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Basis-Function Optimization for Subspace-Based Nonlinear
|dentification of Systems with Measured-Input Nonlinearities

Harish J. Palanthandalam-Madapusi, Jesse B. Hoagg, amisD@&nBernstein

Abstract— For nonlinear systems with measured-input non-  the representation of the nonlinearities is not uniquea#t h
linearities, a subspace identification algorithm is used to peen shown in [14] that it is not possible to uniquely identif
identify the linear dynamics with the nonlinear mappings rep- the nonlinear maps. The identified maps could differ by a

resented as a linear combination of basis functions. A selective- i fficient bias f th | i it
refinement technique and a quasi-Newton optimization algo- scaling coeticient or a bias irom the real nonlinearity.

rithm are used to iteratively improve the representation of the
system nonlinearity. For both methods, polynomials, splines, — U Ny 2yl Ly Y
sigmoids, wavelets, sines and cosines, or radial basis functions
can be used as basis functions. Both approaches can be used
to identify nonlinear maps with multiple arguments and with
multiple outputs.

Fig. 1. Hammerstein Model

1. INTRODUCTION

Nonlinear identification is an increasingly active resharc Fig. 2. Wiener Model
area. Among the various approaches that have been de-
veloped are nonparametric methods, which are primarily u .
frequency-domain based. These methods include techniques Encr
for identifying \Volterra kernels, which characterize itpu
output response by means of a sum of multi-frequency NnLF

convolutions. For time-domain simulation, however, it is
convenient to construct nonlinear state-space realizsiid Fig. 3. Nonlinear Feedback Model
these maps, which may be difficult in practice [11]. On

the other hand, parametric methods have been developed u Ny T 2ol Lonie

based on structured and unstructured time-domain models.

Unstructured or black-box models [7,12] often rely on

neural network models to exploit their function approxi-

mation properties. Structured or grey-box models [3-5, 10]

are based on the interconnection of linear and nonlinear

subsystems. In view of the fact that nonlinear identification is facil-
The most common model structures are the Hammer-

stein, Wiener. nonlinear feedback, and combined Han|1t-ated by the availability of inputs, a general formulation

merstein/nonlinear feedback models shown in Figure ff nonlinear identification in this setting was considered

Figure 2, Figure 3, and Figure 4. These models involvg] [8] using a subspace identification algorithm [9,13]

the interconnection of a single linear block and a singlalong with a given basis expansion for the nonlinear maps.

. e . The function expansion was chosen to be linear in the
nonlinear block. Identification with these model structure i ; ) e
. : arameters, which allows the nonlinear identification prob
has been widely considered, see, for example, [1,2,

14]. A point that has not been stressed is the fact tha‘%m 0 _be r_ecast as a Ilnefar '.d ent|f|cat|or_1_problem with

. . e . . eneralized inputs. The multivariable capability of sidrsp
nonlinear identification with the Wiener model structur P . . . .
S - : e : identification algorithms is essential to this approach by
is significantly more difficult than identification with the : ; : .

. S e . allowing an arbitrary number of generalized inputs.
Hammerstein structure. The reason for this difficulty is the ; : ; :
The approach of [8] requires a fixed set of basis functions

fact that identification of a nonlinear map is more tractabl . ) : )
) . . 0 represent the nonlinear mapping. For nonlinear mappings
when a measurement of the input to the map is available, . ; . . )
: . of several inputs, the curse of dimensionality requires an
The Hammerstein nonlinear/feedback model can be

viewed as a realization of a nonlinear svstem. Accordin Iexcessively large number of basis functions. In addition,
y ' Whe subspace identification algorithm identifies only the

This research was supported in part by the Air Force Officectdr8ific coefficients of the baSI_S funcuqns, not the basis functions
Research under grant F49620—01-1-0094 and the Nationan@ci themselves. Hence, without prior knowledge of the form
igt':ﬂnggtzlggglgformatlon Technology Research initiativerotiygh Grant  of the nonlinear mappings, it may be necessary to employ

