
 
 

 

  
Abstract—We studied the delay-dependent stabilization 

problem for a class of uncertain singular system with 
time-delays and saturating controls. Theorems derived give 
sufficient conditions for delay-dependent stabilization of the  
singular systems with a combination of saturating controls and 
multiple time-delays in both state and control; we assumed the 
delays to be constant bounded but unknown, moreover, the 
uncertainties are also described to be unknown but bounded 
and the nonlinear terms included in the systems are fallen into a 
set. Under these sufficient conditions, the solution of the 
uncertain singular system is regular, impulse free, and locally 
asymptotically stable for all admissible uncertainties. 
Furthermore, the results based on several Linear Matrix 
Inequalities (LMIs) are developed to guarantee stability and be 
computed effectively. Finally, we advance an example to  
demonstrate the superiority of this method. 

I. INTRODUCTION 

ONYTOL of singular systems has been extensively 
studied in the past years due to the fact that singular 

systems better describe physical systems than regular ones. A 
great number of results based on the theory of regular 
systems (or state-space systems) have been extended to the 
area of singular systems [1]-[2]. Recently, robust stability 
and robust stabilization for uncertain singular systems with 
time-delays have been considered [3]-[5].  

Moreover, the problem of stabilizing linear systems with 
saturating controls has been widely studied these last years 
because of its practical interest [6] and [7]. However, to the 
best of our knowledge, the problems of robust stabilization 
for uncertain  singular system included both time-delays and 
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saturating controls have not been fully investigated yet. 
In this paper, we concerned with the delay-dependent 

robust stabilization of a continuous-time subject to multiple 
time-delays in both state and control, saturating controls and 
nonlinear terms. The synthesis problem addressed is to 
design a memoryless state feedback control law such that the 
resulting closed-loop system is regular, impulse free and 
stable for all admissible uncertainties, and a sufficient 
condition for the existence of such a control law is presented 
in terms of several linear matrix inequalities (LMIs). 

II. SYSTEM DESCRIPTION AND DEFINITIONS 
Consider the following uncertain singular systems with 

time-delays and saturating controls described by 
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where ( ) nx t R∈  is the state vector, ( ) mu t R∈  is control 
input vector to the actuator (emitted from the designed 
controller), '( ) mu t R∈  is the control input vector to the plant, 

( ) pw t R∈ is the disturbance input vector from 2[0, )L ∞ . The 

matrix n nE R ×∈ may be singular, we shall assume that 
rank E r n= ≤ . The matrices 0 10 10 20, , , ,iA A E B B  and 2iB  are 
known real constant matrices with appropriate dimensions. 
The matrices 0 20( ), ( ), ( )iA A B∆ • ∆ • ∆ • and 2 ( )iB∆ • are 
time-invariant matrices representing norm-bounded 
parameter uncertainties, and are assumed to be of the 
following form: 
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where 1 2 3, , ,iG H H H and 4iH  are known real constant 
matrices with appropriate dimensions. The uncertain matrix 

( ( ), )F x t t  with Lebesgue measurable elements satisfies 
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( ( ), ) ( ( ), ) .TF x t t F x t t I≤                       (3) 
The input vector is assumed to satisfy actuator limitations, 

i.e. ( ) mu t U R∈ ⊂  with 
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The actuator is described by the nonlinearity 

    
0( ) ( ) 0( )

( ) ( ) 0( ) ( ) 0( )

0( ) ( ) 0( )

        if ( )

( ( )) ( )     if ( )

      if  ( )  

i i i

i i i i i

i i i

u u t u

sat u t u t u u t u

u u t u

 >


= − ≤ ≤
− < −

       (5) 

( )ih t and ( )ig t  are unknown scalars denoting the delays in 
the state and control, respectively, and it is assumed that 
there exist positive numbers ,h g  and τ  such that 

             0 ( ), ( ) ,i ih t g t h g τ≤ ≤ ≤                      (6) 
for all t , 1, ,i k= " . ( )tφ is smooth vector-valued 
continuous initial function defined in the Banach space Cτ . 
In this paper, every nonlinear term is assumed to be of the 
form as follows 
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where jk  are positive scalars. 
   The nominal unforced singular delay systems (1) can be 
written as 
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Using the Leibniz-Newton formula [7], then the singular 
delay system (8) can be written as 
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Throughout this paper, we shall use the following concepts 
and introduce the following useful lemmas. 

