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Abstract— This paper studies the stability of a quantized
feedback control system. In recent years, there have been a
number of papers characterizing the minimum information
rate required to assure closed loop stability. An inherent
constraint on these quantized control systems is that the
number of quantization levels must be an integer. In our
opinion, insufficient attention has been paid to this constraint.
This paper takes this integral constraints into account to
establish a lower bound on the number of quantization levels
required for closed loop stability. We then introduce a novel
dynamic bit assignment policy that achieves this bound.

I. I NTRODUCTION

In recent years there has been a considerable amount
of work studying the stability of feedback control systems
under quantized feedback [1] [2] [3] [4] [5] [6] [7] [8] [9]
[10]. These papers study the following linear discrete time
system {

x[k + 1] = Ax[k] + Bu[k]
u[k] = Kxq[k] (1)

where(A,B) is controllable,x[k] ∈ RN is the state,u[k]
is the control,xq[k] is the quantized version ofx[k]. The
eigenvalues ofA are denoted asλi (i = 1, · · · , N ).

Among the aforementioned quantization papers, [10]
considered stochastic moment stability, i.e. some moment of
xk converges to0. The other papers study deterministic sta-
bility, i.e. xk converges to0 in the sense of a certain norm,
for example the2-norm. This paper focuses on deterministic
stability. The papers on deterministic stability can be further
classified into two groups based on their assumptions about
the quantization range; static and dynamic quantization
policies.

Static quantization policies [1] [4] presume that the
quantization policy for the data is fixed for all time. In
[1], it is proven that a finite number of quantization levels
cannot achieve aymptotic stability. An infinite number of
quantization levels is studied in [4] where it is proven that
the least dense quantizer achieving asymptotic stability has
a logarithmic distribution. In [4], finite quantization levels
are shown to be able to achieve practical stability, i.e. the
states will converge into a bounded set.

Dynamic quantization policies [5] [6] [8] [9] [7] that
x[k] presume that the state at time instantk, lies inside
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a predetermined setU [k] called theuncertainty set. If U [k]
converges to0, i.e. every point inU [k] converges to0,
then the traditional stability of the system in eq. 1 can be
guaranteed.U [k] is usually assumed to be rectangular. Many
different approaches have been proposed to guarantee the
convergence ofU [k]. These approaches are reviewed below.

In [5] [6] every side of the uncertainty set,U [k], is
equally partitioned intoM parts, i.e.U [k] is partitioned
into NM small rectangles. Denote the small rectangles as
Ui[k] (i = 0, 1, · · · , NM − 1). Supposex[k] ∈ Uj [k]. The
index j will be sent.xq[k] is estimated by the center of
Uj [k]. U [k + 1] is a rectangle boundingAUj [k] + Bu[k],
where AUj [k] meansAUj [k] = {z|z = Ay, y ∈ Uj [k]}.
Sufficent conditions forU [k] to converge to0 are provided.

In [8] [9], a framework similar to that used in [5] is
followed. This work may be distinguished from [5] in the
choice of quantization policy. In particular, the quantization
policy in [9] has theith side ofU [k] equally partitioned into
2Ri parts, i.e.Ri bits are assigned to theith dimension. It
is required that2Ri > |λi|. The total number of bits is
R =

∑N
i=1 Ri, i.e. there areQ = 2R quantization levels. It

is asserted in [9] that the system in eq. 1 is asymptotically
stable if and only if

2R >

N∏

i=1

max(1, |λi|) (2)

The lower bound in eq. 2 is derived under the assumption
that Ri can be any real number.This assumption is not
meaningful becauseRi should be an integer.A similar prob-
lem concerning the assumption of non-integral quantization
also exists in [7].