The authors are with the Department of Aerospace Engineeting a Iarge number of basis functions, renderlng the problem

versity of Michigan, Ann Arbor, MI 48109-2140, USA numerically intractable.

| NnLF

Fig. 4. Hammerstein Nonlinear Feedback Model
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In view of these issues, the present paper develops
two techniques for iteratively refining the basis function
representation of nonlinear mappings that are functions of
measured inputs. As in [8], both techniques use a subspace Yo = Cop + [ U ] ks (2.6)
identification algorithm to identify the linear dynamics A L
set of basis functions representing the nonlinear funstion Vherezx = N(u, yi) is viewed as an unmeasured, exoge-

. . ; ) : nous input toL.

The first technique uses selective refinement to improve
the representation of the nonlinear functions. By applying — N i L Y
a singular value decomposition to the input matrix, the y]_> |
dominant nonlinearities are identified for the chosen set
of basis functions. Next, a random collection of basis Fig. 5. Nonlinear System with Measured-Input Nonlineasiti
functions is introduced to improve the representation ef th The main feature of the model (2.5), (2.6) is the fact
dominant nonlinearities. Iteration of these steps camstit that all of the inputs tdN are measured. Therefore, the
the selective refinement process. model (2.1), (2.2) includes the Hammerstein and nonlinear

The second algorithm optimizes a fixed set of basis fundeedback models shown in Figure 1 and Figure 3. However,
tions by means of a BFGS quasi-Newton optimization codé?2.1), (2.2) does not encompass the Wiener system shown
The representation of the nonlinear map is systematicallp Figure 2.
improved by modifying the basis functions rather than by Next, we assume that the componefisand G; can be

Tpp1 = Az + [ In 0 ]z, (2.5)

Y

adding additional basis functions. A subspace identificati expanded in terms of basis functiofigu, y), . .., fq(u, ),
algorithm is used to identify the linear dynamics for agi(u),...,g,(u), andhi(u),..., hs(u) as
chosen set of basis functions representing the nonlinear Yl bprifi(u,y) + 35 brashi(u)
functions. For that particular set of state space matrices, F(u,y) = : 1 . 2.7
the basis functions are then optimized using a quasi-Newton b fi(y) + 5y bunihi ()
optimization algorithm. ST dgrigi(u) + X5 dpaihi(w)

Both techniques are flexible in their implementation. For Gu) = : (2.8)
example, arbitrary basis functions such as polynomials, 7 dapigi(w) + X iy dnpihi(u)

splines, sigmoids, sinusoids, or radial basis functiomsi&. .o ,ncrions, are the basis functions that are common to
used. In fact, a multi-layer neural network can also be usetggthF andG. 6efiningf; R™xRP — R4, g: R™ — R",

to represent the nonlinear mapping. Furthermore, the gnpuand: R™ — R® by
to the nonlinear mapping can consist of either measurements fi(u,y) g1 () Ry (u)
of exogenous signals or measurements of system outputs., ) = , g(u) = : , h(u) = :
that are fed back to the system through a nonlinear mapping. falu,y) gr(u)

Both approaches can be used to identify nonlinear maps q{ follows from (2.7) and (2.8) that

multiple arguments and with multiple outputs.

s

hs .(u)

F(u,y) = Byf(u,y)+ Bah(u), (2.9)

2. PROBLEM FORMULATION G(u) Dyg(u) + Dyh(u) 2.10)
u) = U u), .
Consider the nonlinear discrete-time system R 99 . h A
Wherer = [bf”] € R"*4, B, = [b}”‘j] € R"**s, Dg =

