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Analysis of Persistent Bounded Disturbance Rejection for Lurie
Systems of The Neutral Type

Me Yu, Fei Hao and Long Wang

Abstract— This paper mainly deals with the problem of
persistent bounded disturbance rejection performance and
stability for Lurie systems of the neutral delay type. Using
Lyapunov-Krasovskii functional method, we simultaneously
develop suffcient conditions on persistent bounded distur-
bance rejection performance and stability (delay-dependent
and delay-independent) in terms of linear matrix inequalities
(LMIs). Similarly, we study the corresponding problem for
Lurie systems of the neutral type with uncertainties. Finally
a numerical example is given to illustrate the ef£ciency of the
proposed result.

. INTRODUCTION

Neutral type delay systems have received much attention
in recent years, see, eg., [12], [16], and the references
therein. The systems that can be described by neutral type
systems include steam or water pipes, lumped parameter
networks interconnected by transmission lines, systems of
turbojet engine, etc. The effect of smal delays on the
stability properties of some closed-loop neutral systems
has been considered in [13] and the references therein.
Recently, [16], [17] have developed suf£cient conditions on
delay-independent stability of neutral delay systems; delay-
dependent results have developed in [9], [12]. Furthermore,
H,, control has been considered in [15], [19]. However,
what most papers concern focuses on stability or H,
control, there are few papers simultaneously dea with
persistent bounded disturbance rejection performance and
absolute stability for neutral type systems.

On the other hand, the absolute stable problem, formu-
lated by Lurie and coworkers in 40's, has been a well
studied and fruitful area of research as presented in [2].
Many results in the theory of stability and control, such
as Popov’s criterion, the circle criterion, the positive-rea
lemma [6] are al closely related to the problem. Some of
these tests, however, involve graphical constructions which
induce dif£culties. The problem of absolute stability for
time-delay Lurie systems has received attention see, e.g.,
[5]. In our paper, some algebra criteria are obtained by
using the direct Lyapunov-Krasovskii functiona method
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to absolute stability and performance problem for Lurie
systems of the neutral type.

Disturbance rejection problem induced by signal input
(energy-bounded or peak-bounded) [3], [4] is one major
issue in control systems. Since many objectives in control
engineering practice involve signal peak and the disturbance
signals of the plants are persistent bounded in most cases,
many papers have dealt with the problem of persistent
bounded disturbance rejection without delay (see, eg.,
[6], [10], [14], and the references therein). [7], [8] have
researched the optimal L; and /; control problem for con-
tinuous and discrete linear systems, respectively. Moreover
[14] has discussed this problem for nonlinear systems. [10],
[11] have studied disturbance rejection problem for Lurie
system, but little attention has been drawn to the problem of
persistent bounded disturbance rejection for delay systems.

Based on above researches, this paper considers the
persistent bounded disturbance rejection problem for Lurie
systems of the neutral type. organization of the paper is
as follows. The preliminary results are given in Section 2.
The main work isin Section 3: for both of delay-dependent
and delay-independent cases, we give suff£cient conditions
on guaranteeing stability and achieving p-performance for
Lurie systems of the neutral type. Then similar analysis
has been developed for the system with uncertainties. An
example is given in Section 4 to illustrate the ef£ciency and
feasibility of our proposed approach. The last section gives
conclusion of this paper.

In this paper, R is the set of al real numbers, R" is the
set of al n-tuples of real numbers, and R™*"™ is the set
of all real matrices with m rows and n columns. Denote
by AT the transpose of a matrix A. I denotes the unit
matrix of appropriate dimension. C,, » = C([—,0],R™)
denotes Banach space composed of continuous vector-
valued functions from [—, 0] to R™. Given alinear operator
H : L., — L, we defne the induced L., norm of H to
be

[Hllico := sup [[Hwl|le

llwlloo <1

see [1] for more details.
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[I. PRELIMINARIES

Consider Lurie systems of the neutral delay type with
adding exogenous disturbance:

& — Fi(t—71)=Ax(t) + Agx(t — 7) + bu + Bw,

LE(tO + 5) = 1/’(5)a s € [7T> 0]3
y=cla,
z=Cz+ Dw,

(1)
where x € R", w € R? are the state and exogenous
disturbance input vectors, y € R, z € R™ are measured
output and controlled output vectors, respectively. v belongs
to a class of sector nonlinearities, that is, u = ¢(y) satisEes
uw>o(y)/y >0fory € R, p> 0 (denoted u € FI0, ).
7 > 0 isagiven constant scalar. (to, 1) € RT xCp 7, ¥(-) is
agiven continuous differentiable initial function on [—, 0].
A, Ay, E,B,C, D are all constant matrices with compatible
dimensions. b, ¢ are n-dimensional vectors. The L., norm
is defned by |w|e =: sup, ||w(t)]|2. Assume that the
admissible disturbance set is W =: {w : R — BR?, w is
measurable }, where BR? = {w € R? : ||wl]2 < 1}.