This paper examines the stability of quantized feedback
control systems in which the2Ri are required to be integers.
Following the derivation in [9], we can obtain the following
bound

2R ≥
N∏

i=1

max(1, d|λi|e) (3)

where d·e meansdxe = min {n|n > x, n ∈ N}. This is
similar to the inequality in equation 2, but it is not the
greatest lower bound. This paper shows that

2R ≥
⌈

N∏

i=1

max(1, |λi|)
⌉

(4)

provides a tighter lower bound than that in equation 3. We
then go on to introduce adynamic bit assignment policy



that actually achieves this bound. This bit assignment is
done as follows. Suppose there areQ = 2R quantization
levels andQ is integer. At every step, only the “longest”
(in a certain sense) side ofU [k] is equally partitioned into
Q parts; the other sides aren’t partitioned. Because no side
is always the longest, the bit assigning is dynamic rather
than static. The main contribution of this paper is to prove
that this policy achieves the lower bound in equation 4.

This paper is organized as follows. Section II formally
defines the quantized feedback control system, introduces
some notation, and lists the frequently used technical lem-
mas. Section III states and proves the main result conerning
the lower bound on the minimum number of quantization
levels stabilizing the system. This section also introduces
the dynamic bit assignment policy. The proof that this policy
achieves the minimum number of quantization levels will
be found in the appendix, section V.

II. QUANTIZED FEEDBACK CONTROL SYSTEM

This paper focuses on a quantized feedback control
system with dropouts, which is shown in figure 1. The plant
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Fig. 1. Quantized networked control system

is a discrete-time linear system whose equations were given
in 1. The statex[k] ∈ Rn is quantized and encoded into a
symbol s[k] from a discrete set{1, 2, · · · , Q}. Throughout
this paper, the terms “quantizer” and “encoder” are used
interchangeably. It is important to mention that the coding
policy may be time-varying, for examples[k] = 1 and
s[k + 1] = 1 may mean quite different signals.s[k] is
sent to the decoder over the network. Because the network
is non-deterministic, a portion of the transmitted symbols
may be dropped. The dropouts are denoted by receivingφ
at the decoder end. The decoder uses the received symbols
to estimatex[k] with xq[k]. The controller computesu[k]
with xq[k] as shown in eq. 1.

We are interested in the following notion of deterministic
stability,

lim
k→∞

‖x[k]‖2 = 0, ∀x[0] ∈ RN . (5)

where‖ · ‖2 denotes the Euclidean 2-norm.

A. Assumptions

The following assumptions will be made in this paper. A
more detailed discussion justifying these assumptions will
be provided below.

1) (A,B) is controllable. A = diag(J1, J2, · · · , Jp)
whereJi is anni × ni real matrix with a single real
eigenvalueλi or a pair of conjugate eigenvaluesλi

andλ∗i . All eigenvaluesλi are assumed to be unstable,
i.e. |λi| > 1.

2) The initial conditionx[0] lies in a super-parallelogram
P [0].

3) Transmitted symbols,s[k], are dropped at the rate of
ε symbols per transmission. The precise definition of
ε will be found in equation 7. We assume that the
encoder and decoder both know whether a dropout
has occurred.

4) Both the encoder and the decoder know the system
matrices (A andB), the coding-decoding policy and
the control law. They also agree upon the initial
uncertainty set, i.e. the super-parallelogram which
x[0] lies in.

We take the matrix,A, (assumption 1) to be in its real
Jordan canonical form [11]. Since any system may be
reduced to this form through a similarity transformation,
we may therefore assumeA = diag(J1, J2, · · · , Jp). When
|λi| < 1, the subsystem corresponding toJi is stable. We
can exclude the stable subsystem and consider only the
lower dimensional system. This paper therefore assumes
that |λi| > 1 (i = 1, · · · , p).

Assumption 2 requires that the initial state is known to
lie within a specified superparallelogramP [0]. This set may
be written as

P [0] = xq[0] + U [0]

where xq[0] is the center ofP [0] and U [0] is a super-
parallelogram centered at the origin and defined in equations
9-10.

