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Information Structures
to Secure Control of Globally Rigid Formations

Tolga Eren Walter Whiteley A. Stephen Morse Brian D. O. Anderson Peter N. Belhumeur

Abstract—Sensor and network topologies of rigid forma- formation creates a need for generating new links between
tions with distance information between mobile autonomous remaining agents to maintain a formation while preserving
agents are considered. An approach based on rigidity for hq jinks between remaining agents. In Eren et al. [4], an
creating such topologies were suggested in our previous work. - . . . '

Here, we first illustrate some potential scenarios on forma- apprqach was given to determine which p_a|rS of agents Fhese
tions that require unambiguity in the knowledge of distances N€W links should be created between. With these new links,
between every pair of agents in a formation. Then, we show the remaining agents will be able to maintairfiormation.

how a stronger type of rigidity, namely global rigidity, plays ~ However, if the remaining agents desire to maintain exactly
a role in creating such unambiguous formations. We draw e same relative distances between themselves as before

out and summarize some relevant results from the related th td ¢ then th . d f dditi |
mathematical theory of global rigidity; and present some new € agent departure, then there 1S a need for additiona

results on globally rigid formations. information about distances between agents where new links
are created. In other words, by knowing relative distances
. INTRODUCTION betweensomepairs of agents, there is a need to compute

In previous papers ([5], [6], [8]), we suggested an apt_he relative distances betwealh pairs of agents (or all new

proach based on rigidity for maintaining formations of mopaxs to btehadded). | id ¢ i litting int
bile autonomous agents with sensor and network topologies S another example, consider a tformation spiiting into

that use distance, direction, bearing and angle informatid’® th?? it enc%untegtsn ?ESI‘?I? tsotr’][hattr(]) ne h"’tlf (zjanf
between agents. In this paper, we investigate globally rigierocee 0 one side and the other hall to the other, instead o

formations. making a maneuver in which the whole formation proceeds

to the same side. When the formation splits, the links

By aformation we mean a group of mobile autonomou S . )
agents moving in real 2- or 3-dimensional space. A fo?k_)etween agents in different sub-formations are broken while

mation is calledrigid if the distance between each pair ofthe links between agents in the same sub-formations are

agents does not change over time under ideal conditions.%ekseirnved' ﬁs tht;sfta:lr(nestiplgl’:ut:e,r:]h?;? Iisn a:ini%es ';(r)nc;iez?]te:ew
formation is calledglobally rigid, if the distance between s In each sub-lormation to maintain nigid tormation.

each pair of agents is unambiguous. Sensing and com ethod of generating such links is given in a companion

nication links are used for maintaining distances betwedhPE" by Eren et al. [4]. If, furthermore, there is a need

agents fixed. Distances betweaih agent pairs can be held to preserve the relative distances between agents in each
fixed by directly measuring distances between cstyne sub-formation that are exactly the same as before, then we
agents and keeping them at desired values [5]. It is also tr§ counter the same need to know distances between all pairs

that it is not necessary to have sensing and communicati _?k?ents. 0 ¢ ded i ina th b
links between every pair of agents to create a globally rigiP e_rreh arfg t"YO f.S Zps neel eb ”m Qyzr?:omm? eS(Z fhro i
formation, which we will explore in this paper. ems. the first 1S finding a globally ngid formation and the

First, we present some reasons why it is desirable to ha\%Cond is, given such a globally rigid formation, finding

globally rigid formations. Departure of an agent from a rigiolrm‘r’lt“./e dlstances_ _between every pair of ggents. The. first
step is characterizing globally rigid formations [7], which
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of n points {p1, pa,...,p,} in IR? together with a ser
of & maintenance linkslabelled (i, j), where: and j are o
distinct integers in{1,2,...,n}; the length of link (i, 5) (4 = 45) - (0 — 45) Gj)eLl, t=0 ()

is the Euclidean distance between poiptsand p;. For  assuming a smooth (piecewise analytic) trajectory, we can

our purposes, a point formatidfy, = ({p1,p2,.--,pn},£)  differentiate to get
provides a natural high-level model for a setiofagents

moving in real 2- or 3- dimensional space. In this context, (¢ —q) (Gi—q¢;)=0, (@GjeL t>0 (2)
the points p; represent the positions of agents IR?

