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Stability of Quantized Control Systems under
Dynamic Bit Assignment

Qiang Ling and Michael D. Lemmon

Abstract—This paper studies the stability of a quantized a predetermined séf[k] called theuncertainty setlf U]
feedback control system. In recent years, there have been a converges ta0, i.e. every point inU[k] converges ta0,
number of papers characterizing the minimum information e the traditional stability of the system in eq. 1 can be
rate required to assure closed loop stability. An inherent .
constraint on these quantized control systems is that the g_uarantee(ﬂ[k] is usually assumed to be rectangular. Many
number of quantization levels must be an integer. In our different approaches have been proposed to guarantee the
opinion, insufficient attention has been paid to this constraint. convergence of/[k]. These approaches are reviewed below.
This paper takes this integral constraints into account to In [5] [6] every side of the uncertainty set/[k], is
establish a lower bound on the number of quantization levels equally partitioned intod parts, i.e.U[k] is partitioned
required for closed loop stability. We then introduce a novel . M o
dynamic bit assignment policy that achieves this bound. into N small rectangles. Denote the small rectangles as

Uilk] (i =0,1,---,N™ —1). Supposez[k] € U;[k]. The
. INTRODUCTION index j will be sent.z?[k] is estimated by the center of

In recent years there has been a considerable amodntk]. Uk + 1] is a rectangle boundinglU;[k] + Bu[k],
of work studying the stability of feedback control systemsvhere AU;[k] meansAU,k] = {z|z = Ay,y € U,[k]}.
under quantized feedback [1] [2] [3] [4] [5] [6] [7] [8] [9] Sufficent conditions fo/[k] to converge td) are provided.

[10]. These papers study the following linear discrete time In [8] [9], a framework similar to that used in [5] is

system followed. This work may be distinguished from [5] in the
zlk+1] = Az[k]+ Bulk] choice of quantization policy. In particular, the quantization
{ ul] = K[k (1) policy in [9] has thei” side ofU[k] equally partitioned into

_ N 2% parts, i.e.R; bits are assigned to th&" dimension. It
where (4, B) is controllable,z[k] € R is the stateulk] s required tha2® > |);|. The total number of bits is
is the control,z?[k] is the quantized version af[k]. The p — Zfil R;, i.e. there ar&) = 2% quantization levels. It

eigenvalues ofd are denoted a; (i1 = 1,---, N). is asserted in [9] that the system in eq. 1 is asymptotically
Among the aforementioned quantization papers, [1Qtaple if and only if

considered stochastic moment stability, i.e. some moment of N
aj, converges t@. The other papers study determlrjlstlc sta- 9R H maz (1, | \i)) )
bility, i.e. z; converges td in the sense of a certain norm, Pl
for example the&-norm. This paper focuses on deterministic B

stability. The papers on deterministic stability can be furthe-f'—he Ewer bobund In €q. |2 1S dgr'ﬁq under thg ass_umptlon
classified into two groups based on their assumptions abotﬂf’lt i can be any real numbel.nis assurr_lpt'lon IS not
eaningful becausB; should be an integeA similar prob-

the quantization range; static and dynamic quantizatiorﬁI _ . . —
policies. lem concerning the assumption of non-integral quantization

; N ‘L Iso exists in [7].
Static quantization policies [1] [4] presume that theft!So ¢ . . .
quantization policy for the data is fixed for all time. In This paper examines the stab|llty of_quantlzec_i feedback
[1], it is proven that a finite number of quantization levelscontrol systems in which th™ are required to be integers.

cannot achieve aymptotic stability. An infinite number of °/OWing the derivation in [9], we can obtain the following
guantization levels is studied in [4] where it is proven thapound

the least dense quantizer achieving asymptotic stability has R N
a logarithmic distribution. In [4], finite quantization levels 2% 2 Hm“x(lv [l ©)
are shown to be able to achieve practical stability, i.e. the =1
states will converge into a bounded set. where [-] means[z| = min{n|n >z,n € N'}. This is