Assumption 3 comes from the non-determinism of the
network. We introduce a dropout indicatord[k],

d[k] =
{

1, the symbol at timek is dropped
0, otherwise

(6)

We assume that the dropout model satisfies

ε = lim
L→∞

∑L
i=1 d[i + k0]

L
, for ∀k0 ≥ 0 (7)

whereε is the “average” dropout rate and the convergence
in eq. 7 is uniform with respect tok0.

Assumption 4 requires that the coder and the decoder
deal with the same initial uncertainty, and share the same
coding-decoding policy and control law so that the symbol
produced by the encoder can be correctly interpreted by the
decoder. This is a strong assumption for it requires that the
encoder and decoder are “synchronized”. Maintaining such
synchronization in a fault-tolerant manner requires further
study, but that study is not done in this paper.

B. Mathematical Preliminaries

This subsection defines some notation and lists frequently
used lemmas. Most of lemmas are well known, so their
proofs are omitted.



For the matrixA in assumption 1, define

ρ(A) =
p∏

i=1

(max(1, |λi|))ni (8)

We assume all eigenvalues ofA are unstable. Soρ(A) =
|det(A)|, wheredet(·) is the determinant of a matrix.

This paper quantizes the statex[k] at timek with respect
to a parallelogram representing the quantization “uncer-
tainty”. These uncertainty sets are generally represented as

P [k] = xq[k] + U [k]

where xq[k] ∈ <n is the center ofP [k] and U [k] is a
super-parallelogram with its center at the origin. The super-
parallelogramU [k] is formally represented by a set of
vectorsV[k] = {vi,j [k] ∈ <ni} where i = 1, . . . , p and
j = 1, . . . , ni. The “side” of the parallelogram associated
with the ith Jordan block inA is denoted as the convex hull

Si[k] = Co



v : v =

ni∑

j=1

(±1
2
)vi,j [k]



 (9)

The entire super-parallelogram,U [k], may therefore be
expressed as the Cartesian product of the sides,Si. In other
words

U [k] =
P⊗

i=1

Si[k] (10)

U is a measurable set in EuclideanN -space,RN . Its
volume is defined as

vol(U) =
∫

x∈U

1 · dx (11)

We define the diameter ofU as

dmax(U) = supx,y∈U‖x− y‖2 (12)

where‖ · ‖2 denotes Euclidean 2-norm of a vector.
We define the operation of a matrixT on a setU by

T : U → {y : ∃x ∈ U such that y = Tx} (13)

By the above definition,T can be viewed as a linear
mapping. We denote the image set ofU under the operation
of T as TU . TU may be shown to have the following
properties.

Lemma 2.1:vol(TU) = |det(T )|vol(U).
Lemma 2.2:When T = diag(J1, J2, · · · , Jp) (Ji is de-

fined in assumption 1) andU = c +
⊗p

i=1 Si whereSi is
given in equation 9, then

TU = c′ +
p⊗

i=1

S′i (14)

wherec′ = Tc, and

S′i = Co



v : v =

ni∑

j=1

(±1
2
)Jivi,j





For Ji defined in assumption 1, we have the following
growth rate lemma.

Lemma 2.3:For any non-zerovi ∈ Rni ,

lim
k→∞

‖Jk
i vi‖2 = ∞

lim
k→∞

‖Jk+1
i vi‖2
‖Jk

i vi‖2
= |λi|

The quantization error of the feedback control system
(Eq. 1) is

e[k] = x[k]− xq[k] (15)

Denote the set whiche[k] lies in asU [k], whereU [k] is
a set with the origin as its center.U [k] can be measured
by its diameterdmax(U [k]). The relationship between the
stability of the control system anddmax(U [k]) is established
by lemma 2.4.

Lemma 2.4:The system in eq. 1 is asymptotically stable
if and only if

lim
k→∞

dmax(U [k]) = 0. (16)

Lemma 2.4 can be proven similarly as Lemma 3.5.1 in [9].
The proof is omitted here. By Lemma 2.4, we focus on the
convergence of quantization error, which will guarantee the
asymptotic stability of the quantized control system.

