating point dependant and uncertain model parameters
are summarized in Table II.

V. QFT SYNTHESIS OFPI CONTROLLER

Fig. 3 shows a block diagram of the closed-loop feedback
control system.Gc(s) denotes the compensator, which is
restricted in this work to have a PI structure.G1(s) and
G2(s) refer to the uncertain plant transfer functions (5) and
(6). Defining loop transmissionL(s) = Gc(s)G1(s)G2(s),
the response of the closed-loop system is written as

Xp(s) =
L(s)

1 + L(s)
Xd(s)− G2(s)

1 + L(s)
Fd(s) (8)

where disturbing forceFd(s) = L {Ff (t) + FL(t)}.
Clearly,Xp(s) varies due toG1(s) andG2(s) uncertainty.

The objective of QFT is to synthesize control lawGc(s)
to place all the closed-loop frequency responses,L(s)

1+L(s) , be-
tween lower and upper tracking bounds,TL(s) andTU (s),

TABLE II

RANGES AND NOMINAL VALUES OF OPERATING POINT DEPENDENT

AND UNCERTAIN MODEL PARAMETERS.

Uncertain Parameter Value
min nominal max

M (kg) 1.81 1.91 2.01
b (N·sec/m) 60 70 80

V1o (m3) ×10−4 1.32 2.64 3.96
V2o (m3) ×10−4 1.32 2.64 3.96

τv (msec) 3.4 4.2 5.0
P1o (bars) 3.7 3.7 4.5
P2o (bars) 2.3 3.7 3.7
xvo (mm) 0 0 0.125

Cf1 (kg/sec·m) 8.0 13.6 13.6
Cf2 (kg/sec·m) 8.0 13.6 13.6

Cp1 (kg/Pa·sec)×10−10 0 0 118.6
Cp2 (kg/Pa·sec)×10−10 0 0 51.8
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Fig. 3. Single degree-of-freedom feedback structure.

by reducing the control loop sensitivity to plant parametric
uncertainty. A suitable frequency domain constraint on the
allowable loop transmissions,L(s) = Gc(s)G(s), is written
in logarithmic form

∆log
∣∣∣∣

L(s)
1 + L(s)

∣∣∣∣ ≤ log
∣∣∣∣
TU (s)
TL(s)

∣∣∣∣ (9)

where ∆ signifies the variation in the closed-loop trans-
fer function over the entire plant set,G(s). Closed-loop
tracking boundsTL(s) and TU (s) were derived from the
relevant figures of merit for the step response of a second-
order system [9]:

TL(s) =
22500

(s + 5.7)(s + 10)2(s + 39.3)

TU (s) =
11.81(s + 2)(s + 20)
(s + 2.1)(s + 15)2

(10)

The time response ofTL(s) is well-damped and has a 90%
rise time of 0.7 sec and 2% settling time of 1.0 sec.TU (s)
was selected to have a quicker transient response with a
90% rise time of 0.2 sec, 2% settling time of 0.5 sec and
2 percent overshoot.

To ensure robust stability of the closed-loop system, the
following constraint on the peak magnitude of the closed-
loop frequency responses is imposed:

∣∣∣∣
L(s)

1 + L(s)

∣∣∣∣ ≤ 1.24 (11)

The closed-loop stability specification (11) gives mini-
mum gain and phase margins of 5.14 dB and 45◦, respec-
tively. Hence, the peak overshoot in the unit step responses



should not exceed 21%. In a two degree-of-freedom QFT
design, prefilterF (s) is available to further shape

∣∣∣ L(s)
1+L(s)

∣∣∣
to ensure the closed-loop position responses fall within
the specified tracking envelope despite the specification of
slightly relaxed gain and phase margins. However, in this
work, replacing the ordinary integrator with a Clegg-type
resetting integrator [10] achieves this result and eliminates
the need to design prefilterF (s). Steady-state errors due to
disturbances,Fd(s), are zeroed by the integral action of the
PI controller.

To proceed with the controller design using QFT, it was
first necessary to select a nominal plantGnom(s) from
the setG(s) and then compute QFT bounds,B(ω), on
the nominal loop transmission,Lnom(s) = Gc(s)Gnom(s).
The set of all bounds delineate regions of the Nichols chart
whereLnom(s) should lie in order to ensure that the closed-
loop system performs within the specified tolerances. Fig.
4 shows the relevant bounds and the designed nominal loop
transmissionLnom(s).