{d': 2 or 3} gnd the links mﬁ label those specific qgeqt equation .
pairs whose inter-agent distances are to be maintaine R(q)¢=0 ()

over time. In practice act_ual agent positions cannot _b\?/hereq — column {1, 4o, ..., 4.} and R(q) is a specially

expected to move exactly in formation because of Sens"%?ructuredm « dn matrix called therigidity matrix [13].

errors, vehicle modelling errors, etc. The ideal benchmar Because any trajectory df, which lies within M, is
p b

forma:u;)n agt]gms_t v¥h|%h the perfcc)jrnjanmleI 3f ;n actuaéne along whichF, undergoes rigid motion, (2) automat-
agent tormation 15 to be measured Is calledeserence ically holds along any trajectory which lies withifv,,. It

formation. follows that the tangent space fal,, at g, written 7,,, must

Each point formationF, uniquely determines a graph be contained in the kernel aR(q). Sincep must be on
G £ (V,£) with vertex sety £ {1,2,...,n} and edge any such trajectory, it must be true tHaf c kernel R(q).
set £, as well as a distance functioh: £ — IR whose If ¢ satisfies (3), then it lies in the tangent space. If the
value at(i,j) € L is the distance betweem andp;. Let affine span of the pointgy, ps, .. .,p, is R", then M, is
us note that the distance function Bf is the same as the n(n+1)/2 dimensional since it arises from thgn —1)/2-
distance function of any point formatidf, with the same dimensional manifold of orthogonal transformationsli®?
graph asF, providedgq is congruentto p in the sense that and then-dimensional manifold of translations B". Thus
there is a distance preserving m&ip R — IR? such that M, is 6-dimensional foi,, in IR, and 3-dimensional for
T(q;) = pi,i € {1,2,...,n}. In the sequel we will say that F,, in IR?. We haverank R(q) = nd— dimension kernel
two point formationsF,, and[F, arecongruentif they have R(q) < nd — n(n + 1)/2. We have the following theorem
the same graph and if andp are congruent. [11]:

By atrajectoryof F,, we mean a continuously parameter-theorem 1. AssumeF, is a formation with at least!
ized, one-parameter family of poinfg(t) : ¢ > 0} in IR™, points in d-space {d = 2, or 3} where rank R(p) =
which containg. We can define a rigid point formation asyax{rank R(z) : 2 € R%}. F, is rigid in R? if and only
follows: A formation is said to undergagid motionalong a _
trajectoryg([0, 00)) 2 {column {g1(£), q2(t), ., a ()} : rank R(p) = {% =3 fd=2,

t > 0} if the Euclidean distance between each pair of points 3n—6 if d=3.

¢;(t) andg;(t) remains constant all along the trajectory. Le
us note thaff", undergoes rigid motion along a trajector
q([0,00)) just in case each pair of poinigt;),q(t2) €
q([0,00)) are congruent. The set of poinst, in R™
which are congruent tp is known to be a smooth manifold.
It is clear that any trajectory along whidR, undergoes
rigid motion must lie completely withinM,,; conversely
any trajectory off",, that lies within.M,, is one along which
I, undergoes rigid motion. A point formatidf, is said to
be rigid if rigid motion is the only kind of motion it can . . . T -
undergo along any trajectory on which the lengths of all A point formanonIF}? IS gdennerl_cally ”g'd If itis rigid for_
links in £ remain constant. Thus, If, is rigid, it is possible almos_t aI_I c_h_cncgs obin IR'™. It 'S poss_|ble to ::haracterlze
to “keep formation” by making sure that the lengths of th eneric rigidity in terms of the “generic rank” dt where

formation’s maintained links do not change as the formatioRY I's genericor maximal rank we mean the_ 'a[geSt value
mMoves. of rank{R(q)} as ¢ ranges over all values ifR"“. The

_ ) S following theorem is due to Roth [11].
Whether a given point formation is rigid or not can

be studied by examining what happens to the given poirftheorem 2. A formationF,, with at leastd points in d-
formation F, = ({p1,p2,...,pn}, L) With m mainte- space{d = 2, or 3} is generically rigid if and only if
nance links, along a trajectory([0,0)) = {{q1(t), g2(t), _

~.an(t)} : ¢ > 0} on which the Euciidean distances generic rank (R} — {Qn—S ifd=2

dij = ||pi — p;|| between pairs of point§p;,p;) for which 3n—6 ifd=3.