Try1 = Axg + Fug, yr), (2.1) dy)] € R 4D, & (dnsj] € RS, Thus (2.1), (2.2)
ii] € r,and Dy, = [dy;q] € s, us (2.1), (2.
= 2.2 9t . J
Yk = Cp + Glup), (2.2) can be written as
wherez, € R™, up € R™, yp, € RP, A € R™", C € _
R B RM X RP  Ro and G R™ — Rb. The Tpy1 = Axg + By f(ug, yr) + Brh(ur), (2.11)
functions ' and G can be written in terms of their scalar- yr = Cxy + Dgg(ur) + Dph(ug), (2.12)
valued components as or more compactly as
Fi(u,; G Fuk, yx)
2 (u,9) (W) = an+n| ) e
F(U,y) = s G(u) = > (23) h(ur)
fuk, yr)
U

where, for alli = 1,...,n, F;: R™ xRP — R and, for where

alli=1,...,p, G;: R™ — R. By definin
P Y J B2[B; 0 B,], DE[0 D, D,]. (2.15)

22 N(u,y) 2 [ Fu.y) } , (2.4) As a special case of the system shown in Figure 5, we

G(u) can consider the Hammerstein system
the system (2.1), (2.2) can be illustrated as in Figure 5, .
whereN: R™ x R? — R™*? and L represents the linear Tt = A+ F(ug), (2.16)
system yr = Cx + G(ug), (2.17)
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where now the functiorF” depends only on the input. In
the case thaf’ and G are represented by a common set o
basis functioni, ..., hs, it follows that

=L =[5

where B = B, € R"*® and D = D, € RP**, Hence
(2.16), (2.17) become
Tp1 = Azg + Bh(ug), (2.19)
yr = Cxg + Dh(uk). (2.20)
The goal of the nonlinear identification problem is to

(2.18)

}Nhere the matrix[ g"} 2 Ul € R)xv and ho(u)
N N 0

A
RoVh(u) satisfying ho: R™ — RY is a column vector
consisting ofv scalar-valued nonlinear functions. The mo-
tivation for this procedure is to retain only scalar-valued
nonlinear functions each of which is a linear combination
of § basis functions. Since << &, the v scalar-valued
components ofi, can be viewed agominant nonlineari-
ties, while the choice ol reflects therank of the nonlinear
mapping[ £ ]. Hence the number of dominant nonlinearities

is effectively the rank of the nonlinear map.

To refine the mapping, we repeat the above procedure
with a new set of basis functiond,, ...k, with i’ 2
[ R h, ]T ,whereh), ..., h! are chosen to be the
v components ok, andh!, . ,, ...k, are chosen randomly.
Repeating the above procedure yields a new estiirfamd
the approximation
B |- B |-
R ()= | 29 |k (u
2w~ 2 Jin.
3. IDENTIFICATION ALGORITHMS where B/, D’ are the estimates d8 and D obtained from
With the basis functiong;(u,y), gi(u), hi(u) specified, the subspace identification algorithm at the current itemat
subspace identification algorithms [9,13] can be applieNote that the components of the dominant nonlinearity
directly to the system (2.5), (2.6) with the computed sighal 7,/ are now linear combinations &f+ 3’ basis functions.
playing the role of the exogenous input. This is the approaghowever, the number of scalar components is fixed.at
developed in [8]. However, the choice of basis functions The selective refinement algorithm is implemented with
remains the main difficulty. The type of basis functionsseveral options. Specifically the numberof additional
chosen (for example, polynomial or splines) will, in getiera pasis functions that are introduced at each iteration is
have a strong effect on the number of basis functions needmbnua“y chosen by the user. In addition, the number
to achieve a satisfactory approximation of the nonlineagf dominant nonlinearities retained at each step is also a
mappings in a particular application. Unfortunately, the-s  critical parameter. This parameter can be manually specifie
space identification algorithm yields the coefficient nta#si by the user or automatically set by numerical criteria. The
(A, B,C, D) but not the basis functions per se. random selection of additional basis functions is autothate
To address this difficulty, we consider the following twofor radial basis functions as is the bookkeeping needed to
approaches, which we illustrate for the Hammerstein cas@ep track of the accumulated basis functions that conéribu
(2.19), (2.20). to the dominant nonlinearities.

