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Identification of Rate-Dependent Hysteresis Using the Setmear Duhem Model*

JinHyoung Oh and Dennis S. Bernstein

I. INTRODUCTION
Hysteresis arises in diverse applications, such as struc- . .
tural mechanics, aerodynamics, and electromagnetics. The
word “hysteresis” connotes lag, and hysteretic systems
systems and many nonlinear systems, hysteretic systems . .
have the special property that the phase shift between input os os
and output persists even as the frequency content of the . 5 o 5
hallmark of hysteresis, and we call a nonlinear system
hystereticif it possesses this special property.

With dynamic, that is non-DC, excitation, both linear and_.

system with deadzone wherft) = sin wt. Note that phase shift persists

generally frequency dependent and a natural consequen@ar DC, indicating the presence of hysteresis [3].
of the system’s dynamics. Thus, the hysteretic nature of a

However, a special class of hysteretic systems, callefodel [8] has the ability to capture complex reversal mech-
time-scale invariant systembave the distinctive property anisms. In the present paper we focus on the generalized
that the input-output phase shift is independent of the-timduhem model, which is based on a nonlinear ordinary
studied by Chua and Bass [1], are necessarily hysterefi rate-dependent hysteresis. In the simplest case the gen-
since the quasi-DC phase shift is identical to the phase shfifalized Duhem model has the form
at all frequencies. Because of this rate independence,ta plo i(t) = f(m(t),u(t))g(a(t)), 1)
scaling of the input and output. Kinematic systems, such d¢ere all variables are scalar andis continuous and
gear backlash, are typically modeled as rate independengatisfiesg(0) = 0. Hysteresis arises in the generalized

Roughly speaking, a time-scale invariant system cann&uhem model (1) whery has a slope discontinuity at
dependent phenomena. Of course, the use of linear terrfifferent dynamics whenever reverses its direction. A
nology in this context is merely suggestive of the scaleSPecial generalized Duhem model, called swmilinear
invariant property of this class of nonlinear systems. ThPuhem modelwas studied in [2]. This system has the form
was studied in [2]. _ o o

For hysteretic systems that are not time-scale invariant, Now assume thaf has a slope discontinuity at the origin
the input-output phase shift is frequency dependent. EigupO that the generalized Duhem model (1) is hysteretic. It
spring-dashpot system with deadzone [3]. Because of tHige graph ofg consists of two half-lines emanating from
rate dependence, the hysteretic response near DC is diffé#e origin, then the hysteresis is rate-independent, at i
ent from the input-output response at higher frequencietl) is time-scale invariant. On the other other handg if
materials [4], [5]. dependent. .

The literature contains a wide variety of hysteresis mod- The generalized Duhem model is also useful for system
E|S, each with the ab|||ty to model different features ofdentlflcatlon. In [9], the time-scale invariant semilimea
is effective for rate-independent hysteresis with complefecause of the rate-independence property, the system can
reversal behavior. Likewise, the Kransnosel'skii—Pokidly b€ reparameterized in terms of the input signal rather than

time. With this reparameterization, the semilinear Duhem
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are generally described as having memory. Unlike linear S s e S s e

input signal approaches DC. Quasi-DC phase shift is the

nonlinear systems exhibit input-output phase shift, which F19: 1- - Frequency-dependent input-output map for a masspdaspring

system is not readily evident from its dynamic response.

scaling of the input spectrum. These systems, defined afifferential equation that can model either rate-indejeend

of the output versus the input is independent of the time B

exhibit either resonance or roll-off, which are frequencythe origin. This discontinuity causes the system to exhibit

stability of a class of time-scale invariant hysteretictegss () = (Az(t) + Bu(t))g(a(1)). @)

1 illustrates rate-dependent hysteresis for a simple mad§rns out that, ifg is positively homogeneous, that is, if

Rate-dependent hysteresis arises commonly in piezaelect§ not positively homogeneous, then the hysteresis is rate

hysteretic systems. The classical Preisach model [6], [Juhem model is used as the basis for system identification.

*This research was supported in part by the National Sci€oeemdation  \,5qe| has the form of a linear system with ramp forcing.