(i,4) is a link are constant. Along such a trajectory

= 2

179

The m equations can be collected into a single matrix

trhis theorem leads us to the notion of the “generic” rigidity
ybehavior of the graph. When the maximum rank fofx)
over all z is less than this upper bound, the formatiBn
may still be rigid for some particulap. However, this is
unstable. For almost all changes in the positipnr in

the lengths of maintenance links which are realizable), the
formation will no longer be rigid. We are interested in
“generic rigidity”, a property that will hold for all small
changes imp.
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To understand this type of rigidity, it is useful to ob-all independent. A point formation isinimally rigid if
serve that the set of points that satisfy the condition removing any link makes it non-rigid. There &e — 3 and
rank R(p) = max{rank R(z) : = € R%} is a dense 3n — 6 maintenance links in minimally rigid formations
open subset ofR™ [11]. Generic rigidity is a property in 2- and 3-dimensional space respectively. A graph is
of only the set of maintenance links, or the underlyingalled (generically) minimally rigid in d-space if it is
graph. It does not even claim_ thﬁ‘g? itsc_elf is rigid _but rigid and has exactlyin — d+1
only that almost all nearby pointg give rigid formations = ) ) 2 ) )
F,. The concept of generic rigidity does not depend on thegid p(_)lnt formations are also maX|maII_y independent point
precise distances between the pointsFgf but examines formations, corresponding to bases in vector spaces as
how well the rigidity of formations can be judged bymlmmally spanning sets and maximally independent sets.
knowing the vertices and their incidences, in other words, !f @ point formation is rigid but not minimally rigid,
by knowing the underlying graph. A point formatidn, W€ Say that there_z isedun_dancyin the link setL_. _Let us
is strongly generically rigidif it is generically rigid and Suppose that a linKi, j) is removed from a rigid point
if rank R(p) = generic rank {R}. Hence, a strongly formation. If the formation remains rigid then j) is called
generically rigid point formation is rigid and it remains rigid @ redundant linkin the initial formation fedundant edge
under small perturbations. For this reason, it is a desirabl@ the underlying graph). If adding a linki, j) does not
specialization of the concept of a “rigid formation” for ourincrease the rank of the rigidity matrix, then we céllj)
purposes. We have the following theorem for a strongl@n implicit link (implicit edgein the underlying graph).
generically rigid point formation and a generically rigid !n 2-dimensional space, by Theorem 4, a set of edyjiss
graph [13]: independenor anindependent edge séft|£| < 2|V(L)|—3

) . ) and for everyl' C L, |£'| < 2]V(L')| — 3. If the set of
Theorem 3. For a formationF, in d-space with at least edgest of a graph in the plan& = (V, £) is independent,

edges. Minimally

points, the following are equivalent: thenG = (V, L) is called anindependent graph
1) the formation's underlying graptG = (V, L) is Sequential TechniquesFirst, we introduce some addi-
generically rigid ind-dimensional spaced(= 2, 3); tional terminology. If(¢, j) is an edge, then we say that
2) for somep, and j are adjacentor thatj is aneighborof i andi is a

) neighbor ofj. 2 The vertices: and j areincidentwith the
2n—3 ifd=2, edge(i, 7). Two edges aradjacentif they have exactly one
3n—6 ifd=3. common end-vertex. Theéegreeor valencyof a vertexi is
the number of neighbors af If a vertex hask neighbors,
it is called avertex of degreé or a k-valent vertex