Referring to Fig. 4,Lnom(s) was shaped by cascading
compensatorGc(s) = Kp + Ki/s in series withGnom(s)
and adjusting gainsKp and Ki so that: (i) Lnom(s) lies
on or above the tracking bounds that are single valued
functions of the phase angle, and(ii) Lnom(s) lies exterior
to stability bounds that encircle the critical(−180◦, 0 dB)
point. Suitable controller gains were found to be,Kp = 10
V/m andKi = 26 V/m·sec.
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Fig. 4. QFT bounds,B(ω), and nominal loop transmission,Lnom(jω)
on the Nichols chart.

To verify the design, the closed-loop gain variation,
∆ log

∣∣∣ L(s)
1+L(s)

∣∣∣, was calculated at various frequencies. The
actual closed-loop gain variation was found to be less than
the required tolerance at all frequencies. Thus, the pointwise
closed-loop tracking specification (9) is satisfied. However,
with reference to Fig. 4, the closed stability bounds are
slightly violated. This was a necessary design tradeoff
required to properly attenuate resonance in the closed-loop
step responses caused by an under-damped complex pole

pair present in allG2(s).
To further validate the QFT design, the unit step re-

sponses corresponding to the linear and Clegg-type resetting
designs were simulated. The PI gains obtained from the
linear QFT design were used in both control laws. The
Clegg integrator [10] is a control element that resets the
integral signal to zero whenever the input changes sign.
Due to this resetting action, the phase lag of the Clegg
integrator is approximately 52◦ less than that of an ordinary
linear integrator [10]. Hence, the potential of the resetting
integrator to improve system performance from the point of
view of loop stability is apparent.

Referring to Fig. 5a, it is observed that the unit step
responses using the linear controller are all stable and
that the maximum overshoot is approximately 29%. This
is larger than the specified maximum peak overshoot of
21% and is due to penetration of the stability bounds by
Lnom(s). The tracking bounds are clearly not satisfied by
the linear design. In contrast, the peak overshoot in the unit
step responses using the resetting control law, Fig. 5b, is less
than 8%. This is a significant improvement over the linear
design and justifies the use of the resetting control action.
The position responses are still seen to fall just outside the
tracking bounds. However, as will be seen in Section VI,
the experimental step responses fall well within the required
envelope so no further design iteration was conducted.
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Fig. 5. Simulated closed-loop unit step responses: (a) linear PI control
law; (b) resetting PI control law.

VI. EXPERIMENTATION

Typical experimental step responses with the resetting PI
controller are shown in Fig. 6. To prevent friction induced
hunting, the rule for resetting the integrator was modified
slightly so that the integral was continuously reset whenever
the position error,e, fell below a certain threshold,ε = 1
mm. The control strategy was implemented as follows:

u(t) = Kpe(t) + KiI(t) (12)



where

I(t) =

{
I(t−∆t) + e(t)∆t if |e(t)| > ε

0 if |e(t)| ≤ ε
(13)

In (12) and (13),u is the control signal,I is the integral
signal and parametersKp = 10 V/m andKi = 26 V/m·sec
are the same proportional and integral gains obtained from
the preceding QFT design.
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Fig. 6. Typical experimental step responses with resetting control law
(12).

Referring to Fig. 6, it is observed that the responses fall
within the specified lower and upper tracking bounds. The
slight discrepancy between the responses of Fig. 5b and
those of Fig. 6 is due to the combined effects of the control
valve deadband and actuator static friction. Reasonable
speed of response (90% rise times of 0.68 sec) and steady-
state positioning errors less than 1 mm were consistently
obtained in experiments using the proposed resetting PI
control strategy.

The performance of the control system for a typical
reference tracking task was examined next. The test signal
consisted of a number ofS-curve trajectories covering
60% of the actuator stroke. Peak actuator velocities were
purposefully kept small in an effort to observe the tracking
limitations imposed by friction and control valve deadband.

The benchmark performance of the positioning system
with resetting PI controller is illustrated in Fig. 7. The
integral was reset according to (13), whereε = 1.0 mm
only when time derivative of the reference positionẋd = 0.
Fig. 7a shows the position response. As expected, significant
deadtime (on the order of 0.75 seconds) results from the
effects of valve deadband and actuator friction. The peak
position error is approximately 50 mm and stick-slip motion
is apparent in the response to the small low velocity ramp
trajectories. Overshoot is also observed when the rate of
change of the reference position,ẋd, is brought to zero.