Dynamic quantization policies [5] [6] [8] [9] [7] that similar to the inequality in equation 2, but it is not the
z[k] presume that the state at time instdntlies inside greatest lower bound. This paper shows that
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that actually achieves this bound. This bit assignment is 1)
done as follows. Suppose there ape= 27 quantization
levels and(@ is integer. At every step, only the “longest”
(in a certain sense) side 6f[k] is equally partitioned into
Q parts; the other sides aren't partitioned. Because no side
is always the longest, the bit assigning is dynamic rather 2)
than static. The main contribution of this paper is to prove
that this policy achieves the lower bound in equation 4.
This paper is organized as follows. Section Il formally
defines the quantized feedback control system, introduces
some notation, and lists the frequently used technical lem-
mas. Section lll states and proves the main result conerning
the lower bound on the minimum number of quantization 4)
levels stabilizing the system. This section also introduces

3)

(A,B) is controllable. A = diag(J1,Ja2,-- -, Jp)
where J; is ann; x n; real matrix with a single real
eigenvalue); or a pair of conjugate eigenvalues
and\?. All eigenvalues\; are assumed to be unstable,
ie. |>\’L‘ > 1.

The initial conditionz[0] lies in a super-parallelogram
PJ0].

Transmitted symbols;[k], are dropped at the rate of

€ symbols per transmission. The precise definition of
e will be found in equation 7. We assume that the
encoder and decoder both know whether a dropout
has occurred.

Both the encoder and the decoder know the system
matrices @ and B), the coding-decoding policy and

the dynamic bit assignment policy. The proof that this policy
achieves the minimum number of quantization levels will
be found in the appendix, section V.

the control law. They also agree upon the initial
uncertainty set, i.e. the super-parallelogram which
x[0] lies in.

We take the matrix,A, (assumption 1) to be in its real

Il. QUANTIZED FEEDBACK CONTROL SYSTEM . :
rdan canonical form [11]. Since any system may be

: . J
This baper focuses on a quant|z_ed_feedback Contrpfduced to this form through a similarity transformation,
system with dropouts, which is shown in figure 1. The pIar\;ve may therefore assumé— diag(Ji, Ja, -, J,)
- ) 9 yYp)r

|Ai| < 1, the subsystem corresponding fpis stable. We
can exclude the stable subsystem and consider only the
lower dimensional system. This paper therefore assumes
that|\;| >1 (@ =1,---,p).

Assumption 2 requires that the initial state is known to
lie within a specified superparallelograf0]. This set may
be written as

Xk]

u[K] Xk +1 = Ak] + Bulk] |

Controller

x9[K]

Encoder/Quantizer

k10{1.2,---,Q}

P[0] = 27]0] + U[0]

where z9][0] is the center ofP[0] and U[0] is a super-
parallelogram centered at the origin and defined in equations
9-10.

is a discrete-time linear system whose equations were givenAssumption 3 comes from the non-determinism of the
in 1. The stater[k] € R" is quantized and encoded into anetwork. We introduce a dropout indicatdji],

symbol s[k] from a discrete sefl1,2,---,Q}. Throughout 1, the symbol at timek is dropped

skl/¢

Fig. 1. Quantized networked control system

this paper, the terms “quantizer” and “encoder” are used d[k] = { 0, otherwise (6)
interchangeably. It is important to mention that the codin -

policy may be time-varying, for examplelk] — 1 and gNe assume that trle dropout model satisfies

sk +1] = 1 may mean quite different signals[k| is o Y dli ko]

sent to the decoder over the network. Because the network ~ © — I , for Vko 20 ™

may be dropped. The dropouts are denoted by receiingin eq. 7 is uniform with respect téy.

at the decoder end. The decoder uses the received symbolassumption 4 requires that the coder and the decoder

to estimatez[k| with z7[k]. The controller computes[k]  deal with the same initial uncertainty, and share the same
with 27[k] as shown in eq. 1. coding-decoding policy and control law so that the symbol

We are interested in the following notion of deterministioproduced by the encoder can be correctly interpreted by the
stability, decoder. This is a strong assumption for it requires that the
encoder and decoder are “synchronized”. Maintaining such
synchronization in a fault-tolerant manner requires further
study, but that study is not done in this paper.

Jim |[{k]fl2 = 0, V(0] € RN. (5)

where|| - |2 denotes the Euclidean 2-norm.