construct models of botl. and N given measurements
of (ug,yr) over the interval0 < k < ¢. The signal
z is assumed to be unavailable. However, whg) is

approximated byi(u) and B, D are approximated by, D
then, the computed signal

(2.21)

is available as the input t8. (3.3)

3.1. Selective Refinement Algorithm

To begin, consider an initial set of basis func-
i 7 7 T 7 7 1T In the basis function optimization algorithm we opti-
tions hy,...,hs with h = [ Iy hs | and let p g p

(A B [)) denote an estimate df4, B, C, D) provided mize a fixed set of basis functions instead of introducing
by the subspace identification algorithm. Next, consider thedditional basis functions. A convenient choice of basis

) " B . : functions is radial basis functions because of the ease of
singular value decomposition ({f} written in standard . . . .
notation as D programming and the ability to handle multi-dimensional

o]

inputs. Radial basis functions are of the form

3.2. Basis Function Optimization Algorithm

{ B
D

Then, we retain the largest singular values i&' to obtain
the approximation® ~ %, = LoR,, whererank ¥y = v
and the matriced, € R(™™P) < and R, € R*** have full
column rank and full row rank, respectively. The retaine
v largest singular values can be incorporated into eifher
or Ry, yielding the approximation

} =ULV. (3.1) Flu) = eallu=cl3 (3.4)

wherea determines the spread of the function argkcides
the center of the function. For nonlinear identification, we
pptimize a set of radial basis functions with respect to the
parametergy andc and identify the linear dynamics using
a subspace identification algorithm. By optimizing a fixed
set of basis functions, a more accurate representatioreof th

[ g }fz(u) = USVh(w) =~ USgVh(u) nonlinear mapping is obtainable with a smaller number of
- 1. basis functions than is possible with the selective refimeme
= ULOROVh(u):[ e }ho(u), (3.2) algorithm.
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The identification error is defined to be the mean squargince

error at the outpug, given by

l
Z yk — 0k)°,

wherey, and g, are the deswed and actual outputs of the
identified Hammerstein system, ands the length of the
data set.

Now, writing ¢ in terms of A,B,C and D, (3.5)

becomes !
Z (yp—CA* 2

k—1
—ZCAk*i*IBh(ui)—bh(uk))? (3.6)
=0
Using a set ofs radial basis functions foh(u) equation
(3.6) becomes

(3.5)

1

[\')
,_.

. e—atllui—cill3

1
Z yr—CAFzo— ZCA" -1

E(a,c) 5
1=0

—as|lui—cs Hg

€

e—ollun—cil3

-D

e~ %s [lug—cs Hg

The gradient ofE(«, ¢) with respect to the parameters
a; ande; can be calculated as

0
l k—1 .
OF ,
Eyl -9 -) car-imipg| O emagllui—cll
80éj (yx yk); 2014 B aaje J o
= i= )
0
0
~ 9  —as CelI2
—D 3Tje ajlluk—c;llz (38)
0
and
0
l k—1 :
oF .
a. - —9 - Aak—i—1p | _0 —ajg|lui—cj|
80]‘ (yk yk)]; ECA B acje J i ll2
= 1= .
0

0 o—ajllur—c;ll3
¢

(3.9)

(3.7)

e—cjllu—c;li3 —ajllu—c; H2Hu—c 1,

daj

—e

2
—ajllu—cjillz  _

—€
86j

the gradients (3.8) and (3.9) can be evaluated.

By computing these gradients, a BFGS quasi-Newton
optimization code is used to optimize the basis function
parameters. Since the state space matrices and the basis
function parameters cannot be estimated simultaneously,
basis-function optimization and state space model identi-
fication are done alternately. First, an initial set of basis
functions is chosen, and then the linear dynamics are iden-
tified using a subspace identification algorithm. Once the
state space matrices are available, the set of basis fasctio
is optimized. For the optimized set of basis functions, the
linear dynamics is identified again, and so on.