0-7803-8335-4/04/$17.00 ©2004 AACC 4776



In the case of a rate-dependent system, reparameterizatith. RATE-INDEPENDENTSEMILINEAR DUHEM MODEL
is not possible and the identification problem is much more |, this section we characterize the rate-independent

challenging. Therefore, the goal of the present paper isneralized Duhem model. The following definition is
to develop a technique for identifying systems with ratepeeded. Note that this definition is independent of the
dependent hysteresis modeled by the semilinear Duheistence of hysteresis.

model (2). The method we develop exploits a special class _ _ .
of input signals, specifically, triangle waves, which allow _ De€finition 3.1: The generalized Duhem model (3), (4)

the nonlinear functio to be identified in a nonparametric, IS time-scale invariantf, for all x(t) andu(t) satisfying
that is, pointwise, fashion. (3), all initial conditionszg, and allT > 0, it follows that

zp(t) = x(t/T) andur(t) = u(t/T) also satisfy (3).
Il. GENERALIZED DUHEM MODEL AND HYSTERESIS The following result is given in [2].

Proposition 3.1: Assume thay is positively homoge-
neous, that isg(hv) = hg(v) for all h > 0 andv € R.
Then the generalized Duhem model (3), (4) is time-scale

i(t) = f(z(t),u(t))g(ult)), @(0) ==z, t>0, (3) Invariant.

Consider the single-input single-outpgeneralized
Duhem modebiven by

y(t) = h(z(t),u(?)), 4) Suppose thel’ > 0, and letu(t) andur(t), wheret > 0,
_ _ be inputs as in Definition 2.2, and lett), y(¢), andxr(t),
where z : [0,00) — R" is absolutely continuousy : y,(t) satisfy the time-scale invariant generalized Duhem

[0,00) = R, u: [0,00) = R, f:R" xR — R"" is model (3), (4) withu(t) and ur(t), respectively. Suppose
continuousg : R — R", andh : R" xR — R is continuous. there exists a periodic input-output m&passociated with
We assume that is continuous, piecewis€', and satisfies (¢) and y(t). Then the periodic input-output map(;
g(0) = 0, and we assume that the solution to (3) existassociated withur(t) andyr(t) is given by

and is unique on all finite intervals. We also assume that

his C1. Under these assumptions, ifis continuous and 7 = { (ur(t), yr(t)) : t € [0,00)}

piecewiseC!, thenz andy are continuous and piecewise = {(u(at/T), h(z(at/T),u(at/T))) : t € [0,00)}
C'. The following definition will be useful. = {(u(at/T), y(at/T)) : t € [0,00)}
Definition 2.1: The nonempty set{ C R? is a =H.

closed curvef there exists a continuous, piecewi€é, and o )
Hence, the periodic input-output mag of the time-

periodic mapy : [0, 00) — R? such thaty([0, c0)) = H. » T _ o
- T . scale invariant generalized Duhem model is independent
Definition 2.1 implies that every closed curve is a com-

pact and connected subsetRt. For closed curve®(;, Ho, of 7, that is, rate mdepender!t. Congequenﬁyp . H
define the Hausdorff metric for all T > 0. Furthermore, if the time-scale invariant

generalized Duhem model is hysteretic, then the hysteresis

d(H1, H2) £ () s rate independent.

max 4 sup ( inf [ _m”) sup < inf [Im _772‘0 The following lemma given in [2] is needed to analyze
neHy \12€H2 Tp€Hy \mEH1 " the time-scale invariant generalized Duhem model.

where || - || is a norm inR2. SinceR? with ||z — y| is Lemma 3.1: Assumeg : R — R” is positively

homogeneous. Then there exist €¢ R” and h_ € R”

complete, the set of closed curves with, -) is a complete
P ) P such that

metric space.

vhy, v >0,
Definition 2.2: Let w : [0,00) — [Umin,Umax] D€ g(v) = {vh v <0 (6)
continuous, piecewis€', periodic with periody, and have N ’
exactly one local maximumu,.x in [0,a) and exactly
one local minimumu,;, in [0,«). For all T > 0, let
ur(t) = u(at/T), assume that there exists : [0,00) — #(t) = (Az(t) + Bu(t))g(u(t)), @)
R™ that is periodic with periodl’ and satisfies (3) with (t) = C(t) 2(0) =z £>0 ®)
uw = ur, and letyy : [0,00) — R be given by (4) Y ’ 0 r="
with * = zp andu = wup. For all T > 0, define whereA € R™*", B € R*, andC € R'*", and whereg :
the periodic input-output mag{r 0N [umin, Umax] 0 be R — R is positively homogeneous. Note that (7), (8) is the
the closed curvé{r = { (ur(t), yr(t)) : t € [0,00)} and generalized Duhem model (3), (4) wift{z, u) = Az+ Bu
assume that thiémiting periodic input-output mag{,, on andh(z,u) = Cx. Sinceg is positively homogeneous, it
[Umin, Umax] GiVEN by Moo = limy o, Hy exists. If there follows from Lemma 3.1 thag(i(t)) can be written as
exist (u,y1), (u,y2) € Hoo SuUch thaty; # ya, thenHo,

g(u(t)) = {

As a specialization of (3), (4), we consider thate-
independent semilinear Duhem model

hya(t), u(t) =0,
h_a(t), wult) <0, ®)

is a hysteretic mapon [umin, Umax], and the generalized
Duhem model ishysteretic
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g(z;)‘ g(m‘
> - * = > -
n ”, u /, u ’,’