Definition 1. The singular delay systems (8) is said to be 

regular and impulse free if the pair
1

( , )
k

i
i

E A A
=

+ ∑  is regular 

and impulse free [3] . 
Lemma 1 (Krasovskii theorem [1]). The singular delay 

systems (8) is said to be locally asymptotically stable if there 
exists a positive definite symmetric matrix P , positive 
scalars 1 2 3, , ,vπ π π  and γ , for any initial condition ( )tφ  

vCτ∈ , the trajectories of the singular delay systems (8) 

remain confined in the set ( , , ) { ( ) nP E x t RγΩ = ∈  
1 1( ) ( ) , 0}Tx t P Ex t γ γ− −< > , whereas, for a continuous 

function ( ( ), ) : nV x t t R R R+× →  such that 

2
1 ( )x tπ 2

2( ( ), ) ( )V x t t x tπ≤ ≤ , and if 
2
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Definition 2. The uncertain singular systems ( Σ ) is said 

to be robustly stable if the systems ( Σ ) with 
2( ) 0, ( ( )) 0, ( ) [0, )iu t u t g t w t L≡ − ≡ ∈ ∞  is regular, impulse 

free and locally asymptotically stable for all admissible 
uncertainties. 

Definition 3. The uncertain singular delay systems ( Σ ) is 
said to be robustly stabilizable if there exists a linear state 
feedback control law ( ) ( ), m nu t x t R ×= Λ Λ ∈  such that the 
resultant closed-loop system is robustly stable in the sense of 
Definition 3. In this case, ( ) ( )u t x t= Λ  is said to be a robust 
state feedback control law for system ( Σ ). 

Lemma 2 [8]. Given vector ,x y , a positive definite 
symmetric matrix R  with appropriate dimensions, then for 
any scalar 0ε > , we have 

1 12 .T T Tx y x Rx y R yε ε − −± ≤ +  
Lemma 3 [8]. Given matrices , , ,A Θ Ξ Γ  and ( )F σ  of 

appropriate dimensions and with Θ symmetrical and ( )F σ  
satisfying ( ) ( )TF F Iσ σ ≤ . Then we have: 
a) If the following inequality holds, 

( ) ( ( ) ) 0TF Fσ σΘ + Γ Ξ + Γ Ξ <  
if and only if there exists a scalar 0ε >  such that 

1 0T Tε ε −Θ + ΓΓ + Ξ Ξ <  
b) For any symmetric matrix 0P >  and scalar 0ε > such 
that 0TI Pε − Ξ Ξ > , then 
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III. ANALYSIS OF ROBUST STABILITY 

A. Analysis of robust Stability of Systems (8) 
The main result is derived as follows, it gives the sufficient 

condition of robust stability for the singular delay system 
(8).The proof of it is similar to [2] and [9] and is omitted. 

Theorem 1. If there exists a series of positive definite 
symmetric 1 2 3, , , , 1i i iQ Q Q Q i k= " , a matrix P , and the 
scalars ,ε γ and τ such that 
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{ } { }2 21 22 2 3 31 32 3, , , ,  , , , ,k kdiag Q Q Q diag Q Q QΩ = − Ω = −" "
then the singular delay system (8) is regular, impulse free and 
locally asymptotically stable for any initial condition 
belonging to the set 2

0 { ( ) ||| ( ) || }t tφ φ δΦ = ≤ with 

min 2( ) /Qδ λ γπ=  
where  
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B. Disturbance-Free Case (with ( ) 0w t = ) 