The origin-reachable set (R, (0)) of system (1) is a set
that the state of the system can reach from the origin for
all admissible disturbances. A set S is said to be a positive
invariant set for a dynamical system, if x(¢p) € S implies
the trajectory =(t) of system (1) remainsin S for all ¢ > .
An attractor  of system (1) is a set that satisfes for any
u € F[0, u] and w € W, the state trgjectories of system (1)
initiating from any point outside of €2 eventualy enter and
remain in it. Obvioudly, an attractor is positively invariant.

For system (1), defne performance set by:

Qp) = { : [12loe = [Cx + Dw|| < p, Ve € W},

System (1) is said to have p-performance if ||z]|. < p for
al w € W. By the defnition of performance set, in order
to show that system (1) has p-performance, we only need
to prove that Q2(p) contains R (0).

Lemma 1. [18] For any positive scalar @ and symmetric
positive defnite matrix @ € R™*"™, the following inequal-
ities hold.

2:Ty < %xTx + oyTy,
20Ty <" Q7 'w +y"Qy,

where z € R™, y € R"™.

To guarantee that the difference operator ®: C[—7,0] —
R" given by R(z,) = z(t) — Ex(t — 1) + [ Agz(v)dv
is stable, we assume [12]

7| Adl + B < 1,
where | - | is any matrix norm.

I11. MAIN RESULTS

A. Analysis of Persistent Bounded Disturbance Rejection
for Lurie Systems of The Neutral Type

In this section, suf£cient conditions are given on guar-
anteeing the absolute stability (delay-dependent & delay-

independent) and achieving persistent bounded disturbance
rejection performance.

We £rst consider the delay-independent case.

Theorem 1. If there exist symmetric positive defnite
matrices P, Q € R™*", and positive scalars o, 3, ~
satisfying the following matrix inequality:

ATP+ PA+aP+Q
( +Bu2ect + yp2ect ) P PB
v P —BI 0
BTP 0 —al
ATp - ETPA 0 -ETPB
0 0 0
PA;— ATPE 0
0 0
—BTPE 0 <0, (2
—~ATPE—ETPA;—Q ETPb
V' PE —~I
aP 0 cT
0 (pP*—-a) DT | >0, (3)
C D 1
then for any 7 > 0 the elipsoid Qp = {x : 27Pz <

1} is an attractor of system (1), Q(p) C Qp and system
(1) has absolute p-performance. Furthermore, inequality (2)
guarantees absolute stability of the system.
Proof: Let us consider the following Lyapunov-
Krasovskii functional:
V(z)) = (2(t) — Bx(t —71))TP(2(t) — Ex(t — 1))
+ [y T (t — 5)Qu(t — s)ds.
The time derivative of V' (z;) aong the trajectory of system
(1) is given by
V(z:) = 2(Az+ Agz, + bu + Bw)TP(z — Exz,)
+27Qx — 2T Qu,
= z2T7(ATP+ PA+ Q)x + 22" PBw + 22" Pbu
+22T PAgz, + 2T (—AYPE — ETPAYT — Q)x,
—2wTBTPEx, — 22T ET Pbu — 22T AT PEx,.
By Lemma 1 and the property of ¢(y), the following
inequalities hold.

22T Pou < %xTPbbTPx + puTu
< %xTPbbTPx + BulxTecl x,
—22TET Pbu < %xfETPbbTPExT + Tl ec z.
It follows that
V(z) < XTQX — oz Pz + awlw,
where
X = [IT U)T a:ﬂT,
v PB PA; — ATPE
Q= BTP —al -BTPE
A"P—-ETPA -ETPB b
v= ATP+ PA+ ZPbb"P+aP +Q
+BpPec” +ypect
Y= —AjPE-E"PA] -Q+ SETPWPE.
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Because z” Pz > 1 outside of Qp, we obtain V(z) < 0, if
the following matrix inequality holds,

v PB  PA,— ATPE
BTPp —al —BTPE
A,'P—-ETPA —ETPB ¥

< 0.

By Schur complement, it is equivalent to (2). By the
defnition of attractor, the elipsoid Qp = {z : 27 Pz < 1}
is an attractor of system (1).

Furthermore, for any u € F|0, u], the negativity of the
Lyapunov functional derivation does not use any informa
tion about the delay size and in conclusion, the absolute
stability property holds for any positive delay.