R e 7

(a) (b) (©) (d)
Fig. 2. lllustration of positively homogeneous functiopsfor asymp-
totically stableA. (a) not hysteretic, (b) may not converge, since
h_ > hy, (c),(d) will converge toH .

o) {

whereh, € R and h_ € R. The following result given

in [2] provides a sufficient condition for (7), (8) to have a9/+(0)

limiting periodic input-output map.

Theorem 3.1:Consider the rate-independent Semi“”?inearize (17), (18) withu

ear Duhem model (7), (8), whetét) € [umin, Umax], t > 0
is piecewise monotonic and periodic with periacand has

exactly one local maximun,,, in [0, «) and exactly one

local minimumuy,;, in [0, a). Furthermore, supposé is

asymptotically stable and assume < h.. Then there
exists the limiting input-output magi{., oNn [umin, Umax]

given by

Hoo = {(u,y4 (1)) : u € [tmin, Umax] }

U {(u, y_ (u)) 2 U € [Umin, umax]} , (10)
where
Yy (u) = Cel+Au=umin) g OV, (u), (11)
y—(u) = Cel-Au—tmax) L Y (u), (12)
and
by 2 (I — PP (PR AV (o) + V- (tmin)), (13)
o 2 (1= P mh I T PREAY (unin) + Vi (umax)),  (14)
Vi(u) £ A7 (ul — umige+A@Umin) B4 7t A2 15
(I — eh+Aletmin)) B,
V_(u) & A~V (ul — umaxe—A@—umax) B 4 p=1 4=2% 16)

(I— eh—A(u*umax))B.

(18) is a generalized Duhem model wifl:, u) = Az+Bu
and h(z,u) = Cz. For the following result, let’, (0) =
limg, o @ and g’ (0) = lima 1o @, wherelim, o and
lim, 1o denote the right- and left-hand limits at

Corollary 4.1 Consider the rate-dependent semilinear
Duhem model (17), (18) where(t) € [tmin, Umax], t > 0
is piecewise monotonic and periodic with peried and
has exactly one local maximumy,., in [0, ) and exactly
one local minimumuy,;, in [0,«). Suppose thatd is
asymptotically stable, and assurhe < h.,, whereh, =
andh_ = ¢’ (0). Then there exists the limiting input-
output mapHeo ON [Umin, Umax] given by (10)—(16).

Proof. Let T > 0, and letur(t) = u(at/T) and
= ur, x = x7, andy = yr
to obtain the rate-independent semilinear Duhem model

Air(t) = (AAzr(t) + Bur(t))ga (ar(t)),

Ayr(t) = CAxp(t), Azp(0) =29, t>0,
where
. a ) hyar(t), ar(t) >0,
9alr(t)) = {h_uT(t), ar(t) < 0.

Then it follows from Theorem 3.1 that the input-output map
of ur(t) andAyr(t) converges to a closed cur¥é,, given

by (10) ast — oo. Furthermore, the convergence holds for
all T > 0 since the model is time-scale invariant. Therefore,
it suffices to show thafyr (¢t) — Ayr(t)|] — 0 forallt >0
asT — oo.

Forall T > 0, let zp(t) € R", ¢t > 0, satisfy (17), (18)
with « = ur andy = yr, and definepr(t) = (Azr(t) +
Bur (1)) (g(ir(t)) — galur(t))). Sinceg is piecewiseC?,
it follows that

limg, o (9(ir) — ga(ir)) =0, dr >0,
limg,.10 (9(4r) — galur)) =0, dp <O0.

Consider the rate-independent semilinear Dunem modelNow, for all 7" > 0 and¢ > 0, defineer(t) = wp(t) -
(7), (8) and assume that is asymptotically stable. Then Azr(t), satisfies

Theorem 3.1 implies that the existence of a limiting pegodi .

input-output map depends on the slopegyait the origin.