One operation is the@ertex addition given a minimally
For 2-dimensional space, we have a complete combinattigid graphG = (V, £), we add a new vertexwith d edges
rial characterization of generically rigid graphs, which wadetween; andd other vertices in/. The other is theedge
first proved by Laman in 1970. In the theorem belgw, splitting: given a minimally rigid graphG = (V, L), we
is used to denote the cardinal number of a set. remove an edgéj, k) in £ and then we add a new vertex

i with d + 1 edges by inserting two edgés j), (i, k) and

Theorem _4 (Lamgn). A _gr.ap.h(G - (V’ﬁ,) (where L 7é 0 d — 1 edges betweenandd — 1 vertices (other thap, k)
orn = 1) is genencally rigid in 2-.d|m.enS|onaI space if and in V. Now we are ready to present the following theorems:
only if there is a subsef’ C L satisfying the following two
conditions: (1)|£'| =2|V| -3, (2) Forall £ C L', £" # Theorem 5 (vertex addition [12]). LetG = (V,£) be a
0,1£" < 2/v(L")| — 3, where|V(L£")| is the number of graph with a vertexi of degreed in d-space; letG* =
vertices that are end-vertices of the edge<ih (V*, L£*) denote the subgraph obtained by deletingnd

_ _ ._the edges incident with it. The# is generically minimally

There is no comparable complete re;ult for 3—d|men5|on§ilgid if and only if G* is generically minimally rigid.

space, though there are useful partial results [13], [14].
Although we lack a characterization in 3-dimensional spacdheorem 6 (edge splitting [12]). Let G = (V,£) be a
there are sequential techniques to generate rigid classesgedph with a vertex of degreed + 1 in d-space; letV; be
graphs both in 2- and 3-dimensional space [1], [13]. Wéhe set of vertices incident to and letG* = (V*, L*) be

rank {R(p)} = {

3) for almost allp, the formationkF,, is strongly generi-
cally rigid.

explain these techniques in the sequel. the subgraph obtained by deletingand itsd + 1 incident
A dependencen the maintenance link set of a pointédges. TherG is generically minimally rigid if and only
formation F, = ({p1,p2,...,pn},£) is an assignment if there is a pairj, k of vertices of); such that the edge

A L — R, with A\(3,5) = \i; = Aj,; (and not all (j,k) is notin£* and the graphG’ = (V*, £*(j, k)) is
zero), such that for each vertéx>_ . . . Xij(pi—p;) =
: S gL 2 L th | the term rigid graph instead of generically rigid
0. This equation gives a row dependence of the rigidity ~'" th€ Sequel, we use the term rigid graph instead of generically rigi
. . . .. . . %raph unless there is a danger of confusion.
r_natnx. A point formation isndependentf I.tS_ mamtenqnce 2The neighbor relation is symmetric throughout the paper, i.e., if agent
link set is such that the rows of the rigidity matrix are: senses or communicates with aggnso does agent with agent;.
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generically minimally rigid. minimally rigid in 3-dimensional space.

Henneberg sequences are a systematic way of generatinghdding a 5-valent vertex to a minimally rigid graph in
minimally rigid graphs based on the vertex addition an@-dimensional space to guarantee preservation of minimal
edge splitting operations. ld-space, we are given a se-rigidity is a long-standing problem. So far there are only
quence of graphsG,, Gg+1,...,G)y| such that: 1)G, is  partial results [12]. There are two sequential operations for
the complete graph od vertices; 2)G;; comes fromG; adding 5-valent vertices to minimally rigid graphs. They are
by adding a new vertex either by (i) the vertex addition oconjectured to preserve minimal rigidity in 3-dimensional
(i) the edge splitting operation. space. The first operation is replacing an X (i.e., two edges
Note thatG; and G;,; correspond taG* andG in the that do not share any vertices) by a vertex of degree five
statements of Theorem 5 and Theorem 6. All graphs in th®y connecting the vertex to the end vertices of these two
sequence are minimally rigid id-space. In 2-dimensional edges plus an additional vertex. The second operation is the
space, the two operations of vertex addition and edgdouble V replacement. This operation takes two graphs
splitting are sufficient to generate all minimally rigid graphsand G that are minimally rigid in 3-dimensional space to
starting from a single edge. In 3-dimensional space, they graphG that is generically rigid in 3-dimensional space.
generate a proper subclass of minimally rigid graphs starti : . .
from a triangle. The reason behind this difference betweg(gonjecture 8 (Adding a 5-valent vertex by replacing a