A. Assumptions B. Mathematical Preliminaries

The following assumptions will be made in this paper. A This subsection defines some notation and lists frequently
more detailed discussion justifying these assumptions willsed lemmas. Most of lemmas are well known, so their
be provided below. proofs are omitted.
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For the matrixA in assumption 1, define For J; defined in assumption 1, we have the following
growth rate lemma.

p
p(A) = H (max(1,|\|)"™ (8) Lemma 2.3:For any non-zera; € R",
= L PACT IS

We assume all eigenvalues df are unstable. Sp(A) = _
|det(A)|, wheredet(-) is the determinant of a matrix. ‘m i will2 = |\

This paper quantizes the statgk] at time k with respect Ck—oo || TFug] '
to a parallelogram representing the quantization “uncer- The quantization error of the feedback control system

tainty”. These uncertainty sets are generally represented & 1 is
Plk] = 27[k] + U[k] e[k] = x[k] — x?[K] (15)

where z7[k] € R" is the center ofP[k] and U[k] is a Denote the set whicla[k| lies in asU[k], whereU[k] is

super-parallelogram with its center at the origin. The supef S€t With the origin as its centelii[k] can be measured
parallelogramU[k] is formally represented by a set of bY itS diameterd, . (U[k]). The relationship between the
vectors V[k| = {v; ;[k] € "} wherei = 1,...,p and stability of the control system ant},...(U[k]) is established

j =1,...,n;. The “side” of the parallelogram associatedPy lemma 2-4_- _ _ .
with theith Jordan block ind is denoted as the convex hull  Lémma 2.4:The system in eq. 1 is asymptotically stable
if and only if
ng 1
Si[k] = Co {u P =) ()i [k}} 9) Jim dpor (U[K]) = 0. (16)
j=1 Lemma 2.4 can be proven similarly as Lemma 3.5.1 in [9].

The entire super-parallelogrant/[k], may therefore be The proof is omitted h'ere.. By Lemma.2.4, we focus on the
expressed as the Cartesian product of the sisledn other ~cONvergence of quantization error, which will guarantee the

words asymptotic stability of the quantized control system.
P I1l. M AIN RESULTS
Ulk] = ®Si (] (10) This section states a lower bound (theorem 3.1) on

the number of quantization levels required to stabilize the
U is a measurable set in Euclideavi-space,R". Its feedback control system. The proof of theorem 3.1 follows

volume is defined as the approach in [7], so we only sketch the proof. We then
present thedynamic bit assignment polidgalgorithm 3.1)
vol(U) = /er 1-dw (11)  and state a theorem (theorem 3.2) asserting that the lower

bound is achieved by our bit assignment policy. The proof

We define the diameter df as of theorem 3.2 will be found in the appendix, section V.

Amaz(U) = supsyevlz — 2 (12) Theorem 3.1:Under assumptions 1 - 4, if the quantized
) ; feedback system in eq. 1 can be asymptotically stabilized,
where|| - [|> denotes Euclidean 2-norm of a vector. then the number of quantization level3, satisfies
We define the operation of a matriX on a setU by .
Q= Quin = [ p(A) | (17)
T:U — {y:3x €U such that y =Tz} (13)

Sketch of Proof: The proof is based on the analysis of
By the above definition,I" can be viewed as a linear volume evolution of uncertainty sets and is similar to the
mapping. We denote the image settotinder the operation proof of Theorem 1 in [7].
of T as TU. TU may be shown to have the following The volume ofU[k] is updated by
properties. ldet(A)]
Lemma 2.1:00l(TU) = |det(T)|vol (U). vol (U + 1}){ > g vol(U[K]),  dlk]
Lemma 2.2:WhenT = diag(J1, Ja,-- -, J,) (Ji is de- = |det(A)|vol(Uk]), d[K]
fined in assumption 1) antl = ¢+ @;_, 5; whereS; is  Because of asymptotic stability, we know, by lemma 2.4,

0
1

given in equation 9, then limy, oo vol(U[k]) = 0. This volume limit, together with
P the dropout rate of, yields
TU = +(X) S (14) det(4)|
i=1 oI <1 (18)
wherec = T'¢, and ] ] ]
Becausep(A) = |det(A)| and Q is an integer, we obtain
, i1 the lower bound in eq. 1%
Si=Coqv : v= Z(i§)Ji”iJ The following algorithm dynamically quantizes the state
J=1 z[k] for the feedback system in eq. 1 under assumptions 1-
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4. The algorithm updates a parallelograf{k] containing 2) Wait for quantized datas[k], from encoder.
the state at timé:. This parallelogrampP[k], is character- 3) If data received:

ized by,z?[k], the center of the parallelogram, abidk], the 1

uncertainy set. The uncertainty s&fk] is formed from a vrglk+1] = @UI,J[k‘ +1]

set of vectorv; ;[k] € R™} (i=1,...,p,j=1,...,n;) . . (1)

according to equation 9-10. The uncertainty &&f-/)[k] wlk+1] = 29k + 1]+ Az

I{SU?'E;{]]()}da%aet:gr;{qu[ki_th?; I(j Eg;rr:ée((:llf?? a;hdevyécfrs Wherexif;c]” is defined in equation 19. Then seack
d b g y ' v back to the encoder.