On the other hand, by Schur complement, inequality (3)
is equivalent to the following inequality

-CTD
(p* — ) —

aP-CTC

e > 0.

DTD
From it we obtain

0<a<p?
ar? Px + (p? — a)wlw — ||Cx + Dwl||? > 0.

It's obvious that if 7 Pz <1 and w?w < 1, then we have
|Cx + Dwl||? < p. It follows that Qp C Q(p). Because Qp
is a closed attractor which contains origin, it is a positive
invariant set. While origin reachable set is the smallest
positive invariant closed set that contains origin, we have
R (0,11) C Qp C Q,. Thereby when the controller u in
system (1) takes values from the nonlinear sector F[0, ],
the closed system has p-performance. Because for any
u € F0, 4], V/ay(z) < 0is guaranteed, Qp is attractable
for any u € F|0, 1], and thus we have R (0) C Qp C .
That is to say system (1) has absolute p-performance. =

Now, we consider the delay-dependent case for the sys-
tem under consideration.

Theorem 2. For Lurie system of the neutra type (1),
given a positive scalar T, if there exist symmetric positive
defnite matrices P, @1, Q2 € R™ ™ , positive scaars
a, (3 satisfying (3) and the following matrix inequality:

I U Pb T'(A+A)"P Tuch™P pch™ P
»'P e 0 0 0
TP(A+ Ay) 0 -TQ: 0 0
T'puPbct 0 0 -TQ, 0

uPbcT 0 0 0 —Q2

—ETP(A+45) O 0 0 0
BTP 0 0 0 0
I 0 0 0 0 0

(A+A)"PE  PB 0
0 0 0
0 0 0
0 0 0
0 0 0 <0, (4)
—ETQ,E —ETPB 0
—-BTPE —al 'BTP
0 I'PB -TQ |

where U = (A + Ay)TP + P(A+ Ag) + 3TATQ1Aq +
aP + 2ETQyF + Bucc”, thenforany 7 : 0 < 7 < T
the elipsoid Qp = {x : 2T Pz < 1} is an attractor of
system (1), Qp C Q(p) and system (1) has absolute p-
performance. Moreover inequality (4) guarantees that it is
absolutly stable.

Proof: Let

z2(xy) =x(t) — Ex(t — 1) + ftiT Agz(v)dv
Z2(xy) = (A+ Ag)x(t) + Bw + bu.

Take the following Lypunov-Krasovskii functional:

Vi(xy) = Vi(ay) + Val(xy) + Va(xe),

Vi(ay) = 2T (24) P2(24),

Vo(z) = Sﬁ Tft T()ATQq Agz(v)dvuds,
Va(2:) = 2ft L2t (0)ET Qo Ex(v)dv.

The time derivative of V' (x) along the trajectory of system
(1) is given by

V(z) Vi(z) + Vo (@) + Va(z)
2((A+ Ag)z + Bw + bu)"P(x — Ex, +
f;T Agz(v)dv) + 3127 AT Q1 Agx + 22T ET Q2 Ex
-3 iT 2T (V)AT Q1 Agr(v)dv — 22T ET Qo Ex-
2T(A+ Ag)TP+ P(A+ Ag) + 37AT Q1 Au+
2ET Q2 E)x + 22T PBw + 227 Pbu — 20" b PEx,
—22T(A+ Ag)T PEx, — 20" BT PEx, +
20T (A+ AT P f:_T Agz(v)dv — 22eT ET Qo2 Ex,
+20T"BTP f:ﬁf Agz(v)dv + 2767 P ftir Aqz(v)dv

-3 ;T 2T (v) AT Q1 Agz(v)dv

By Lemma 1, the following inequalities hold.

227 Pbu, < %xTPbbTPz + BulaxTec” x,

—2ubT PExz, < 2T p2cb? PQy LpbeT z + 2TETQyEx,,
20TBTP [l Agz(v)dv < 70T BT PQT'PBw + Q,
2uTOTP [!  Age(v)dv < 7p2aT b PQT PbeTa + Q,
22T (A + Ay TPft Agz(v)dvo

<7zl (A+ Ad)TPQ 'P(A+ Az +Q,
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where

¢
Q :/ 2T () AT Q1 Ayz(v)dv.
t—7
Hence we have
V()< XTO X, —az"Pr+ aw’w,
where

X = [;L'T zt wT}T,

A —(A+A)TPE  PB
O =| —ETP(A+ Ay) ~ETQ.E —~ETPB
BTP ~BTPE T
with
A= (A+A)"P+P(A+ Ay) +37ATQ1A4
+2ETQoF + aP + %PbbTP + Bulec”
+u20bTPQ2_1PbcT + T;L2chPQ1_1PbcT
+7(A+ A))TPQTP(A + Ay),
Y= 7BTPQ;'PB - al.