III. M AIN RESULTS

This section states a lower bound (theorem 3.1) on
the number of quantization levels required to stabilize the
feedback control system. The proof of theorem 3.1 follows
the approach in [7], so we only sketch the proof. We then
present thedynamic bit assignment policy(algorithm 3.1)
and state a theorem (theorem 3.2) asserting that the lower
bound is achieved by our bit assignment policy. The proof
of theorem 3.2 will be found in the appendix, section V.

Theorem 3.1:Under assumptions 1 - 4, if the quantized
feedback system in eq. 1 can be asymptotically stabilized,
then the number of quantization levels,Q, satisfies

Q ≥ Qmin =
⌈
ρ(A)

1
1−ε

⌉
(17)

Sketch of Proof: The proof is based on the analysis of
volume evolution of uncertainty sets and is similar to the
proof of Theorem 1 in [7].

The volume ofU [k] is updated by

vol(U [k + 1])

{
≥ |det(A)|

Q vol(U [k]), d[k] = 0
= |det(A)|vol(U [k]), d[k] = 1

Because of asymptotic stability, we know, by lemma 2.4,
limk→∞ vol(U [k]) = 0. This volume limit, together with
the dropout rate ofε, yields

|det(A)|
Q1−ε

< 1 (18)

Becauseρ(A) = |det(A)| and Q is an integer, we obtain
the lower bound in eq. 17.♦

The following algorithm dynamically quantizes the state
x[k] for the feedback system in eq. 1 under assumptions 1-



4. The algorithm updates a parallelogram,P [k] containing
the state at timek. This parallelogram,P [k], is character-
ized by,xq[k], the center of the parallelogram, andU [k], the
uncertainy set. The uncertainty setU [k] is formed from a
set of vectors{vi,j [k] ∈ <ni} ( i = 1, . . . , p, j = 1, . . . , ni)
according to equation 9-10. The uncertainty setU (I,J)[k]
is a modification ofU [k] that is formed from the vectors{
v′i,j [k]

}
where v′i,j = vi,j if (i, j) 6= (I, J) and v′i,j =

vi,j/Q if (i, j) = (I, J). The basic variables updated by this
algorithm are therefore the collection of vectors{vi,j [k]}
and xq[k], a one-step ahead prediction of the quantized
state at timek given observations up to and including time
k−1. The quantized signal that is sent between the encoder
and decoder at timek is denoted ats[k]. This quantized
signal is equal to one ofQ discrete symbols. The following
algorithm description describes two tasks that are executed
concurrently, theencoder and decoder algorithms. Each
task’s first step starts its execution at the same time instant.

Algorithm 3.1: Dynamic Bit Assignment:
Encoder/Decoder initialization:

Initialize xq[0] and{vi,j [0]} so thatx[0] ∈ xq[0]+U [0] and
setk = 0.
Encoder Algorithm:

1) Select the indices(I, J) that are associated with the
longest vectorvi,j [k]. In other words,

(I, J) = arg max
i,j

‖Jivi,j [k]‖2
2) Quantize the statex[k] by settings[k] = s if and

only if

x[k] ∈ xq[k] + x(I,J)
s + U (I,J)[k]

where

x(I,J)
s =

[
0 · · · 0 vT 0 · · · 0

]T
(19)

andv = −Q+(2s−1)
2Q vI,J [k] for s = 1, . . . , Q.

3) Transmit the quantized symbols[k] and wait for
acknowledgement

4) Update the variables

vi,j [k + 1] = Jivi,j [k]
xq[k + 1] = (A + BK)xq[k]

5) If decoder ack received:

vI,J [k + 1] =
1
Q

vI,J [k + 1]

xq[k + 1] = xq[k + 1] + Ax
(I,J)
s[k]

wherex
(I,J)
s[k] is defined in equation 19.