When ( ) 0w t = , for the uncertain singular system ( Σ ), 
introduce the control law ( ) 2 ( )u t x t= Λ , where the control 
law gain matrix m nR ×Λ ∈  is to be found, and the closed-loop 
system is 
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where [ ] [ ] [ ]∆
• = • + ∆ • ( [ ]•  denoting the matrix), and 
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Obviously, the vector function ( )tη  satisfies the following 
inequality 
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Using the same method as theorem 1 and taking into (12), 
(13) and [7], furthermore introducing the idea of generalized 
quadratic stability and generalized quadratic stabilization in 
[3], one can deduce the following corollary. 

Corollary 1 (Disturbance-free case). If there exist a series 
of positive definite symmetric 1 2 3, , , ,i i iQ Q Q Q  

4 5 6 1, , , ,i i i iQ Q Q R 2 3 4 5 6, , , , , 1i i i i iR R R R R i k= " , a matrix P , 
and the scalars 2 3, , , 1, ,i i kε ε γ = " and τ such that 

1 20, 0, 0M ∆ < Ξ ≥ Ξ ≤  and the expression of 
0T TEP PE= ≥  hold, then the uncertain singular delay 

system (1) is regular, impulse free and locally asymptotically 
stable for any initial condition belonging to the set 
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and M ∆   is shown in the next page, where 3 1 2, ,N Ω Ω  and 

3Ω  are the same as theorem 1, and 
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In the following we shall discuss how to solve the control 

law gain matrix Λ  in the following analysis by using LMI 
technology. Assume that there exist scalars 

0 , , , 0i ji jiβ β β δ >  and positive definite symmetric matrices 

0 , , ,i ji jiT T T P  such that the following inequalities are 
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By Lemma 3a and (21), we can obtain that there exists a 
scalar 0α >  such that 
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0
      ( ) ( )

0

       ( 0 )

rT

T T

n r

T T T
n r

IP P
P L L L L

P

P P
L L L

I P

I L EX Y

− − −

− −

−

−

   
= =   

  
   

× + Γ   
  

× Γ + ϒ�

           

where  

          111 12
2 2 1

22

0
0,   

0
T T

n r

P P
X L L Y L

I P
− −

−

   
= > = Γ   

  
         

Furthermore 
( ) ( ) 0T T T T T T TEP E EX Y EXE EX Y E PE= + ϒ = = + ϒ = ≥  

Define ( ) ( , )T T TEX Y X YΨ = Λ + ϒ ΛΖ� .                       
Without loss of generality, we can assume that 

( , ) TX Y EX YΖ = + Φ  is invertible. Define matrix M ′′� , as 
shown at the top of the next page, where 

0 20 2
1 1

0 20 2 1 10 101 1

( ) ( , ) ( , )

        ( ) ( ) +

k k
T

i i
i i

k k
T T T

i ii i

W A A Z X Y B B Z X Y

A A B B E Eε
= =

= =

′′ = + + Ψ + Ψ +

× + Σ + Ψ + Σ Ψ

∑ ∑�
 

6
1

1 1 1
        ( , ) ( , )

k
T T T T

jij i
Z X Y C K KCZ X Y Pε τ−

= =
+ + Σ Σ  



 
 

 

1 2 3 4 5 6 1 2 3 4 5 6

1 1

2 2

3 3

4 4

5 5

6 6

1 1

2 2

3

0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0

T

T

T

T

T

T

T

T

T

W N N N N N N N N N N N N
N
N
N
N
N

M N
N
N
N

τ τ τ τ τ τ τ τ τ τ τ τ
τ τ
τ τ
τ τ
τ τ
τ τ
τ τ
τ τ
τ τ
τ

′′

Ω
Ω

Ω
Ω

Ω
′′ = Ω

′Ω
′Ω

�

�

3

4 4

5 5

6 6

0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

T

T

T

N
N
N

τ
τ τ
τ τ
τ τ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ′Ω 
 ′Ω
 ′Ω 
 ′Ω 