Since 7Pz > 1 for = ¢ Qp, we obtain V(z) < 0, if
Q; < 0. By Schur complement, it is equivalent to (4) where
T" isreplaced by 7. Thus the ellipsoid Qp is an attractor of
system (1) for given 7: 0 <7 <T.

As the proof of Theorem 1, for given 7 : 0 < 7 < T,
system (1) has absolute p-performance and systems (1) is
absolutely stable. [ ]

B. Analysis of Persistent Bounded Disturbance Rejection
for Lurie System of The Neutral Type with Sructured
Uncertainty

Let us consider Lurie system of the neutral type with
structured uncertainty:

t—Ez(t—71)=Az(t) + Aaz(t — 7) + Bip + Bw + bu,
z(to + s) = ¥(s), s € [-1,0],
y=c z,
z=Cz+ Duw,
q = Ciz + Dup,
p=Ag,
(5)
where C; and D,; are matrices with compatible dimen-
sions, p and ¢ are uncertain input and output of the plant.
A isthe structured uncertainty between p and ¢, i.e., A has
the structural property:

AeA={A: A=diag(Ay, -, A, 011, ,51)},

where k,l € N, ¢; € R, A; is full block and |¢;| <
L, )14a <1, fori =1,---,k, j = 1,---,1. Other
variables and matrices are defned as that of system (1) and

the performance set is deEned as before. Such description
of uncertainty can be £nd in [6].

The set of symmetric matrix corresponding to arbitrary
blocked diagonal structure A can be described by:

Sa=:{S:5=8T SA=AS,VAcA}

Similarly, the set of antisymmetric matrix corresponding to
arbitrary blocked diagonal structure A can be described by:
(see [10] for more details)

Ta = A{T:TT = -T, TA=ATT, VA € A}

To study the performance problem, we give other defni-
tions. A robust attractor €2 of system (5) with respect to W
and A is a set that satistes for any ||A|| <1and w € W,
the state trajectory of system (5) initiating from any point
outside of Q eventually enters and remains in it. Similarly
we can defne robust positive invariant set. Obvioudly, a
robust attractor is robust positively invariant.

Lemma 2 [10]. If S, S € Sa and T € Ta, then Y =
STS € Ta. Furthermore, if S—! exists, then S—! € Sa.

From the property mentioned above, it's easy to say that
foral S € San, S >0, T € Ta, and for any blocked
diagona structure A, if A € A and p = Ag, then the
following inequality holds.

BIEIREE

Just as before, we £rst present a suf£cient condition on
guaranteeing delay-independent stability and achieving p-
performance.

Theorem 3. If there exist a symmetric positive defnite
matrices P € R™ ", a symmetric matrix S € Sa, an
antisymmetric matrix 7' € Ta and positive scalars «, [
satisfying (3) and the following matrix inequality:

I ) Pb  PA;— ATPE 0
v' P -8 0 0
A,"P-ETPA 0 -ATPE-ETPA; ETPVT
0 0 bPE —y
BTP 0 ~BTPE 0
BIfP+TC, 0 ~BIPE 0
SC 0 0 0
PB PB; + CITT crs ]
0 0 0
~ETPB ~ETPB, 0
0 0 0 <0, (7)
—al 0 0
0 —S+TDq + D?ITT D{IS
0 SD1 -S|
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where ® = AT P+ PA+aP + Bu’cc” +~yu?ec”, then for
any 7 > 0 the elipsoid Qp = {z : 27 Pz < 1} is a robust
attractor of system (5), Qp C Q(p) and system (5) has
robust absolute p-performance. Moreover (7) guarantees
that system (5) is robustly absolutely stable.

Proof: Let us consider the following Lyapunov func-

tional:
RS

Vixy) = V(xt)+/0 { a(s)
where
V(zy) = (x(t) — Ex(t — 7))TP(x(t) — Ex(t — 7).

By (6), we have V(z,) < 0 if V(z,) < 0. The time

derivative of V(x) aong the trajectory of system (5) is

given by

. 2(Az + Aqz, +Bw—|—B1p+bu)TP(a:— Ex;)
T

q s 1" q

P T -S p

= 27(ATP+ PA)z + 22" PBw + 22" PAax-
+2mTPB1p + 22T Pbu — 22T AT PEx.-
—20T AT PEx, — 20T BT PEx, — 2pT BT PEx,

T
_ 9, T3T q s 7" q
2ubPEmT+|:p:| [T—S]{p]'

By Lemma 1, the following inequalities hold.
22T Pbu < %xTPbbTPQ: + BulaxTecTzx,
—2ubTPEx, < %xfETPbTbPExT + WLQCL’TCCT:L’.

