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Abstract— For nonlinear systems with measured-input non-
linearities, a subspace identification algorithm is used to
identify the linear dynamics with the nonlinear mappings rep-
resented as a linear combination of basis functions. A selective-
refinement technique and a quasi-Newton optimization algo-
rithm are used to iteratively improve the representation of the
system nonlinearity. For both methods, polynomials, splines,
sigmoids, wavelets, sines and cosines, or radial basis functions
can be used as basis functions. Both approaches can be used
to identify nonlinear maps with multiple arguments and with
multiple outputs.

1. INTRODUCTION

Nonlinear identification is an increasingly active research
area. Among the various approaches that have been de-
veloped are nonparametric methods, which are primarily
frequency-domain based. These methods include techniques
for identifying Volterra kernels, which characterize input-
output response by means of a sum of multi-frequency
convolutions. For time-domain simulation, however, it is
convenient to construct nonlinear state-space realizations of
these maps, which may be difficult in practice [11]. On
the other hand, parametric methods have been developed
based on structured and unstructured time-domain models.
Unstructured or black-box models [7, 12] often rely on
neural network models to exploit their function approxi-
mation properties. Structured or grey-box models [3–5, 10]
are based on the interconnection of linear and nonlinear
subsystems.

The most common model structures are the Hammer-
stein, Wiener, nonlinear feedback, and combined Ham-
merstein/nonlinear feedback models shown in Figure 1,
Figure 2, Figure 3, and Figure 4. These models involve
the interconnection of a single linear block and a single
nonlinear block. Identification with these model structures
has been widely considered, see, for example, [1, 2, 6,
14]. A point that has not been stressed is the fact that
nonlinear identification with the Wiener model structure
is significantly more difficult than identification with the
Hammerstein structure. The reason for this difficulty is the
fact that identification of a nonlinear map is more tractable
when a measurement of the input to the map is available.

The Hammerstein nonlinear/feedback model can be
viewed as a realization of a nonlinear system. Accordingly,
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the representation of the nonlinearities is not unique. It has
been shown in [14] that it is not possible to uniquely identify
the nonlinear maps. The identified maps could differ by a
scaling coefficient or a bias from the real nonlinearity.
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In view of the fact that nonlinear identification is facil-
itated by the availability of inputs, a general formulation
of nonlinear identification in this setting was considered
in [8] using a subspace identification algorithm [9, 13]
along with a given basis expansion for the nonlinear maps.
The function expansion was chosen to be linear in the
parameters, which allows the nonlinear identification prob-
lem to be recast as a linear identification problem with
generalized inputs. The multivariable capability of subspace
identification algorithms is essential to this approach by
allowing an arbitrary number of generalized inputs.

The approach of [8] requires a fixed set of basis functions
to represent the nonlinear mapping. For nonlinear mappings
of several inputs, the curse of dimensionality requires an
excessively large number of basis functions. In addition,
the subspace identification algorithm identifies only the
coefficients of the basis functions, not the basis functions
themselves. Hence, without prior knowledge of the form
of the nonlinear mappings, it may be necessary to employ
a large number of basis functions, rendering the problem
numerically intractable.



In view of these issues, the present paper develops
two techniques for iteratively refining the basis function
representation of nonlinear mappings that are functions of
measured inputs. As in [8], both techniques use a subspace
identification algorithm to identify the linear dynamics for a
set of basis functions representing the nonlinear functions.

The first technique uses selective refinement to improve
the representation of the nonlinear functions. By applying
a singular value decomposition to the input matrix, the
dominant nonlinearities are identified for the chosen set
of basis functions. Next, a random collection of basis
functions is introduced to improve the representation of the
dominant nonlinearities. Iteration of these steps constitutes
the selective refinement process.