um/Q if (i,5) = (I, J). The basic vquables updated by this 4) Update time indexk — & + 1, and return to step 1.
algorithm are therefore the collection of vectdrs; ;[k]} Remark: This algorithm assumes the variables ;[k]}
and z?[k], a one-step ahead prediction of the quantized ) 9 7

q “ H ” . .

state at timek given observations up to and including time"’.mOl v [k] are “synchronized” at the beginning Pf th,l‘,ﬁh
. . : time interval. Furthermore, we assume the “ack” from
k—1. The quantized signal that is sent between the enCOd&recoder 1o the encoder is reliably transmitted
and decoder at timé is denoted ats[k]. This quantized y '

. X : . Remark: The decision in step 1 of the encoder algorithm
signal is equal to one ap discrete symbols. The following is,made on the uncertainty set at tithe- 1, rather thark

algorithm description describes two tasks that are executq%is was motivated by preliminary studies that using the

concurrently, theencoderand decoder algorithms. Each kth uncertainty set may perform poorly when some of the
task’s first step starts its execution at the same time instag\t: are large. This observation motivated the one-step ahead
Algorithm 3.1: Dynamic Bit Assignment: d:écision rulé used here
Encoder/Decoder initialization: Theorem 3.2-Let '
Initialize z9[0] and{v; ;[0]} so thatz[0] € z?[0]+U|[0] and -
setk = 0. Q= [p(A)ﬁ—‘ :
Encoder Algorithm:
1) Selectthe indices(I, J) that are associated with the
longest vectow; ;[k|. In other words,

The feedback system in eq. 1 is asymptotically stable under
the quantizer in algorithm 3.1. Furthermdvék| converges
to zero according to

(I7 ']) = arg HzlaJ,X ||Jﬂ]i,j [k]”Q dmaw(U[k]) < )\Onk (20)

2) Quantize the statex[k] by settings[k] = s if and
only if

1
where )\, is a constanty = g(f,‘l Y

In order to improve readability, we move the proof of
wlk] € z[k] + 20D 4+ U [ theorem 3.2 to the appendix, section V.
Remark: Now we compare the bounds in eq. 3 and eq.

where 17 € = 0). It is the case that
I =[0 < 0 o7 0 - o}T (19) 1 N
A)T—=| < max(1, [|\; 21
andv = =242=Uy, k] for s =1,...,Q. M ) Wl:[l Sl D
3) Tr?(nsmllt dthe quatmtlzed symbob[k] and wait for The strict inequality in eq. 21 usually holds. So the bound in
acknowledgemen eq. 17 is better than the bound in eq. 3. We take an example
4) Update the variables 18 0
to show the differenced = ' . The bound in
vijlk+1] = Jiv ;K] . 0 11
. "/ . eq. 3isQ > 4. The bound in eq. 17 1§ > 2. So the
2k +1] = (A+BE)a?[k] latter bound is better. Now we try to give some intuitive
5) If decoder ack received: explanation for the difference. The quantization policy in
1 [9] seperately deals with two subsystems
vralk+ 1l = Forgk+1] sk 41 = 1.821[K] + brulk] 22)
k41 = 29k + 1]+ A2l wolk +1] = L.1lzo[k] + boulk] (23)
wherez7) is defined in equation 19. Every subsystem is unstable and needs at |2asivels.

s[k]

/ Total number of quantization levels is at ledst 2 = 4, as
6) Update timek = k + 1 and return to step 1. q

) shown by eq. 3.
Decoder Algorithm: It can be seen that although the two subsystems are
1) Update the variables unstable, they, especially the subsystem in eq. 23, are
not too unstable. When we assignquantization levels
viglk+1] = Jivi ;K] to every subsystem, there exists excess stability margin
ik+1] = (A+ BK)2[K] because:® < 1 and L} < 1. This paper's dynamic

2
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bit assignment policy considers the two subsystems as a V. APPENDIX
whole. The stability margins can be combined together so pefine pjk] = []~ T Hlvi (k]2 We first prove
1= Jj= 7, .