BT(t)Z i‘T (t) — AxT(t): gn (T.LT(t))AeT(t) + pT(f), (19)

Figure 2 illustrates several positively homogeneous fungg, er(0) = 0, t > 0. Let tr 2 min{t > 0 :
’ = . ,max - .

tions g. It follows from Theorem 3.1 that for the functionsu
g shown in Figure 2c and Figure 2d the rate—indtz,tpendem(T)r

(t) = Umax} ANty miy 2 min{t > 0 : ur(t) = Umin}-
convenience, assunme max < trmin- 1hen, forq =

semilinear Duhem model has a limiting periodic input, 1,..., it follows from (19) thater(t) is given by

output map.

IV. RATE-DEPENDENTSEMILINEAR DUHEM MODEL

As an alternative specialization of (3) and (4), we

consider therate-dependent semilinear Duhem model

#(t) = (Az(t) + Bu(t))g(u(t)), 17)
y(t) = Cux(t),  (0) = o, (18)

where A € R"™*", B € R”, andC € R, and where

t>0,

Jo (&, m)pr(7)dr,
w_ (t7 qT + tT,max)eT(qT + tT,max)
W_ (¢, 7)pr(7)dT,
qT + tT,max <t< qT + tT,miny
Wy (t, th+ tT,min)eT(qT + tT,min)
+ qu+iT,min V- (t’ T)pT(T)dT’
qT + tT,min <t S (q + 1)T + tT,max7

0 S t S tT,maxu

t
+ qu+tT,lnax
6T(t =

where U (t,7) = exp h f: tr(o)Ade and _(t,7) =

g : R — R is not positively homogeneous. Note that (17)exp h_ f: tr(c)Ado. Finally, lett > 0. Sincelimp_,
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2 o) 8G) m«) where A € R™*", B € R", C € R'*", be a state-space
realization of the'linear ordmary differential equation

y™ (@) + oy (0) -+ an—19(t) + any(t) (25)
= Bru V(1) + B2ul" 2 (1) + -+ + Bu—ra(t) + Bru(t),
@ © @ with (4(0),4(0).....y""D(0) = (0,1, Y1), 1 2
Fig. 3.  lllustration of non-positively homogeneous funoog for (0, Then fory # 0,
asymptotically stabled. (a) not hysteretic, (b) may not converge b,
sinceg’ (0) > ¢, (0), (c),(d) will converge toH . i, (t) = nAz,(t) + nBu(t), (26)
yn(t) = Cay(t), zy(0) =z, t2>0, (27)
[ir (t)] = limp—o c|u(at/T)| /T = 0, it follows that is a state space realization of the linear ordinary difféaén
equation

lim ¥, (¢, 7) = lim V_(¢t,7)=1,
T—o0 T—o0 e () + naay V(@) + o+ n”*lan_lyna) + 0" ey (1)
and limp_, o pT(t) = 0, and thuslimyp_ . eT(t) = = nﬁlu(" 1)(t) + nQﬂQu(" 2)(15) + et n”flﬁn_lﬂ(t) + 1" Bru(t),
er(0) = 0. Therefore (28)

(n—1)

Jim lyr(t) = Ayr(t)]| = lim [|Car(t) — CAzr(t)] with (4,(0),97(0), -,y 7 (0)) = Wnos Yns -+ -+ Y1)
— 00 — 00 t 2 0'

< €]l Jim fler()] =0. O Proof. Without loss of generality, let, B, andC be
Assuming thatA is asymptotically stable, Corollary 4.1 in observable canonical form
implies that the existence of a limiting periodic input-outt -9 1 -+ 0 B
map for the rate-dependent semilinear Duhem model (17), : A : :
(18) depends on the slopes gfat the origin. Figure 3 A= o 0 1 B = 5' ’
illustrates several non-positively homogeneous funetign _;;1 0 .o 0 gnl

It follows from Corollary 4.1 that for the functiong shown
in Figure 3c and Figure 3d the rate-dependent semilinear ¢ = [1 U 0] .