The following modifications to the designed PI control
strategy were implemented next to improve the closed-loop
tracking performance:(i) velocity error triggered integral
augmentation, and(ii) set-point acceleration based over-
shoot reduction. Velocity error triggered integral augmen-
tation reduces the response deadtime resulting from valve
deadband and actuator friction via nonlinear conditioning of
the integral signal. This scheme, applied initially to improve
the position response of a Unimate hydraulic robot in [5],
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Fig. 7. Benchmark experimental reference tracking performance: (a)
position; (b) control signal.

employs a nonlinear filter that estimates the velocity error,
ėdb, caused by valve deadband and actuator friction. When
ėdb exceeds experimental thresholdėmin = 0.005 m/sec,
the output of the controller is brought to a level necessary
to overcome the deadband instead of waiting for the error
to accumulate. The nonlinear filter is

ėdb = (ẋp − ẋd)
ẋ2

d

ẋ2
d + βẋ2

p

(14)

Constantβ = 50 was found experimentally through trial
and error. The resulting position control algorithm was
implemented as follows:

I(t) =





−ulower−Kpe(t)

Ki
if ėdb > ėmin & u(t) > −ulower

I(t−∆t) + e(t)∆t if |ėdb| ≤ ėmin
uupper−Kpe(t)

Ki
if ėdb > ėmin & u(t) < uupper

0 if ẋd(t) = 0 & |e(t)| ≤ ε
(15)

In (15), thresholdsulower = uupper = 0.65 V were selected
experimentally.

The performance of the positioning system with velocity
error triggered integral augmentation is illustrated in Fig. 8.
As is seen, implementing velocity error triggered integral
augmentation significantly reduces the response deadtime.
However, overshoot observed during reference tracking
tasks remains. To alleviate this, a braking acceleration term
was added in the computation of the integral signal. For
|ėdb| ≤ ėmin, the integral is now computed as follows:

I(t−∆t) + e(t)∆t + Kaẍbraking∆t (16)

where parameterKa = 0.15 sec2 is a fixed gain tuned
by trial and error. The braking acceleration,ẍbraking, is
calculated from

ẍbraking =

{
ẍd if ẍdẋd < 0
0 if ẍdẋd ≥ 0

(17)



Equation (17) limits the integrated accelerations to braking
accelerations. This reduces the strength of the integral signal
when the desired velocity is approaching zero, which is
when the problems with overshoot are observed [5].
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Fig. 8. Experimental reference tracking performance with velocity error
triggered integral augmentation: (a) position; (b) control signal.

Fig. 9 shows the experimental responses of the position-
ing system using the proposed modified Clegg integrator
with velocity error triggered integral augmentation and set-
point acceleration based overshoot reduction. Parameter
ε had to be increased from slightly 1.0 to 4.0 mm to
prevent hunting when the actuator was stopped after the
S-curve input. Referring to Fig. 9, inclusion of the braking
acceleration term in the calculation of the integral signal
has removed the overshoot and has greatly improved the
reference tracking ability of the servopneumatic actuator.
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Fig. 9. Experimental reference tracking performance of designed nonlin-
ear PI controller: (a) position; (b) control signal.

VII. C ONCLUSIONS

A practical, accurate and easy to implement nonlinear po-
sition controller for a typical industrial pneumatic actuator
with control valve deadband and significant actuator friction
has been developed and evaluated experimentally. Design of
a fixed-gain PI control law via quantitative feedback theory
minimized the effects of the nonlinear control valve flows,
changes in the system operating point and uncertainties in
the measured plant parameters.

Use of a Clegg-type reset integrator in the designed PI
control law was found to improve the relative stability
of the closed-loop system. Velocity error triggered inte-
gral augmentation and set-point acceleration based over-
shoot reduction algorithms were implemented in a step-
by-step fashion to further enhance the reference tracking
performance of the experimental pneumatic actuator de-
spite the parasitic effects of control valve deadband and
actuator friction. The experimental results clearly illustrate
the efficacy of the proposed fixed-gain nonlinear controller,
indicating that experimental regulating errors less than 1
mm could be achieved consistently. Maximum steady errors
were observed to increase only slightly to 4 mm for more
demanding reference tracking tasks covering 60 percent of
the actuator stroke.
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