that fewer quantization levels are needed. Figure 2 clearly, 11 is eventually bounded by an exponentially decreasing
shows that the 1-bit quantized system converges to zero &Squence. Based on that, we derive an eventual upper bound
expected. oN dpae (U[k]) and show thatl,,..(U[k]) converges td).
Eventual bound on p[k]: Define the following average
dropout rate

-1 .
200+ B — i= d k + 2
Bk = % (24)
1 By the dropout model in eq. 7, we know for any small
E 0o > 0, there existM > 0 such that
E * e — 80 < Eun < e+ 00,1 > M,k (25)

By algorithm 3.1, we know; ;[£] is a scaled version of
JFv; ;[0]. Lemma 2.3 guarantees for any > 0, there exist
K such that wherk > K,
T mE e o e (1 oy < vl
Fig. 2. Response of Quantized System i, (K12
We will limit to | > M andk > K;. By the updating rule
of v, ;[k], we know
IV. CONCLUSIONS P n

1
This paper derived a lower bound on the minimum plk +1] WHH”Jf“M[k“h
number of the quantization levels required to stabilize the =1j=1
closed loop system. We showed there exists a dynamic U%l,MP[/f]
bit assignment policy that achieves this lower bound. The

_ _p4) N ar(A)
bound therefore appears to be the greatest lower bound Wherenx, m = gi=e—s (1 +€0)". Becausegi= < 1 and

the stabilizing number of quantization levels €0 anddo can be small enough by choosing large and
. M,

REFERENCES Ny ,m < 1 (27)

IN

[1] D. Delchamps, “Stabilizing a linear system with quantized statéThereforep[k + m!] is bounded by
feedback,"IEEE Transactions on Automatic Contralol. 35(8), pp.

916-924, 1990. plk +mi] < plklnil o (28)
[2] W. Wong and R. Brockett, “Systems with finite communication ’
bandwidth constraints- part i state estimation problé&®ZE Trans-  Forn =1,2,---,1 — 1, we can get the foIIowing bound
actions on Automatic Contrplol. 42(9), pp. 1294-1299, 1997. n
[8] ——, “Systems with finite communication bandwidth constraints- p[k +ml+ n] < (p(A)(l + EO)N) p[k + ml] (29)

part ii: stabilization with limited information feedbackKEEE Trans-
actions on Automatic Contrplol. 44(5), pp. 1049-1053, 1999. Combining eq. 28 and 29 yields
[4] N. Elia and S. Mitter, “Stabilization of linear systems with limited
information,” IEEE Transactions on Automatic Controlol. 46(9), p[k + l] < Pon?lM,l >0 (30)
pp. 1384 —1400, 2001. 1
[5] R. Brockett and D. Liberzon, "Quantized feedback stabilization ofwhere p, is a constant. By choosing large enough the

linear systems JEEE Transactions on Automatic Contrabl. 45(7), f f : k
op. 1279 —1289, 2000, above inequality holds for any > 0, i.e. p[k] < ponj, -

[6] D. Liberzon, “On stabilization of linear systems with limited infor- BY the definition ofng, s, we know
mation,” IEEE Transactions on Automatic Controlol. 48(2), pp. .
304-307, 2003. lim  ng,m =1 (31)
[7] J. Hespanha, A. Ortega, and L. Vasudevan, “Towards the control of K1 —00,M—00
linear systems with minimum bit-rate,” iRroc. of the Int. Symp. on  Sqg we rewrite eq. 30 into
the Mathematical Theory of Networks and Syste2@92.
[8] S. Tatikonda and S. Mitter, “Control under communication con- p[k} < p077k (32)
straints,” inthe 38th Annual Allerton Conference on Communications -
and Control Computatian2000, pp. 182-190. _ Eventual upper bound on d,,..(U[k]): From eq. 32, we
[9] S. Tatikonda, “Control under communication constraints,” Ph.D. ) ]
dissertation, M.I.T., 2000. know p[k] converges t@). But that fact doesntsulzely imply
[10] G. Nair and R. Evans, “Exponential stabilisability of finite dimen-the convergence dfv; ;[k]| 2. We prove tha IZ’_'ln?_l {k”:2 will
siongilgéinggir3 s%/ggesms with limited data ratesfitomatica vol. 39, be eventually bounded for any, is, j1, jo Whi1(2: J2yiel2ds the
pp. —0993, - '
[11] R. Hom and C. JohnsomMatrix analysis Cambridge University convergence ofiv; ;[k]||2 and furthermore the convergence
Press, 1985. of dpnae (U[E]).