6) Update time,k = k + 1 and return to step 1.

Decoder Algorithm:
1) Update the variables

vi,j [k + 1] = Jivi,j [k]
xq[k + 1] = (A + BK)xq[k]

2) Wait for quantized data,s[k], from encoder.
3) If data received:

vI,J [k + 1] =
1
Q

vI,J [k + 1]

xq[k + 1] = xq[k + 1] + Ax
(I,J)
s[k]

wherex
(I,J)
s[k] is defined in equation 19. Then sendack

back to the encoder.
4) Update time index,k = k + 1, and return to step 1.
Remark: This algorithm assumes the variables{vi,j [k]}

and xq[k] are “synchronized” at the beginning of thekth
time interval. Furthermore, we assume the “ack” from
decoder to the encoder is reliably transmitted.

Remark: The decision in step 1 of the encoder algorithm
is made on the uncertainty set at timek + 1, rather thank.
This was motivated by preliminary studies that using the
kth uncertainty set may perform poorly when some of the
λi are large. This observation motivated the one-step ahead
decision rule used here.

Theorem 3.2:Let

Q =
⌈
ρ(A)

1
1−ε

⌉
.

The feedback system in eq. 1 is asymptotically stable under
the quantizer in algorithm 3.1. FurthermoreU [k] converges
to zero according to

dmax(U [k]) ≤ λ0η
k (20)

whereλ0 is a constant,η =
(

ρ(A)
Q1−ε

) 1
N

In order to improve readability, we move the proof of
theorem 3.2 to the appendix, section V.

Remark: Now we compare the bounds in eq. 3 and eq.
17 (ε = 0). It is the case that

⌈
ρ(A)

1
1−ε

⌉
≤

N∏

i=1

max(1, d|λi|e) (21)

The strict inequality in eq. 21 usually holds. So the bound in
eq. 17 is better than the bound in eq. 3. We take an example

to show the difference.A =
[

1.8 0
0 1.1

]
. The bound in

eq. 3 isQ ≥ 4. The bound in eq. 17 isQ ≥ 2. So the
latter bound is better. Now we try to give some intuitive
explanation for the difference. The quantization policy in
[9] seperately deals with two subsystems

x1[k + 1] = 1.8x1[k] + b1u[k] (22)

x2[k + 1] = 1.1x2[k] + b2u[k] (23)

Every subsystem is unstable and needs at least2 levels.
Total number of quantization levels is at least2×2 = 4, as
shown by eq. 3.

It can be seen that although the two subsystems are
unstable, they, especially the subsystem in eq. 23, are
not too unstable. When we assign2 quantization levels
to every subsystem, there exists excess stability margin
because1.8

2 < 1 and 1.1
2 < 1. This paper’s dynamic



bit assignment policy considers the two subsystems as a
whole. The stability margins can be combined together so
that fewer quantization levels are needed. Figure 2 clearly
shows that the 1-bit quantized system converges to zero as
expected.
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Fig. 2. Response of Quantized System

IV. CONCLUSIONS

This paper derived a lower bound on the minimum
number of the quantization levels required to stabilize the
closed loop system. We showed there exists a dynamic
bit assignment policy that achieves this lower bound. The
bound therefore appears to be the greatest lower bound on
the stabilizing number of quantization levels.
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V. A PPENDIX

Define p[k] =
∏P

i=1

∏ni

j=1 ‖vi,j [k]‖2. We first prove
{p[k]} is eventually bounded by an exponentially decreasing
sequence. Based on that, we derive an eventual upper bound
on dmax(U [k]) and show thatdmax(U [k]) converges to0.
Eventual bound on p[k]: Define the following average
dropout rate

εl,k =
∑l−1

i=0 d[k + i]
l

(24)

By the dropout model in eq. 7, we know for any small
δ0 > 0, there existM > 0 such that

ε− δ0 ≤ εl,k ≤ ε + δ0,∀l ≥ M, ∀k (25)