The second algorithm optimizes a fixed set of basis func-
tions by means of a BFGS quasi-Newton optimization code.
The representation of the nonlinear map is systematically
improved by modifying the basis functions rather than by
adding additional basis functions. A subspace identification
algorithm is used to identify the linear dynamics for a
chosen set of basis functions representing the nonlinear
functions. For that particular set of state space matrices,
the basis functions are then optimized using a quasi-Newton
optimization algorithm.

Both techniques are flexible in their implementation. For
example, arbitrary basis functions such as polynomials,
splines, sigmoids, sinusoids, or radial basis functions can be
used. In fact, a multi-layer neural network can also be used
to represent the nonlinear mapping. Furthermore, the inputs
to the nonlinear mapping can consist of either measurements
of exogenous signals or measurements of system outputs
that are fed back to the system through a nonlinear mapping.
Both approaches can be used to identify nonlinear maps of
multiple arguments and with multiple outputs.

2. PROBLEM FORMULATION

Consider the nonlinear discrete-time system

xk+1 = Axk + F (uk, yk), (2.1)

yk = Cxk + G(uk), (2.2)

where xk ∈ R
n, uk ∈ R

m, yk ∈ R
p, A ∈ R

n×n, C ∈

R
p×n, F : R

m × R
p → R

n, and G : R
m → R

p. The
functionsF andG can be written in terms of their scalar-
valued components as

F (u, y) =







F1(u, y)
...

Fn(u, y)






, G(u) =







G1(u)
...

Gp(u)






, (2.3)

where, for alli = 1, . . . , n, Fi : R
m × R

p → R and, for
all i = 1, . . . , p, Gi : R

m → R. By defining

z
△
= N(u, y)

△
=

[

F (u, y)
G(u)

]

, (2.4)

the system (2.1), (2.2) can be illustrated as in Figure 5,
whereN : R

m × R
p → R

n+p andL represents the linear
system

xk+1 = Axk +
[

In 0
]

zk, (2.5)

yk = Cxk +
[

0 Ip

]

zk, (2.6)

wherezk
△
= N(uk, yk) is viewed as an unmeasured, exoge-

nous input toL.
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Fig. 5. Nonlinear System with Measured-Input Nonlinearities

The main feature of the model (2.5), (2.6) is the fact
that all of the inputs toN are measured. Therefore, the
model (2.1), (2.2) includes the Hammerstein and nonlinear
feedback models shown in Figure 1 and Figure 3. However,
(2.1), (2.2) does not encompass the Wiener system shown
in Figure 2.

Next, we assume that the componentsFi andGi can be
expanded in terms of basis functionsf1(u, y), . . . , fq(u, y),
g1(u), . . . , gr(u), andh1(u), . . . , hs(u) as

F (u, y) =

[

∑ q
i=1

bf1ifi(u, y) +
∑ s

i=1
bh1ihi(u)

.

.

.
∑ q

i=1
bfnifi(u, y) +

∑ s
i=1

bhnihi(u)

]

, (2.7)

G(u) =

[

∑ r
i=1

dg1igi(u) +
∑ s

i=1
dh1ihi(u)

.

.

.
∑ r

i=1
dgpigi(u) +

∑ s
i=1

dhpihi(u)

]

. (2.8)

The functionshi are the basis functions that are common to
bothF andG. Definingf : R

m×R
p → R

q, g : R
m → R

r,
andh : R

m → R
s by

f(u, y) =









f1(u, y)

.

.

.
fq(u, y)









, g(u) =









g1(u)

.

.

.
gr(u)









, h(u) =









h1(u)

.

.