Duhem model has a limiting periodic input-output map. Next, defineT 2 diag1,7~,...,n~"+1) and note that

V. RATE-DEPENDENTSEMILINEAR DUHEM MODEL —non 1 ... 0
WITH TRIANGLE WAVE INPUTS

Consider the rate-dependent semilinear Duhem model 7' AT = : : .o
(17), (18), whereu(?) is the periodic triangle wave with " tay_y 0 - 1
periodT shown as Figure 4 given by

—n"ay, 0O --- 0
T — 4T, qT < t < qT + Ty, —1p _ n—1 ng 17T
u(t) = { — b (20) nT~'B = [np "Bt 0"Ba]
—bg+ )T+ 3Ty, qT+Te <t<(g+1
(g ) by ¢ (¢+ 1T, cr=[1 0 - 0,
wherea >0,b<0, 7T, >0,7, >0, T =T, + 1T, and o o
qg=20,1,.... Then (17), (18) become which is a realization of (28) O
§(t) = g9(a)Az(t) + g(a)Bu(t), qT <t <qT + Ta, 21) V1. | DENTIFICATION OF THE RATE-DEPENDENT
g(b)Az(t) + g(b)Bu(t), T +Ta <t<(q+ 1T, SEMILINEAR DUHEM MODEL
y(t) =Cz(t),  2(0) =20, ¢=0.1,.... (22) Consider the rate-dependent semilinear Duhem model

Note that (21), (22) can be viewed asswitching linear (17), (18), whereu(t), ¢ > 0, is the periodic triangle wave
time-invariant systenwith switching periodsZ, and 7,. With period 7" given by (20). Suppose that there exists a
The following result will be useful. periodic solutionz(t) of (17), and lety(t), ¢ > 0, be given

by (18). Then it follows from (21), (22) that (17), (18) can

be written as

&(t) = g(a)Az(t) + g(a)Bu(t),  y(t) = Cx(t), (29)

foro<t<1T,, and

@(t) = g(b)Ax(t) + g(b)Bu(t),  y(t) = Cux(t), (30)

u(r)
‘ m /\ 1 for T, < t < T. Since (29), (30) is a switching linear time-

V AT \7 invariant system, we can identify(a) A, g(a)B on [0, T,),

Proposition 5.1: Let

z(t) = Az(t) + Bu(t), (23)
y(t) = Cx(t), 2(0) = zg, t>0, (24)

andg(b)A, g(b)B on [T,,T), whereu(t) is monotonically
increasing and monotonically decreasing, respectivedy. L
Fig. 4. Triangle waveu(t) defined in (20). ug andyg, k = 0,1,...,1 — 1, be measurements af(t)
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and y(t), respectively, wherg € [0,7), with a fixed
sampling periodh = T/I. Letl = I; + [_, whereuy
is monotonically increasing fok = 0,...,l, — 1 and

monotonically decreasing fot=1,,...1 — 1
Next, su8pose that;, andy; satlsfy then-dimensional
DARMA [10, p. 32] model

Y1 = —GF y— =& Y1 6T up + o+ B ug—pgr, (31)
fork=0,1,...,l1; — 1, and
Y1 = —G Yk — — G Yk—nt 1+ 07 uk+ By wp—pg1, (32)

andg(b) is given by the equations involving;” and3;" as

_o _ P
g(b) = ait_ = ﬂit_ (38)

However, (38) is an approximation due to the presence of
noise and to the bilinear transformation. An estima(®)
of g(b) is given by the mean value

oy B B af

g9(b) = 20T AT

(39)

With the system matrices given by (36) anth) given

-2

- Is selected

for k =1.,l4 +1,...,1 -1, wheren <

by (39), we can determing(u) pointwise by using same

empirically, anda a:, Bt andﬂ ,j =1,...,n are identification procedure involving triangle waves with-dif
system parameters l\fow i)y deflnlng ferent slopes. Specifically, let > 2 be an integer and, for
N " N " i =1,...,p, letwu;(t), ¢t > 0 be a triangle wave input as

Vi = [um vie—1] Yo = U vi-1] defined in (20) with periodd,, andT}, and slopes:; > 0

[ —yn—1 —Yo Un—1 “o andb; < 0. Let y;(¢), t > 0, be the corresponding steady-
¢y = : : : : ] ; state output of the rate-dependent semilinear Duhem model

L=, —2 Yl —n—1 U-2 U —p-1 (17), (18), which is periodic with period; = T, + 1}, SO

(Y, 41 -y, Ul fn—1 up, that the input-output map af;(¢) andy;(¢) forms a closed
o= : : - , Ccurve.

I _y'l_2 _yl_'n_l w s uz_;_l,] Now, fori = 1,. .., p, identification of the rate-dependent

semilinear Duhem model consists of the following steps.

least-squares estimates of the system parameters are givep
by

é+ - ©1Y+, é_ - ¢1Y_7 (33)
where 0, 2 [af - af BF Bt 00 2
laf - at BF --B:]T, and ()7 denotes the

Moore-Penrose generalized inverse.