By algorithm 3.1, we knowvi,j [k] is a scaled version of
Jk

i vi,j [0]. Lemma 2.3 guarantees for anyε0 > 0, there exist
K1 such that whenk > K1,

(1− ε0)|λi| ≤ ‖Jivi,j [k]‖2
‖vi,j [k]‖2 ≤ (1 + ε0)|λi|,∀i, j. (26)

We will limit to l > M andk > K1. By the updating rule
of vi,j [k], we know

p[k + l] =
1

Q1−εl,k

P∏

i=1

ni∏

j=1

‖J l
ivi,j [k]‖2

≤ ηl
K1,Mp[k]

whereηK1,M = ρ(A)
Q1−ε−δ0

(1+ ε0)N . Becauseρ(A)
Q1−ε < 1 and

ε0 and δ0 can be small enough by choosing largeK1 and
M ,

ηK1,M < 1 (27)

Thereforep[k + ml] is bounded by

p[k + ml] ≤ p[k]ηml
K1,M (28)

For n = 1, 2, · · · , l − 1, we can get the following bound

p[k + ml + n] ≤ (
ρ(A)(1 + ε0)N

)n
p[k + ml] (29)

Combining eq. 28 and 29 yields

p[k + l] ≤ p0η
k+l
K1,M , l ≥ 0 (30)

wherep0 is a constant. By choosing large enoughp0, the
above inequality holds for anyk ≥ 0, i.e. p[k] ≤ p0η

k
K1,M .

By the definition ofηK1,M , we know

lim
K1→∞,M→∞

ηK1,M = η (31)

So we rewrite eq. 30 into

p[k] ≤ p0η
k (32)

Eventual upper bound on dmax(U [k]): From eq. 32, we
know p[k] converges to0. But that fact doesn’t surely imply
the convergence of‖vi,j [k]‖2. We prove that

‖vi1,j1 [k]‖2
‖vi2,j2 [k]‖2 will

be eventually bounded for anyi1, i2, j1, j2, which yields the
convergence of‖vi,j [k]‖2 and furthermore the convergence
of dmax(U [k]).



By eq. 26, we obtain

‖vi1,j1 [k]‖2
‖vi2,j2 [k]‖2 ≤ α

‖Ji1vi1,j1 [k]‖2
‖Ji2vi2,j2 [k]‖2 (33)

where α = 1+ε0
1−ε0

maxi1,i2
|λi1 |
|λi2 | . Thus the boundedness of

‖vi1,j1 [k]‖2
‖vi2,j2 [k]‖2 can be guaranteed by that of

‖Ji1vi1,j1 [k]‖2
‖Ji2vi2,j2 [k]‖2 ,

which is pursued in the following.
Define Ti,j = {k : Ik = i, Jk = j}. Ti,j is the

collection of time instants for‖Jivi,j [k]‖2 to be the largest.
Ti,j has infinite number of elements for anyi, j (otherwise
‖vi,j [k]‖2 will converge to∞). We thus know there exist
K > K1 such that

count(Ti,j ∩ {K1,K1 + 1, · · · , K}) ≥ M, ∀i, j. (34)

where count(·) denotes the number of elements of a set.
From now on, we will limit to k > K. At time instant
k, suppose(i0, j0) = argmini,j‖Jivi,j [k]‖2. Thus we can
know

‖Ji0vi0,j0 [k]‖2 ≤ ‖Jivi,j [k]‖2, ∀i, j (35)

By eq. 34, we know the definition

l = min {m : count({k −m, k −m + 1, · · · , k}
∩Ti0,j0) = M} ,

is meaningful. Therefore we get

‖Ji0vi0,j0 [k − l]‖2 ≥ ‖Jivi,j [k − l]‖2, ∀i, j (36)

By eq. 34, we knowk − l ≥ K1. So eq. 26 holds for the
time instants afterk − l.