.
hs(u)









,

it follows from (2.7) and (2.8) that

F (u, y) = Bff(u, y) + Bhh(u), (2.9)

G(u) = Dgg(u) + Dhh(u), (2.10)

whereBf
△
= [bfij ] ∈ R

n×q, Bh
△
= [bhij ] ∈ R

n×s, Dg
△
=

[dgij ] ∈ R
p×r, andDh

△
= [dhij ] ∈ R

p×s. Thus (2.1), (2.2)
can be written as

xk+1 = Axk + Bff(uk, yk) + Bhh(uk), (2.11)

yk = Cxk + Dgg(uk) + Dhh(uk), (2.12)

or more compactly as

xk+1 = Axk + B

[

f(uk, yk)
g(uk)
h(uk)

]

, (2.13)

yk = Cxk + D

[

f(uk, yk)
g(uk)
h(uk)

]

, (2.14)

where

B
△
=

[

Bf 0 Bh

]

, D
△
=

[

0 Dg Dh

]

. (2.15)
As a special case of the system shown in Figure 5, we

can consider the Hammerstein system

xk+1 = Axk + F (uk), (2.16)

yk = Cxk + G(uk), (2.17)



where now the functionF depends only on the inputu. In
the case thatF andG are represented by a common set of
basis functionh1, . . . , hs, it follows that

z =

[

F (u)
G(u)

]

=

[

B

D

]

h(u), (2.18)

where B = Bh ∈ R
n×s and D = Dh ∈ R

p×s. Hence
(2.16), (2.17) become

xk+1 = Axk + Bh(uk), (2.19)

yk = Cxk + Dh(uk). (2.20)
The goal of the nonlinear identification problem is to

construct models of bothL and N given measurements
of (uk, yk) over the interval0 ≤ k ≤ ℓ. The signal
z is assumed to be unavailable. However, whenh(u) is
approximated bŷh(u) andB,D are approximated bŷB, D̂

then, the computed signal

ẑ
△
=

[

B̂

D̂

]

h(u), (2.21)

is available as the input toL.

3. IDENTIFICATION ALGORITHMS

With the basis functionsfi(u, y), gi(u), hi(u) specified,
subspace identification algorithms [9, 13] can be applied
directly to the system (2.5), (2.6) with the computed signalẑ

playing the role of the exogenous input. This is the approach
developed in [8]. However, the choice of basis functions
remains the main difficulty. The type of basis functions
chosen (for example, polynomial or splines) will, in general,
have a strong effect on the number of basis functions needed
to achieve a satisfactory approximation of the nonlinear
mappings in a particular application. Unfortunately, the sub-
space identification algorithm yields the coefficient matrices
(A,B,C,D) but not the basis functions per se.

To address this difficulty, we consider the following two
approaches, which we illustrate for the Hammerstein case
(2.19), (2.20).

3.1. Selective Refinement Algorithm

To begin, consider an initial set of basis func-

tions ĥ1, . . . , ĥŝ with ĥ
△
=

[

ĥ1 · · · ĥŝ

]T
and let

(Â, B̂, Ĉ, D̂) denote an estimate of(A,B,C,D) provided
by the subspace identification algorithm. Next, consider the
singular value decomposition of

[

B̂

D̂

]

written in standard
notation as

[

B̂

D̂

]

= ÛΣ̂V̂ . (3.1)

Then, we retain theν largest singular values in̂Σ to obtain
the approximationΣ̂ ≈ Σ̂0 = L̂0R̂0, whererank Σ̂0 = ν

and the matriceŝL0 ∈ R
(n+p)×ν and R̂0 ∈ R

ν×s have full
column rank and full row rank, respectively. The retained
ν largest singular values can be incorporated into eitherL̂0

or R̂0, yielding the approximation
[

B̂

D̂

]

ĥ(u) = ÛΣ̂V̂ ĥ(u) ≈ ÛΣ̂0V̂ ĥ(u)

= ÛL̂0R̂0V̂ ĥ(u)=

[

B̂0

D̂0

]

ĥ0(u), (3.2)

where the matrix
[

B̂0

D̂0

]

△
= Û L̂0 ∈ R

(n+p)×ν and ĥ0(u)
△
=

R̂0V̂ ĥ(u) satisfying ĥ0 : R
m → R

ν is a column vector
consisting ofν scalar-valued nonlinear functions. The mo-
tivation for this procedure is to retain onlyν scalar-valued
nonlinear functions each of which is a linear combination
of ŝ basis functions. Sinceν << ŝ, the ν scalar-valued
components of̂h0 can be viewed asdominant nonlineari-
ties, while the choice ofν reflects therank of the nonlinear
mapping[ F

G ] . Hence the number of dominant nonlinearities
is effectively the rank of the nonlinear map.