. - . . single X [12]). If G = (V, £) is a minimally rigid graph
planar and spatial cases is the following observation. i ??—dime[nsiz))nal space( conzaining edgesbil (Cg d) gthgn
A minimally rigid graph in 2-dimensional space may hav . : A .
all vertices of degree larger than 2£| — 2|V| — 3 or e[he graph obtained by deleting these two edges and adding

equivalently2| | — 4[| — 6 guarantees that some vertices® 5-valent vertexi attached to the vertices, b, c,d and

have degree 3 or less. @ — (V,£) is a graph with|V| another vertexe € V is minimally rigid in 3-dimensional
) T N . pace.

vertices which is minimally rigid, the existence of at least’
one vertex of degree 2 or 3 means that by Theorem 5 @onjecture 9 (Adding a 5-valent vertex by replacing
Theorem 6 there exists a minimally rigid gra@ with 2 V’s [12]). If G; = G U {(a,b),(b,¢)} and Gy = G U
|V| -1 vertices, and one can go frofito G* by the vertex {(a,b), (b,)} are minimally rigid graphs in 3-dimensional
addition or edge splitting operations. Then one uses thlepace withb # b, then the graphG* obtained from
same procedure o&*. Hence, all minimally rigid graphs G by adding a 5-valent vertex, attached to vertices
can be generated by the vertex addition and edge splittiigcluding a, b, ¢, a, b, ¢, is also a minimally rigid graph in
operations alone. It is also true that starting with a singl8-dimensional space.
edge only minimally rigid graphs are generated with these
operations in 2-dimensional space.

On the other hand, a minimally rigid graph in 3-
dimensional space may have all vertices of degree larg
than 4;|£| = 3|V| — 6 or equivalently2|£| = 6|V| — 12

Every minimally rigid graph can be generated by this
extended Henneberg sequenaghich includes the two

oPerations in the conjectures with the vertex addition and
the simpler edge splitting operations. What is unproven is

guarantees only that some vertices have degree 5 or Ieghsat only minimally rigid graphs in 3-dimensional space are

A quick check with the vertex addition and edge splittinggener"’ltecj in this way. The lack of a simpler technique for

: . : : adding 5-valent vertices is connected to the failure of any

operations in 3-dimensional space tells us that we can ) :
. . ._simple spatial analogues of Laman’s Theorem.

generate vertices of degree 3 and 4 with these operations . . . i .

There are two partial results which give sufficient condi-

but not of degree 5. We need other types of operations
to generate minimally rigid graphs in 3-dimensional spac;h)ons for the replacement of two edges by a 5-valent vertex

with all vertices having a degree of 5 or higher, and toand three edges by a 6-valent vertex. These operations are

remove a vertex of degree 5 from a minimally rigid graphcalled vertex splitting If the graphG’ is a vertex split of

in 3-dimensional space. The following theorem is abou@e?tzzesnrﬁﬁlgn;g_'dl %rgggg f’hne%,eg gg:ng]rcii(;Zﬁ?Cr?gigrir?
removing a 5-valent vertex in a minimally rigid graph. d-space [13]. Vertex 3-splits on two edges and three edges

Theorem 7 (Removing a 5-valent vertex [12])LetG = are depicted in Figures 1a and 1lb. By vertésplit, we
(V, £) be a minimally rigid graph with a 5-valent vertex mean a split ind-space.