Now we study the evolution ofvi,j [k] from k − l to k.
By the updating rule ofvi,j [k] and the definition ofl, we
know





Ji0vi0,j0 [k] = 1
QM J l

i0

(
Ji0vi0,j0 [k − l]

)

Jivi,j [k] = 1

Qli,j
J l

i

(
Jivi,j [k − l]

)
,

(i, j) 6= (i0, j0)

(37)

whereli,j((i, j) 6= (i0, j0)) is governed by




∑
(i,j)6=(i0,j0)

li,j = l −M

≥ l(1− ε− δ0)−M
li,j ≥ 0

(38)

By eq. 26, 35 and 37, we obtain

((1− ε0)|λi0 |)l

QM
‖Ji0vi0,j0 [k − l]‖2 (39)

≤ ((1 + ε0)|λi|)l

Qli,j
‖Jivi,j [k − l]‖2,∀i, j

Combining eq. 39 and 36 yields

((1− ε0)|λi0 |)l 1
QM

≤ ((1 + ε0)|λi|)l 1
Qli,j

(40)

Multiplify the above inequality for all possiblei, j ((i, j) 6=
(i0, j0)). We obtain

((1− ε0)|λi0 |)l(N−1) 1
Q(N−1)M

≤

(1 + ε0)N−1

∏

(i,j)6=(i0,j0)

|λi|



l

1

Q

∑
(i,j)6=(i0,j0)

li,j

≤

(1 + ε0)N−1

∏

(i,j)6=(i0,j0)

|λi|



l

1

Ql(1−ε−δ0)−M

Solve the above inequality with respect tol, we will get

l ≤ li0 (41)

where li0 = MNln(Q)

(N−1)ln
(

1−ε0
1+ε0

)
+Nln(|λi0 |)+ln

(
Q1−ε

ρ(A)

)
−δ0ln(Q)

(Becauseε0 andδ0 can be arbitrarily small andQ
1−ε

ρ(A) > 1,
we can guaranteeli0 ≥ 0). Define the maximum ofli0 as
l0 = maxi0 li0 . We know

l ≤ l0 (42)

Now we try to bound‖Jivi,j [k]‖2
‖Ji0vi0,j0‖2

for (i, j) 6= (i0, j0).

‖Jivi,j [k]‖2
‖Ji0vi0,j0 [k]‖2 ≤

|λi|l
Qli,j

(1 + ε0)l‖Jivi,j [k − l]‖2
|λi0 |l
QM (1− ε0)l‖Ji0vi0,j0 [k − l]‖2

≤ QM

( |λi|
|λi0 |

)l (1 + ε0

1− ε0

)l

≤ r0

where r0 = QM
(
maxi1,i2

|λi1 |
|λi2 |

)l0 (
1+ε0
1−ε0

)l0
. Eq. 36 is

used to reach the above second inequality. By eq. 35, we
know ‖Ji0vi0,j0 [k]‖2 is the smallest among‖Ji1vi1,j1 [k]‖2.
So

‖Ji1vi1,j1 [k]‖2
‖Ji2vi2,j2 [k]‖2 ≤ r0, ∀i1, i2, j1, j2 (43)

By eq. 33 and 43, we obtain

maxm,n ‖vm,n[k]‖2
‖vi,j [k]‖2 ≤ r (44)

wherer = r0α. So

‖vi,j [k]‖2 ≥ 1
r

max
m,n

‖vm,n[k]‖2 (45)

By the above relationship, together with the definition of
p[k] and the bound in eq. 32, we know

max
m,n

‖vm,n[k]‖2 ≤ r N
√

p0η
k
N (46)

Becausedmax(U [k]) ≤ N maxm,n ‖vm,n[k]‖2, we know

dmax(U [k]) ≤ λ0η
k
N (47)

whereλ0 = Nr N
√

p0. Although we get eq. 47 fork > K, it
can be extended tok = 1, 2, · · · by choosing a large enough
λ0. ♦
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