—+

Hence we have

V(z) < XTQX, — az’ Pz + aw’w,

where
Xo= [aT 2T T pT]T
I PA, — ATPE
0, — ATP - ETPA e
2= BTPp —BTPE
BTP+DT,SC, +TC,  —BTPE
PB PB; +CISDy + CTTT
—ETPB —ETPB,;
—al 0
0 DT, SDyy + TDyy + DLTT — §
with

M= A"P+PA+aP+ClSC + 5Pbb"P
+BpPec” +ypPect,
©= —AjPE—E"PAj + JE"PbbPE.

Because 27 Pz > 1 for 2 ¢ Qp, we obtain V(z) < 0,
if Q2 < 0. By Schur complement, it is equivalent to (7).
It's obvious that the dlipsoid Qp = {z: 27 Pz < 1} isa
robust attractor of system (5).

As the proof of Theorem 1, system (5) has robust
absolute p-performance and is robustly absolutely stable.

]

For the delay-dependent case, similar analysis is given.

Theorem 4.”Given a positive scalar T' > 0, if there exist
symmetric positive defnite matrices P, @1, Q2 € R™"*™,
a symmetric matrix S € Sa, an antisymmetric matrix 1’ €
Ta, positive scalars «, 3 satisfying (3) and the following
matrix inequality:

r 2 w@ ™ PB 0 PBy +CTTT
x —TQp 0 0 0 0
* * —-ETQsE —ETPB 0 —-ETPB;
* * * —al rBTp 0
* * * * —T'Q1 0
* * * * * I3
* * * * * *
* * * * * *
*k * * * * *k
* * * * * *
L * * * * * *
0 cts pPb pcbTP TupchTP 7
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
rBfp DLS o 0 0 <0, (8)
-TQ, 0 0 0 0
* -5 0 0 0
* * -0 0 0
* * * —Q2 0
* * * * -rQ: |
where
E= (A+A)TP+P(A+ Ag) + ATATQ1Aq + 2ET Q. F
+aP + Bu’ecT,
= —S+TDy+DIHTT, w=T(A+ AP,
7= —(A+Ay)TPE,

then for any 7 : 0 < 7 < T the dlipsoid Qp = {z :
T Px < 1} isarobust attractor of system (5), Qp C Q(p)
and system (5) has robust absolute p-performance. More-
over (7) guarantees that the system is robustly absolutely
stable.

Proof: The proof of Theorem 4 can be easily obtained
from Theorem 2 and Theorem 3 and is thus omitted. ®
IV. ANILLUSTRATIVE EXAMPLE

To illustrate the ef£ciency of our proposed approach, now
we consider both of delay-independent and del ay-dependent
case for system (1). We choose the following parameters:

5 -1 —01 1
=TSl
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—0.02  0.01 1 02
Ad_{o.m —0.02}’0_{1 0]’
02 —0.01 0.01 0.1
D{—o.:s 0.2 }E[ 0 0.01}’
0.3 0.1
b= [ 0.4 } , C= [ —01 } , a=0.9,

p=11,and p=2.
For delay-independent case we aobtain P, @, (3, v that
9.2443 1.5439 }

satisfy Theorem 1:
] Q= { 1.5439  8.7514

P { 3.4468 0.0948
B =17.4333, ~ = 18.5293.

0.0948 3.0140
Hence we can obtain a robust attractor Qp, system (1)
has absolute p-performance with p = 1.1 and is delay-
independently stable for any 7 > 0.
For delay-dependent case, with the same parameters, We
obtain ' < 14.0999 and for I' = 14.0999 we have the
following solution to Theorem 2:

p_ [ 13720 051327 [ 6420098 6340728
~ 05132 12202 | <17 [ 634.0728 795.8060
s [ 00310 —0.2672
(@2 =107 x [ ~0.2672  2.3249 |°

B = 0.5732. Hence if the delay size is smaller than T,
system (1) is delay-dependently stable for given 7 : 0 <
7 < T" and it has absolute p-performance with p = 1.1.

V. CONCLUSIONS

For Lurie systems of the neutral type, using Lyapunov-
Krasovskii functional method, we studied the problem
of absolute stability and persistent bounded disturbance
rejection performance for delay-dependent and delay-
independent case. Suffcient conditions on this problem
were given in terms of LMIs. For Lurie system of the neutral
type with uncertainty, similar analysis was given. Finally, a
numerical example was given to illustrate the ef£ciency of
the proposed approach.
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