(23) 

  

0 20 2
1 1

0 20 2 1 10 10
1 1

6
1

1
1 1

( ) ( , ) ( , )

        ( ) ( ) +

        ( , ) ( , )

k k
T

i i
i i

k k
T T T

i i
i i

k
T T T T

ji
j i

W A A Z X Y B B Z X Y

A A B B E E

Z X Y C K KCZ X Y P

ε

ε τ

= =

= =

−

= =

′′ = + + Ψ + Ψ +

× + + Ψ + Ψ

+ +

∑ ∑

∑ ∑

∑∑

�

 

6
1 1

2 0 2 3 3
1 1 1 1

k k k
T T

ji i i i
j i i i

T T Tτ ε ε ε ε− −

= = = =

+ + + Ψ Ψ + + Ψ Ψ∑∑ ∑ ∑       

T T
1 0 20 0 20

2 1 2

 [ ( , ) +     ( , ) +  ],

 [ ( , )   ( , )    ( , ) ],

T T T T

T T T
k

N Z X Y A B Z X Y A B

N Z X Y A Z X Y A Z X Y A

= Ψ Ψ

=

"
"

  

3 10 10

10

[ ( , )    ( , )  

          ( , ) ],

T T T T T T

T T T

N Z X Y C K E Z X Y C K E

Z X Y C K E

=

"
 

T T
4 21 2 6[      ] ,T T

kN B B N= Ψ Ψ ="  
T T

5 20 20[      ],T TN B B= Ψ Ψ"  

{ }1 2, , , ,j j j jkdiag Q Q QΩ = − "  

{ }1 2, , , , 1, 2, ,6.j j j jkdiag R R R j′Ω = − =" "  
Through the upper analysis, now we can give the main 

result in this section. 
Theorem 2: If there exist a series of positive definite 

symmetric 0, , , , , , , , , ,ji ji ji ji i ji ji jiX Q R Z Z T T T P V Q , a 
matrix ,Y Ψ , and the scalars 

1 2 3 0, , , , , , , , ,i i ji ji jiε ε ε β β β δ α µ γ and τ  , 1, ,i k= " , 
1, ,6j = "  satisfying 

T
jiEX Y Z+ ϒ ≥                        (24a) 

ji jiZ Q≥                             (24b) 

             0ji
T

ji

Z
Z
Ψ 

≥ Ψ 
                      (24c)                                                        

       20 20 0 0 20 3

3 20 3 3 0

0
T T T

T T

B B GG T B H
H B H H I

β
β

 + −
≤ − 

  (24d) 

2 2 2 4

4 2 4 4

0
T T T

i i i i i i
T T

i i i i i

B B GG T B H
H B H H I

β
β

 + −
≤ − 

    (24e) 

 2

2 2 2

0
T T T

i ji i ji ji i ji i
T T

i ji i i ji i ji

AQ A GG T AQ H
H Q A H Q H I

β
β

 + −
≤ −  

  (24f) 

2 2 2 4

4 2 4 4

0
T T T

i ji i ji ji i ji i
T T

i ji i i ji i ji

B Z B GG P B Z H
H Z B H Z H I

δ
δ

 + −
≤ −  

   (24g) 

( )
2

( ) 0( )

( , )
0

T T
i

i i

EZ X Y
uγ

 Ψ
≥ Ψ  

                (24h) 

( , )
0

( , )

TQ Z X Y
Z X Y I

 
≤ 

 
              (24i) 

T
1 2
1

1

2

0
 

T
M

I
I

α
α

−

 ′′ ′Θ Θ
 Θ − < 

′Θ −  

�
             (24j) 

where 2 2[  0 0]′Θ = Θ "  and 2Θ is defined in (21) setting 
( , ),  TP Z X Y P= Λ = Ψ , then the uncertain delay singular 

system (1) with the feedback gain ( , )TZ X Y−Λ = Ψ  is 
robust stable for any initial condition belonging to the set 