a and edgega,b;), 1 < i < 5. LetG* = (V*,L*) be a
graph obtained by removing vertexand the edgesa, b;),
1 <i <5 fromG. Then one of the following is true: 1) for A non-rigid point formation has infinitely many “realiza-
some choice of two non-adjacent edges with vertices draviions” for the given values of the constraints or dimensions.
from by,04, ..., b5, the graph obtained by inserting theseAssigning coordinates to the vertices of a graph is called
edges is minimally rigid in 3-dimensional space; 2) for twagraph realization More precisely, given a grapl: =
choices of adjacent pairs of edges with vertices drawn frorV, £), U{(p:,p;) : (i,7) € £} UU{pi} ¢ R? is said
b1,bs, ..., bs (Not all adjacent with a single vertex), the twoto be a realization ofG in d-dimensional space where
graphs obtained fron* by inserting these pairs are both (p;,p;) is the straight line segment with endpointsand
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(@) (b)

@) (®) Fig. 2. Two rigid formations with the same graph and

‘ . , 4 distance function.
Fig. 1. (a) Vertex 3-split on two edges. Edges which are shifted to the

new vertex 0 are shown with dashed edges, and new edges after split are a
shown with wider edges. (b) Vertex 3-split on three edges. Edges which

are shifted to the new vertex 0 are shown with dashed edges, and new

edges after split are shown with wider edges. b

p;. Translations, rotations and reflections are not considered

to be different realizations. It turns out that even a rigid Fig. 3. A globally rigid formation.
formation may have several distinct realizations in this

sense.

Each point formationF, uniquely determines a graph rigid is that the former cannot be deformed by any means
G 2 {V, £} with vertex setV £ {1,2,...,n} and edge Whatever, continuous or not, whereas the latter always can.
set £, as well as a distance functioh: £ — IR whose An example of a rigid formation which can be deformed
value at(i,j) € L is the distance betweep; and p;. discontinuously is shown in Figure 2(a). Observe that a
Recall that the distance function &, is the same as the discontinuous deformation can be obtained by reflecting the
distance function of any point formatidR, with the same triangle formed by points, b, ¢ about the line determined
graph asF, providedq is congruentto p in the sense that by pointsa andb. The resulting rigid formation is shown
there is a distance-preserving mép R¢ — IR such that in Figure 2(b). Adding a link from point to d in Figure
T(q:;) = pi,i € {1,2,...,n}. Furthermore, recall that two 2(a) would make the formation globally rigid. An example
point formationsF,, and[F, are congruentif they have the of a globally rigid formation whose graph is not complete
same graph and if andp are congruent. It is clear tha, is shown in Figure 3.
is uniquely determined by its graph and distance funcibn Let us agree to say that a formatiofr, =
mostup to a congruence transformation. A formation which {p1, 2, ..., p.}, £) of n points in R is generically
is exactly determined up to congruence by its graph an@lobally rigid if for eachq in some open neighborhood of
distance function is called “globally rigid.” More precisely, p in IR”", formationF, = ({g1,¢z.- .., ¢}, L) is globally
a d-dimensional point formatiorf,, is said to beglobally  rigid. There is a graph-theoretic characterization of generic
rigid if each d-dimensional point formatior¥, with the global rigidity for 2-dimensional formations analogous to
same graph and distance functionRsis congruent td@,.  the characterization of generic rigidity provided by Laman’s

As we have already noted, we need formations whod&eorem. To explain the result we need a few more concepts.
point formations are uniquely determined up to congruence A connected grapl is k-connectedif it is possible
by their graphs and distance functions. Unfortunately rigidto obtain from it a new graph with at least two distinct
ity is not a strong enough property of a formation to ensureonnected components by removing at least one sdt of
that this is so. In other words it is possible to construcyertices fromG along with all of those edges & which
two rigid formationsF,, andF, which both have the same are incident on the: vertices being removed. A graph
graph and distance function, but are not congruent. Thghich is generically rigid iR is redundantly rigidin IR*
subtlety here stems from the fact that rigidity Bf stipu- if removal of any single edge results in a graph which is
lates that only those formations encountered on trajectori@éso generically rigid inIR”. Finally, a connected simple
containingF,, be congruent td,. Unfortunately there are graphG = {V, L} with n vertices isgenerically globally
formations with the same graph and distance function &@id in IR? if there is an open dense set of poipts IR""