— T T
_emeillume;i3 g, PCJ' oy }

4. EXAMPLES

4.1. Example 1: Hammerstein System with Scalar Input

For this example we consider a Hammerstein system
whose linear dynamics are given by the discrete-time simple
harmonic oscillator

[

[ 1

0

4 —(W?T? +1)

C 0], D=o,

wherew = 0.7 and 7, = 0.1, with input nonlinearity
N(u) = u?. A total of 1000 data points are used for the
identification, and both algorithms were used.

For the selective refinement algorithm, we choose 11
radial basis functions to initialize the algorithm and irdé
10 random radial basis functions at each subsequent itera-
tion. A total of 2000 iterations are performed, of which 12
are accepted as determined by the data fit decrement. The
dominant nonlinearity, involving 131 radial basis funcis
is shown in Figure 6.

The basis functions optimization algorithm is employed
with sines and cosines and 15 of each are used. The linear
system order is specified as 2, and a single dominant
nonlinearity is retained at each iteration. The data fit is
shown in Figure 7 and the dominant identified nonlinearity
is shown in Figure 8.

4.2. Example 2: Hammerstein System with Scalar Input and
Rank-2 Nonlinearity

This example is a Hammerstein system based on the
discrete-time simple harmonic oscillator of Example 1 cas-
. . -1 .

_caded with the low pass fllt%. '_I'he scala_r mpqt_
is taken to be a white noise signal with input nonlinearities

flw) = [ ud e ]
The 3rd-order system has the realization
0.9913 1 0 0 0
A = 0 0 0.9901 B = 0 1 s
0 —0.995 1.9802 0.01 0
C = [ 00087 00043 0], D=[0 0].
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A total of 1000 data points are used for the identifi2S 2 linear combination of basis functions. A selective-
efinement technique and a quasi-Newton optimization al-

cation, and the basis function optimization algorithm i ith d to iterativelv | th i
implemented with radial basis functions. 15 radial basi§OMthm were used to iteratively improve the representatio
f the system nonlinearity. In the first approach, a singular

functions are used to initialize the algorithm and a total . . N .
lue decomposition of the input matrix is used to iden-

of 10 iterations are performed. The subspace identificatiot the dominant i tios f initial set of basi
algorithm identified a 3rd-order system. I e dominant nonlinearities for an initial set of basis

The data fit is shown in Figure 9, and the corresponding;mt'onst'hRandom bats? func;utt)rr]]s \(/jverg the{n |ntr?ducg? to
dominant nonlinearities involving 15 radial basis funogo prove he representation of the dominant nonlinearities

are shown Figure 10 and Figure 11. These nonlineariti fs1rough selective refinement. In the second approach, the

provide estimates of the input nonlinearitie$ and e asis function parameters were optimized using a BFGS
respectively " quasi-Newton optimization algorithm. In this case, the-rep

resentation of the nonlinearity is refined by optimizing a
4.3. Example 3: Nonlinear Feedback System with Scaldixed number of basis functions of a chosen type. Splines,
Input sinusoids, and radial basis functions were used as basis
. . . functions.
For this system we consider the nonlinear feedbacl&J ctions . ' . N
The selective refinement algorithm is inefficient as would
system b d, b id imple baseline technique f
y(k+1) e expected, but provides a simple baseline technique for
. ' . . comparison with alternative methods. While the use of a
with u;, chosen to be a white noise signal fér = BFGS quasi-Newton algorithm limits convergence to local
1,...,1000. Using 11 radial basis functions to initialize minima, the algorithm worked well for the examples that we
the identification and with 5 additional radial basis funcconsidered. From a function approximation point of view,
tions introduced at each iteration, 100 selective refineémeghe use of guasi-Newton optimization is more efficient than