Next, to obtain coefficients for the continuous time sys-
tem, we convert the DARMA models (31) and (32) using
the bilinear (Tustin) transformation into the continuomset
linear ordinary differential equations

y M @) +afy" T+t y(t) = B

uD (@) B u(t),
(34)
foro<t<1T,, and

y (@) +ar y TV (@) 4 ragy(t) = B w0 48 (),

for T, < t < T, respectively, wherex/, a;, 3,
B;,j=1,...,n, are system parameters. Now, assuming
g(a) # 0, Iet gé = 1, which holds without loss of
gAenerallty by re efmmg system matrices of (29), (30) by 3.2
A= g(l)A and B = e ——<B. Then, since (29) is a state-

space realization of (34), an estimate of the system matrice
in (29) is given by the observable canonical form

—at 1 .. 0 .
n B=[gf - 5",

: R I (36)
o o e=[t o e 0.

—Qu

A=

Furthermore, since (35) can be written in the state space

3-1.

Take I; measurements ofi;(¢) and y;(t) with
fixed sampling timeh, and then determine the
coef“ficientséﬁr ﬁ*, af andgf, j =1,

of the two DARMA models (31) (32) wnlm+

st At At A= o _ h-
az,j— z,ozj—cuijandﬁ e
]—1

Determine the coefficients;’, 3, o' and g},

j=1,...,n, of the Imear ordlnary differential
equations (34) (35) with = off, 57 = 5,
a;—az,and57 ﬁl,j—l ,n, by

converting the DARMA models from Step 1to the
linear differential equations through the bilinear
transformation. o

Fori = 1, estimate the system matricds B, and

C from (36) Withoz;r = afj, ﬁ;f = ﬁfrj, oy = oy,
andg; = ﬁfj, j=1,...,n. Then setj(a;) = 1,
and determine@(bl) from (39) with af = of,

B = 611 a; =ap,andp; = .

For determingj(a;) ‘and g(b;) by
LR L . TR AT
207 ] 20 B

N UMERICAL EXAMPLE

g(ai) = - (40)

VII.

Example 7.1: Consider the rate-dependent semilinear
Duhem model (17), (18) with

A=-1, B=1, C=1, (41)

(28) with n = g(b), ak =a; andﬁk =65, k=1,.
are equivalent. Comparlng coefficients of (35) with those of
(28) yields

a, =g"(b)a,
Br = 9g"(b)B,

oy =g*(b)og,
By = g*(b)By,

ay = g(b)af,

lv| <1,

[v| > 1. (“42)

o(v) = {'1“

a7 The identification method developed in Section 6 is used
©7) with 12 triangle waves, where; = 0.25,0.5,0.75,1,1.25,
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Fig. 5.

(b)

(a) actualy (dashed) and pointwise identificatigi{circles) of

Example 7.1. (b) scaleg (dashed) and(circles).

o.

0.4

-04

02
- 0
-0.2

~ - actual
— identified

o.

04

02

0

-02

-04

— — actual
— identified

0 05 1

-1 -05 0 05 1

0.4

0.2

-0.2

-04

— — actual
— identified

0.4

0.2

-02

-04

— — actual
— identified

Fig. 6.

0 05 1
u

-1 -05 0 05 1
u

Input-output maps of actual (dashed) and identifiedidsrate-

Fig. 8.

(b)

-1 -05 0 05 1
u

05 1

Fig. 7. (a) actualy (dashed) and pointwise identificatigi{circles) of
Example 7.2. (b) scaleg (dashed) and(circles).
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Input-output maps of actual (dashed) and identifietidsrate-

dependent semilinear Duhem model of Example 7.1 undér = sin wt.

1.5,1.75,2,2.25,2.5,2.75,3, b; = —a;, andT,, = T}, =

dependent semilinear Duhem model of Example 7.2 undér = sin wt.

The non-positively homogeneous functigfi) is identified

4/a;, i = 1,...,12. Each inputu; and outputy;, i = as shown in Figure 7, which shows that the identified
1,...,12, were taken with the sampling time = 0.13  g(u) fits the actualg closely for slow inputs. Figure 8
second and with a uniformly distributed measurement noisghows the input-output maps of actual and identified rate-
whose range is 1% of the maximum peak-to-peak value ovéependent semilinear Duhem model with the identified
all data. The system parameters are identified as under sinusoid inputs.

A = —-0.2501, B =10.25,
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