To refine the mappinĝh0 we repeat the above procedure

with a new set of basis functionŝh′
1, . . . ĥ

′
ŝ′ with ĥ′ △

=
[

ĥ′
1 · · · ĥ′

ŝ′

]T
, whereĥ′

1, . . . , ĥ
′
ν are chosen to be the

ν components of̂h0, andĥ′
ν+1, . . . ĥ

′
ŝ′ are chosen randomly.

Repeating the above procedure yields a new estimateĥ′
0 and

the approximation
[

B̂′

D̂′

]

ĥ′(u) ≈

[

B̂′
0

D̂′
0

]

ĥ′
0(u), (3.3)

whereB̂′, D̂′ are the estimates ofB andD obtained from
the subspace identification algorithm at the current iteration.
Note that the components of the dominant nonlinearity
ĥ′

0 are now linear combinations of̂s + ŝ′ basis functions.
However, the number of scalar components is fixed atν.

The selective refinement algorithm is implemented with
several options. Specifically the numbers of additional
basis functions that are introduced at each iteration is
manually chosen by the user. In addition, the numberν

of dominant nonlinearities retained at each step is also a
critical parameter. This parameter can be manually specified
by the user or automatically set by numerical criteria. The
random selection of additional basis functions is automated
for radial basis functions as is the bookkeeping needed to
keep track of the accumulated basis functions that contribute
to the dominant nonlinearities.

3.2. Basis Function Optimization Algorithm

In the basis function optimization algorithm we opti-
mize a fixed set of basis functions instead of introducing
additional basis functions. A convenient choice of basis
functions is radial basis functions because of the ease of
programming and the ability to handle multi-dimensional
inputs. Radial basis functions are of the form

f(u) = e−α‖u−c‖2

2 , (3.4)

whereα determines the spread of the function andc decides
the center of the function. For nonlinear identification, we
optimize a set of radial basis functions with respect to the
parametersα andc and identify the linear dynamics using
a subspace identification algorithm. By optimizing a fixed
set of basis functions, a more accurate representation of the
nonlinear mapping is obtainable with a smaller number of
basis functions than is possible with the selective refinement
algorithm.



The identification error is defined to be the mean square
error at the outputyk given by

E(α, c) =
1

2

l
∑

k=1

(yk − ŷk)2, (3.5)

whereyk and ŷk are the desired and actual outputs of the
identified Hammerstein system, andl is the length of the
data set.

Now, writing ŷk in terms of Â, B̂, Ĉ and D̂, (3.5)
becomes

E(α,c) =
1

2

l
∑

k=1

(yk−ĈÂkx̂0

−

k−1
∑

i=0

ĈÂk−i−1B̂ĥ(ui)−D̂ĥ(uk))2. (3.6)

Using a set ofs radial basis functions for̂h(u) equation
(3.6) becomes

E(α,c) =
1

2

l
∑

k=1













yk−ĈÂkx̂0−

k−1
∑

i=0

ĈÂk−i−1B̂













e−α1‖ui−c1‖
2

2

...
e−αs‖ui−cs‖

2

2













−D̂







e−α1‖uk−c1‖
2

2

...
e−αs‖uk−cs‖

2

2













2

. (3.7)

The gradient ofE(α, c) with respect to the parameters
αj andcj can be calculated as

∂E

∂αj

= (yk−ŷk)

l
∑

k=1





























−

k−1
∑

i=0

ĈÂk−i−1B̂





























0
...

∂
∂αj

e−αj‖ui−cj‖
2

2

...
0





























−D̂





























0
...