F, which cannot be reached froifi, on any trajectory; at which F,, is a globally rigid formation with link sei.
such formations are typically not congruentg. From a The following recent result settles the generic global rigidity
different perspective, a rigid formation is a formation whichduestion ford = 2 in graph theoretic terms [2], [10].

is impossible to deforntontinuouslywhile holding fixed Theorem 10. A connected simple grapk with n > 4

the lengths of all of its links. There are examples of rig'%ertices is genericallv globally riaid iiR2 if and only if it
formations which can indeed be deformed, but not conting 3-connecqced and r)édgundan{ly ?igid w2, y

uously; such formations are rigid but not globally rigid. In
the end, the key feature which distinguishes globally rigid’he proof is built on the sequential construction from the
formations from all others including those which are merelpase case oK, the complete graph with four vertices, by
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sequence of graphss, . . ., G}y, such that: 1)G5 is K5; 2)
for 5 <1i <|V|, G;41 is generated by (i) adding &valent
vertex (i) edge splitting; 3Gy is G.

In 2-dimensional space, because of duality [1], vertex
splitting creating two vertices of at least degreeés also

Fig. 4. A sequence for generating a globally rigid formation. The sequendenown to preserve generic global rigidity.
starts withK4, and a new vertex (shown as a larger circle) is adjoined at ) ) ] )
each step by edge splitting operation. Edges about to be split are sho&@onjecture 12. If, in the previous result we add a third

as dashed lines. step: (iii) vertex splitting of either type (vertex split ah
edges or onl—1 edges ind dimensional space as explained

L : in §l1) such that each of the new vertices is at least 4-valent;
a sequence of edge splits, in a manner which extends th(\a
S

Henneberg sequences as shown in Figure 4. This sugge: %n(;he res_,ultinlg graph is also generically globally rigid
that a sequential approach might give some results fgp °-dimensional space.
global rigidity for other classes of formations and for higheiVhile these steps will not generate all globally rigid for-
dimensions. mations, they will generate classes of formations for any
Much like the situation with generic rigidity, the gen- number of vertices. Adding a sequence of 4-valent vertices
eralization of Theorem 10 to higher dimensions does ndd a set ofn points which are in general position (no
yet exist [2]. There is no general algebraic test for generifour coplanar) will generate a globally rigid formation with
global rigidity of a graph. There is even a question, inin — 10 edges, and using edge splitting alone will generate
3-dimensional space, what one means by generic globalglobally rigid formation with3n — 5 edges. The number
rigidity: (a) a graph may be globally rigid for points forming of edges in these graphs is less than the number of edges

an open dense subset B; (b) a graph may be globally in the complete graph, which hagn + 1)/2 edges.

rigid for points forming an open non-empty subseiR. It
appears that (b) does not imply (a) in 3-dimensional space
(though it does in 2-dimensional space). We mean (a) it
our discussions on generic global rigidity. In 2-dimensional
space, it might be possible to turn Theorem 10 into somd?]
algebraic condition involving repeated uses of the rigidity[3]
matrix.

The known bad example in 3-dimensional spadgisg, a

complete bipartite graph [2]. (A grap® is calledbipartite [4]
if its vertex set can be partitioned into two padfs and
V), such that every edge has one end/inand one in),.) (5]

This is also the counterexample to 3-dimensional version of
Theorem 10, since it is 5-connected and redundantly rigid.
It fails to be globally rigid in some open neighborhood of [€]
points lying on a quadric surface. Therefore, it cannot be
generically globally rigid. It is not known, for sure, that it is [7]
globally rigid at some other open neighborhood of points. It
is suspected that it is, but this is unproven. So it is suspected
that global rigidity is not a generic property, but the last[g]
piece of that proof/counterexample is still missing. We know
that there are classes of graphs for which global rigidity is
a generic property. For example, graphs generated gm [9]
by a sequence of edge splits (as explained in the previous
section) and edge additions are generically globally rigio[.lo]
By edge additionrwe mean inserting edges into a graph.

At the moment we do not have a conjecture for whiclilll
graphs are generically globally rigid in 3-dimensional Space; 5
However, we have a partial result and a conjecture for
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