2
0 { ( ) ( ) }t tφ φ δΦ = ≤  with min

2

( )Qλ
δ

γπ
= , where 

2 max max( ( , )) ( )T TEZ X Y kπ λ τλ= + Ψ Ψ  
2

max 1 3 5

2

max 2 4 6

     max [ ]
2

3     max [ ]
2

i i ii

i i ii

k V V V

k V V V

τ λ

τ λ

+ + +

+ + +

 

The positive definite symmetric matrix jiV  and the scalars 

jiµ can be solved by the following matrices inequalities  

11 12

12 22

0T

Π Π 
≤ Π Π 

                                (25a) 

1 1
11 0 20 1 1 0

20 1 1

( ( , ) )( )( ( , )

          )

T T T T
i i

T
i i

Z X Y A B Q R A Z X Y

B GG Vµ

− −Π = + Ψ +

+ Ψ + −
 

1 1
12 0 20 1 1 1 3

1 1
22 1 3 1 1 1

3 1

( ( , ) )( )( ( , ) ),

( ( , ) ) ( )( ( , )
        )

T T T T
i i

T T T
i i

i

Z X Y A B Q R H Z X Y H

H Z X Y H Q R H Z X Y
H Iµ

− −

− −

Π = + Ψ + + Ψ

Π = + Ψ +

+ Ψ −

       11 12

12 22

0T

Θ Θ 
≤ Θ Θ 

                             (25b) 

1 1
11 2 2 0 2 2

1 1
12 2 2 2

1 1
22 2 1 1 2 2

( , ) ( ) ( , ) ,

( , ) ( ) ( , ),

( , ) ( ) ( , )

T T T
i i i i i

T T
i i i i

T T
i i i i i

Z X Y A Q R A Z X Y GG V

Z X Y A Q R H Z X Y

Z X Y H Q R H Z X Y I

µ

µ

− −

− −

− −

Θ = + + −

Θ = +

Θ = + −

 

3 10
1 1 1

10 3 3

0
( )

T T T
i

i i

V C K E
E KC Q R I− − −

 
≥ − + 

                   (25c) 

1 1 1 1
2 4 4 2 4 4 2 4 4 4

1 1
2 4 4 4 22

( ) ( )
0

[ ( ) ]

T T T T T
i i i i i i i i i i

T T T
i i i i

B Q R B GG V B Q R H
B Q R H

µ− − − −

− −

 Ψ + Ψ+ − Ψ + Ψ
≤ ′Ψ + Ψ Π 

   (25d) 
1 1

22 4 4 4 4 4( ) ( )( )T
i i i i iH Q R H Iµ− −′Π = Ψ + Ψ −  

 
 



 
 

 

1 1 1 1
20 5 5 20 5 5 20 5 5 3

1 1
20 5 5 3 22

( ) ( )
0

[ ( ) ]

T T T T T
i i i i i i

T T T
i i

B Q R B GG V B Q R H
B Q R H

µ− − − −

− −

 Ψ + Ψ+ − Ψ + Ψ
≤ ′Ψ + Ψ Θ 

       (25e) 
1 1

22 3 5 5 3 5( ) ( )( )T
i i iH Q R H Iµ− −′Θ = Ψ + Ψ −  

1 1 1 1
2 6 6 2 6 6 2 6 6 4

1 1
2 6 6 4 22

( ) ( )
0

[ ( ) ]

T T T T T
i i i i i i i i i i

T T T
i i i i

B Q R B GG V B Q R H
B Q R H

µ− − − −

− −

 Ψ + Ψ+ − Ψ + Ψ
≤ Ψ + Ψ Ξ 

       (25f) 

C.   Disturbance Case (with ( ) 0w t ≠ ) 

When ( ) 0w t ≠ , we assume that 1
0( ) ( )Tw t w t w−≤ . In the 

conditions described below, the matrices 1,M ′′ Θ�  and 2′Θ are 
the matrices defined in Theorem 2 with 1, ,7j = " . 