∂
∂αj

e−αj‖uk−cj‖
2

2

...
0















































(3.8)

and

∂E

∂cj

= (yk−ŷk)

l
∑

k=1





























−

k−1
∑

i=0

ĈÂk−i−1B̂





























0
...

∂
∂cj

e−αj‖ui−cj‖
2

2

...
0





























−D̂





























0
...

∂
∂cj

e−αj‖uk−cj‖
2

2

...
0















































. (3.9)

Since
∂

∂αj

e
−αj‖u−cj‖2

2 = −e
−αj‖u−cj‖2

2‖u − cj‖
2

2
,

∂

∂cj

e
−αj‖u−cj‖2

2 = −e
−αj‖u−cj‖2

2αj

[

2c
T
j − 2u

T
]

,

the gradients (3.8) and (3.9) can be evaluated.
By computing these gradients, a BFGS quasi-Newton

optimization code is used to optimize the basis function
parameters. Since the state space matrices and the basis
function parameters cannot be estimated simultaneously,
basis-function optimization and state space model identi-
fication are done alternately. First, an initial set of basis
functions is chosen, and then the linear dynamics are iden-
tified using a subspace identification algorithm. Once the
state space matrices are available, the set of basis functions
is optimized. For the optimized set of basis functions, the
linear dynamics is identified again, and so on.

4. EXAMPLES

4.1. Example 1: Hammerstein System with Scalar Input
For this example we consider a Hammerstein system

whose linear dynamics are given by the discrete-time simple
harmonic oscillator

A =

[

0 1
−(ω2T 2

s + 1) 2

]

, B =

[

0
T 2

s

]

,

C =
[

1 0
]

, D = 0,

where ω = 0.7 and Ts = 0.1, with input nonlinearity
N(u) = u2. A total of 1000 data points are used for the
identification, and both algorithms were used.

For the selective refinement algorithm, we choose 11
radial basis functions to initialize the algorithm and include
10 random radial basis functions at each subsequent itera-
tion. A total of 2000 iterations are performed, of which 12
are accepted as determined by the data fit decrement. The
dominant nonlinearity, involving 131 radial basis functions,
is shown in Figure 6.

The basis functions optimization algorithm is employed
with sines and cosines and 15 of each are used. The linear
system order is specified as 2, and a single dominant
nonlinearity is retained at each iteration. The data fit is
shown in Figure 7 and the dominant identified nonlinearity
is shown in Figure 8.

4.2. Example 2: Hammerstein System with Scalar Input and
Rank-2 Nonlinearity

This example is a Hammerstein system based on the
discrete-time simple harmonic oscillator of Example 1 cas-
caded with the low pass filter 1+z−1

230−228z−1 . The scalar input
is taken to be a white noise signal with input nonlinearities

f(u) =
[

u3 e−u
]

.

The 3rd-order system has the realization

A =





0.9913 1 0
0 0 0.9901
0 −0.995 1.9802



 , B =





0 0
0 1

0.01 0



 ,

C =
[

0.0087 0.0043 0
]

, D =
[

0 0
]

.



A total of 1000 data points are used for the identifi-
cation, and the basis function optimization algorithm is
implemented with radial basis functions. 15 radial basis
functions are used to initialize the algorithm and a total
of 10 iterations are performed. The subspace identification
algorithm identified a 3rd-order system.

The data fit is shown in Figure 9, and the corresponding
dominant nonlinearities involving 15 radial basis functions
are shown Figure 10 and Figure 11. These nonlinearities
provide estimates of the input nonlinearitiesu3 and e−u,
respectively.

4.3. Example 3: Nonlinear Feedback System with Scalar
Input

For this system we consider the nonlinear feedback
system

y(k + 1) = 1
2 sat(yk) + uk,

with uk chosen to be a white noise signal fork =
1, . . . , 1000. Using 11 radial basis functions to initialize
the identification and with 5 additional radial basis func-
tions introduced at each iteration, 100 selective refinement
iterations are performed of which 5 are accepted based on fit
error decrement. The final estimated nonlinearity in Figure
12 is thus a linear combination of 36 radial basis functions.