4919



By eq. 26, we obtain Multiplify the above inequality for all possiblg j ((i,j) #
io, jo)). We obtain
v, 4, [E]ll2 <a iy viy gy [l (0, Jo))

(33) N 1
Vi, 2 (K]l 2 H 2Viz, gz [K][]2 ((1—= 50)‘)\i0|)l(N 2 W

wherea = {22 max;, 4, IA”} Thus the boundedness of i ,
lviq 1 [K]ll2 i1 Viy gy (K2 < N-1 )
T can be guaranteed by that gfiwsipn?, < [ (1+eo) H Al S,
which is pursued in the foIIowmg (i,5)#(i0,50) QR () #li0-10)

Define T;,;, = {k : Iy = i,J, = j}. T;; is the T
collection of time instants fojf.J;v; ; k][> to be the largest. ~ _ (14 )N H Il 1
T;,; has infinite number of elements for anyj (otherwise 0 ()2l ] Qii—e—do)—M

) 0,J0

|lvs,;[E]]l2 will converge tooco). We thus know there exist

K > K; such that Solve the above inequality with respectitove will get

Count(z,jm{K17K1+177K}) 2M7V7’7j (34) ZSZZO (41)

where count(-) denotes the number of elements of a sewhere [;, = MNin(Q)

From now on, we will limit tok > K. At time instant (V- Ul”(;zo)+NZ"(MZ°|)+Z"( P<A’) Soin(Q)
k, suppose(io, jo) = argmin, ;|Jiv ;[k]||2. Thus we can (Becausesy anddy can be arbitrarily small anéL > 1

know we can guaranteg, > 0). Define the maX|mum of
lo = max;, [;,. We know
[ iqVio o [Klll2 < || Jivi 5[] [l2, Vi, j (35) 1<l (42)
By eq. 34, we know the definition Now we try to boun HJ vi,; [kl H2 for (’L ]) ?é (2'07.7'0)_
JioVig,io ll2
I = min{m:count({k —m,k—m+1,--- k} \1| -
Tip) = M} | eve K]l R R

”Jiovio-,jo [k} ”2

[XiglF 7
1-— —1
is meaningful. Therefore we get Qi ( EO) 1o [, I

- - L. |>\| 1+ €0
1 i0vig o[k = 1ll2 > [[Jiviilk = 12, Vi i (36) < Q") (=
[Xil ) \1—¢0
By eq. 34, we knowk — [ > K. So eq. 26 holds for the < 7o
time instants aftek — [. PNY: g e\ .
Now we study the evolution of; ;[k] from k — [ to k. where ro = Q% {maxi, i 5] (1—50 - Eq. 36 1s

used to reach the above second inequality. By eq. 35, we

By th ti le ob; the definition of, :
y the updating rule ob; ;[k] and the definition of, we koW ||, 05, 5. [K][}> is the smallest amongys, vs, 5, k]l

know So
Jiovio jo[k} Q J (J Vi, Jo[ Z]) ||Ji Viq,j5 [k'HIQ ..
’ o - e <7“7VZ,Z, ’ 43
Sk = S (Jwglk=1). @D) st o Bl = 70 7202 (43)
(4,7) # (0, J0) By eq. 33 and 43, we obtain
wherel; ;((i,§) # (io, jo)) is governed by maX,n [[Vm,n k]2 <r (44)
) [0, 5[K]|2
Z(i,j#(io’jo) lij = é_ M wherer = rga. So
> l(1-c—d)-M (38 .
li; > 0 [vi,;[k]ll2 > - max |V, n[K]]2 (45)
By eg. 26, 35 and 37, we obtain By the above relationship, together with the definition of
: plk] and the bound in eq. 32, we know
ww, Vio.so [k = 1| (39) Kl < 7 N/prn 46
oM i0 Vi, jo 2 nﬂ}?f””mn[ Jl2 <r ¥/pon (46)
1 i 4 _ Becausal .. (U[k]) < N maxy, », ||Vm,n[k]||2, We know
< ey vi (V1K) ol
' dmaz(U[k]) S )\(]nﬁ (47)
Combining eq. 39 and 36 yields where)g = N7 {/po. Although we get eq. 47 fok > K, it
1 1 can be extended tb= 1,2, - - - by choosing a large enough
(0=l gar < ()M G (40 a6
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