Theorem 3. For given 0 0w > , if there exist a series of 
positive definite symmetric 

, , ,ji jiX Q R 0, , , , , ,ji ji i ji jiZ Z T T T P  ,jiV Q , a matrix , ,Y Ψ  and 
the scalars 1 2 3 0, , , , ,i iε ε ε β β  , , , , , ,ji ji jiβ δ α µ γ ν υ and ,τ  
satisfying (35a-i) for 1, ,i k= " , 1, ,7j = "  and 

11 1 2 10
1

1

2

10 7 7

7 7

7 7

( , ) 0 0
0 0 0 0

0 0 0 0
0

( , ) 0 0
0 0 0 0
0 0 0 0

T T

T

T

T

T

W B Z X Y
I

I
Z X Y B I N N

N
N

α
α

υ τ τ
τ τ
τ τ

−

′ Θ Θ
 Θ − 

′Θ −  < −
 Ω 

′ Ω 
                                              (26a) 

                                0 0wν υγ− + ≤                                 (26b) 

                          0 0
2

w τ υγ− + ≤                              (26c)                                                                                         

where 0 denotes the zero matrix with appropriate 
dimensions, and 

       

{ }
{ }
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11

12 12 12

7 10 10

7 71 72 7

7 71 72 7

( , ) 0
,

0 0

[ ( , )      ( , ) ],
, , , ,

, , , .

T
n kn

kn n kn kn

T T

k

k

EZ X Y
W M

N Z X Y B Z X Y B
diag Q Q Q

diag R R R

ν ×

× ×

 
′′= +  

 
=

Ω = −

′Ω = −

�

"
"

"

   

then the feedback gain ( , )TZ X Y−Λ = Ψ , the scalar 

δ defining in the set 2
0 { ( ) ( ) }t tφ φ δΦ = ≤  with 

min 0

0 2

( )( )
2

Q w

w

τλ υγ
δ

γ π

−
= , where 2π  is defined in Theorem 2, 

and the closed-loop trajectories remain confined in the set 

{ }1 1( , , ) ( ) ( ) ( ) , 0n TP E x t R x t P Ex tγ γ γ− −Ω = ∈ < > .  

IV.   ILLUSTRATIVE EXAMPLE 
Consider an uncertain time-delay singular system (1) with 

1k = with an actuator saturated at level 1±  and a dynamic 
described as follows: 

0 1 0

1 1 1 0 0.1 0.1
, , , 1.2,

2 2 1 2 0.3 0.2
E A A w

− − − −     
= = = =     − −     

 

10 20 21 10

0.7 0.3 0.1 0.4 0.3
, , , ,

0.8 0.5 0.2 0.3 0.2
B B B E       

= = = =       −       

0

0.4 1 1 0.3
, , , 10,

0.6 0.6 2 0.5
K C G u

−     
= = = =     −     

  

[ ] [ ]1 21 3 410.2 0.5 , 0.1 0.2 , 0.3, 0.2.H H H H= = = =    

It’s easy to see [ ]1 1 TΦ = . Applying Theorem 3 to this 
uncertain time-delay singular system, it is found, using the 
software package LMI lab, that this system is regular, 
impulse free and locally asymptotically stable for any 
time-delay 0.6684,τ ≤  When 0.5τ = , the corresponding 
calculation results are as follows: 

[ ]
[ ]

6.0657 4.7504 1.1697
,   ,  

4.7504 6.0657 2.3394

0.6008 1.2016 ,

0.2284 0.2284 ,    1.0953

X Y

γ

−   
= =   −   

Ψ = − −

Λ = − =

   

Hence, the corresponding optimal value of δ is 0.7849. 
Owing to be out of tuning of parameters, it is obvious to see 
that the process of calculation is simple as the method 
presented in [7].  
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