$sat(yr) +

iterations are performed of which 5 are accepted based onfigrely gradient-based optimization.

error decrement. The final estimated nonlinearity in Figure
12 is thus a linear combination of 36 radial basis functions.
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System

This example is based on data used for space weather
prediction. The input data set was measured by the NASA
Advanced Composition Explorer (ACE) spacecraft and in-14
cludes the three components of the magnetic field vec-
tor, the solar wind speed, solar wind proton density, and2]
temperature. The system output is the cross polar cap
potential, which is derived from 85 magnetometers locateds)
in Greenland, Canada, Scandinavia, Alaska, and Russia.

For the data fit shown in Figure 13, 3 of the 7 inputs (one[4]
component of the solar wind velocity and two components
of the magnetic field) are used to construct a rank 25]
input nonlinearity, that is, a Hammerstein system with two
dominant nonlinearities. No linear input functions aredise [

A total of 20 iterations of the selective refinement algo-
rithm are run, with 3 updates accepted as determined by ;tg
improvement. A total of 27 radial basis functions are use
on the first iteration, with 27 radial basis functions intro-
duced at each iteration. The final rank 2 input nonlineasity i 8
thus a combination of 108 radial basis functions. The linear
dynamics identified by the subspace algorithm are seconi9]
order. Figure 13 shows the best fit obtained, occurring on
the 18th iteration. [10]

5. CONCLUSIONS [11]

We developed a nonlinear identification technique for
a class of systems with measured-input nonlinearities. A2l
subspace identification algorithm was used to identify thg3]
linear dynamics with the nonlinear mappings represented

Physics Laboratory for providing the space weather data.
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1.5

—— Actual Nonlinearity
Identified Nonlinearity

1 -0.8 -06 -0.4 -0.2 o 0.2 0.4 0.6 0.8 1
u

Fig. 6. Example 1: True«?) and identified input nonlinearities
for second-order Hammerstein system with scalar input an#d fan
nonlinearity using selectively refined radial basis fuoies.

— Data
Identification

Displacement (m)

a0 50 60 70 80 90 100
Time (secs)

Fig. 7. Example 1: Data fit for second-order Hammerstein systém w
scalar input and rank 1 nonlinearity using optimized sine$ @sines.

—— Actual Noninearity
Identified Nonlinearity

Fig. 8. Example 1: True«?) and identified input nonlinearity
for second-order Hammerstein system with scalar input anéd fan
nonlinearity using optimized sines and cosines.

-150

~200

—250

—a00

-350

—a00

—as0,

o 10 20 30 a0 50 60 70 80 20 100

Fig. 9. Example 2: Data fit for third-order Hammerstein system
with scalar input and rank 2 nonlinearity using optimizediahfasis
func]tions.

osl

o6

= “os “os o4 oz o 0.2 0.4 0.6 o8 1

Fig. 10. Example 2: Trueuf) and identified input nonlinearities
for third-order Hammerstein system with scalar input and rank
nonlinearity using optimized radial basis functions.

o8 0.6 0.2 oz o 0.2 0.4 0.6 o8 1

Fig. 11. Example 2: Truee("*) and identified input nonlinearities
for third-order Hammerstein system with scalar input and r&nk
nonlinearity using optimized radial basis functions.

—— Actual Noniinearity
Identified Nonlinearit,

o8l B

1l

o6l B

0.4

0.2

o

—o.2|

0.4

-0.6
=1 -0.8 -0.6 -04 -02 ) 0.2 0.4 0.6 0.8 1

Fig. 12. Example 3: Identified feedback nonlinearity for fioster
nonlinear feedback system using selective refinement witlalrbasis
functions.

Time (s) x 10"

Fig. 13. Example 4: Data fit for space weather system with three
inputs and a rank 2 nonlinearity.
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