4.4. Example 4: Hammerstein Model of Space Weather
System

This example is based on data used for space weather
prediction. The input data set was measured by the NASA
Advanced Composition Explorer (ACE) spacecraft and in-
cludes the three components of the magnetic field vec-
tor, the solar wind speed, solar wind proton density, and
temperature. The system output is the cross polar cap
potential, which is derived from 85 magnetometers located
in Greenland, Canada, Scandinavia, Alaska, and Russia.

For the data fit shown in Figure 13, 3 of the 7 inputs (one
component of the solar wind velocity and two components
of the magnetic field) are used to construct a rank 2
input nonlinearity, that is, a Hammerstein system with two
dominant nonlinearities. No linear input functions are used.

A total of 20 iterations of the selective refinement algo-
rithm are run, with 3 updates accepted as determined by fit
improvement. A total of 27 radial basis functions are used
on the first iteration, with 27 radial basis functions intro-
duced at each iteration. The final rank 2 input nonlinearity is
thus a combination of 108 radial basis functions. The linear
dynamics identified by the subspace algorithm are second
order. Figure 13 shows the best fit obtained, occurring on
the 18th iteration.

5. CONCLUSIONS

We developed a nonlinear identification technique for
a class of systems with measured-input nonlinearities. A
subspace identification algorithm was used to identify the
linear dynamics with the nonlinear mappings represented

as a linear combination of basis functions. A selective-
refinement technique and a quasi-Newton optimization al-
gorithm were used to iteratively improve the representation
of the system nonlinearity. In the first approach, a singular
value decomposition of the input matrix is used to iden-
tify the dominant nonlinearities for an initial set of basis
functions. Random basis functions were then introduced to
improve the representation of the dominant nonlinearities
through selective refinement. In the second approach, the
basis function parameters were optimized using a BFGS
quasi-Newton optimization algorithm. In this case, the rep-
resentation of the nonlinearity is refined by optimizing a
fixed number of basis functions of a chosen type. Splines,
sinusoids, and radial basis functions were used as basis
functions.

The selective refinement algorithm is inefficient as would
be expected, but provides a simple baseline technique for
comparison with alternative methods. While the use of a
BFGS quasi-Newton algorithm limits convergence to local
minima, the algorithm worked well for the examples that we
considered. From a function approximation point of view,
the use of quasi-Newton optimization is more efficient than
purely gradient-based optimization.
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Fig. 6. Example 1: True (u2) and identified input nonlinearities
for second-order Hammerstein system with scalar input and rank 1
nonlinearity using selectively refined radial basis functions.
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Fig. 7. Example 1: Data fit for second-order Hammerstein system with
scalar input and rank 1 nonlinearity using optimized sines and cosines.
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Fig. 8. Example 1: True (u2) and identified input nonlinearity
for second-order Hammerstein system with scalar input and rank 1
nonlinearity using optimized sines and cosines.
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Fig. 9. Example 2: Data fit for third-order Hammerstein system
with scalar input and rank 2 nonlinearity using optimized radial basis
functions.
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Fig. 10. Example 2: True (u3) and identified input nonlinearities
for third-order Hammerstein system with scalar input and rank2
nonlinearity using optimized radial basis functions.
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Fig. 11. Example 2: True (e−u) and identified input nonlinearities
for third-order Hammerstein system with scalar input and rank2
nonlinearity using optimized radial basis functions.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u

f(u
)

Actual Nonlinearity
Identified Nonlinearity

Fig. 12. Example 3: Identified feedback nonlinearity for first-order
nonlinear feedback system using selective refinement with radial basis
functions.
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Fig. 13. Example 4: Data fit for space weather system with three
inputs and a rank 2 nonlinearity.
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