
 
 

 

  
Abstract— We are considering nonlinear system 

identification using Hammerstein model, where the linear and 
nonlinear elements are both of known structure. The static 
gain may be discontinuous and is not linear in the (unknown) 
parameters. The focus is made on the case of a two-segment 
piecewise-linear gain with a preload and/or a dead zone. A 
recursive identification scheme is designed to determine the 
models of both the plant dynamics and the static gain. It 
involves a gradient algorithm, a singular value decomposition 
and an ad-hoc input sequence that ensures persistent 
excitation. 

I. INTRODUCTION 
e are considering the problem of nonlinear system 
identification based on Hammerstein model as shown 

in (fig. 1), where v(t), y(t) and z(t) are respectively the 
system input, output and disturbance. Most of the studies 
devoted to such a problem have supposed the nonlinear 
element characteristic u=F(v, θ) to be analytic, continuous 
in v and linear in the unknown parameters θ. Generally, 
F(v, θ) is a (truncated) polynomial or Fourier series in the 
variable v (e.g. [2]-[6]). The case of hard input 
nonlinearities have been considered in [7]-[8]. Then, F(v, θ) 
may be discontinuous in v and nonlinear in θ. Furthermore, 
F(v, θ)  may not be written as an analytic function of v. On 
the other hand, control design involving these hard 
nonlinearities is becoming an active research area (e.g. see 
[9] and reference list therein). Surprisingly, there is a 
comparatively less interest paid to identification of systems 
with hard nonlinearities. In [7] the case of a two-segment 
piece-wise linear input nonlinearity with preload and dead-
zone is considered. System identification is carried out 
based on a pseudolinear regression, which necessitates an 
alternative estimation of the relevant parameters and some 
auxiliary variables. The effectiveness of the proposed 
solution is illustrated by simulations but no formal analysis 
is made to prove the algorithm consistency. In [8] a 
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separable least squares approach is proposed to deal with a 
specific set of nonlinearities involving one unknown 
parameter. It is shown that the identification problem is 
equivalent to a one-dimensional minimization problem. For 
a general input nonlinearity the author proposes a 
correlation analysis approach involving repeated 
applications of inputs. The first approach is interesting 
since the nonlinear element may be nonstatic; however, it is 
limited to one unknown parameter and the determination of 
the global minimum may be problematic in practice. The 
second approach is limited to noise-free situations and 
involves complex computations. 

In this paper, an identification scheme is built-up to deal 
with the case where the nonlinear block is a two-segment 
piecewise-linear function with a preload and/or a dead-zone 
(fig 2). Such a scheme allows to identify perfectly all the 
plant unknown parameters i.e. those of the linear dynamics 
as well as those of the nonlinear gain F i.e. (D1, D2, K1, 
K2, L1, L2). It is worth noting that a major difficulty 
related to hard input nonlinearities lies in the fact that the 
latter involve for different input intervals different 
mathematical formulations. 

 Furthermore, the mentioned input intervals involve 
uncertain parameters. For instance, in the present case, 
these intervals are (−∞, −D2], (−D2, D1) and [D1, +∞). 
Therefore, a crucial step in any solution to the identification 
issue is to develop for the nonlinear element a unique 
mathematical formulation i.e. that holds for all input 
intervals. In the present paper, a polynomial formulation is 
developed, making full use of the input sequence nature. 
The involved polynomial P perfectly coincides with the 
nonlinearity for the considered input sequence i.e. there is 
no approximation error. More precisely, the proposed 
identification scheme has the following features: 

(i) to identify the two segments of F(v) (In the latter the 
argument θ is removed in F(.) ) one just needs to determine 
two points in each segment; in effect, these four points, say 
(Vi, F(Vi)) (i=1, …, 4), uniquely determine the four 
unknown parameters of the nonlinear element i.e. the two 
segment slopes and the two dead-zone sizes; 

(ii) for any choice of (V1, V2, V3, V4), such that Vi≠ Vj 
for i≠j, corresponds a unique 4th-degree polynomial P(v) 
such that P(0)=F(0)=0 and F(Vi)=P(Vi) for i=1, …, 4; 
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letting the plant input be chosen in the set {0, V1, V2, V3, 
V4}, allows substitution of P(v) to F(v) in the plant model; 
so doing, the initial identification problem is converted to 
one where the nonlinear element is polynomial; if the 
polynomial coefficients could be perfectly identified then 
the parameters of the initial nonlinear elements (i.e. dead-
zones and slopes) would be precisely determined;  

(iii) the plant representation obtained when replacing F(.) 
by P(.) in the plant model is bilinear in the relevant 
unknown parameters (the polynomial coefficients and the 
linear dynamic parameters); then a least-squares type 
algorithm only allows estimation of composite parameters; 
to recover the relevant parameters from (estimates) of the 
composites, a procedure is built up based on matrix 
algebraic tools such us singular values decomposition;  

(iv) a persistently exciting input sequence, of the impulse 
type, is designed and shown to guarantee the convergence 
of the composite parameter estimates, and so those of the 
relevant parameters, to their true values.  

Finally, it is worth noting that the polynomial formulation 
proposed in this paper is much more simpler than those 
used in [7]-[8]. Furthermore, the input sequence used in this 
paper to ensure persistent excitation is also simpler than 
those used in [7]-[8].  

  
  

II. IDENTIFICATION PROBLEM STATEMENT  

A.  Class of identified plants  
We are considering plants that can be described by the 

following Hammerstein model (fig. 1): 

z(t)u(t))A(q
)B(qy(t)

1
-1 +=
−             (2.1a) 

  u(t) = F(v(t))             (2.1b) 
with  A(q-1) = 1 + a1q-1 + ... + anaq-na  
and   B(q-1) = b1q-1 + ... + bnbq-nb       (2.2) 
The function F represents a static gain and is described 

by fig. 2. The plant dynamics are submitted to the following 
assumptions: 

A1. There is a known integer n such that: n ≥ max 
{degree A(q-1), degree B(q-1)}. 

A2. A(q-1)  and B(q-1) are coprime. 
A3. All zeroes of qnaA(q-1) are strictly inside the unit 

circle. 
A4. DM > max(D1, D2) for some known real DM. 
 
Remarks 2.1.  
--Assumption A2 ensures the controllability of the 

transfer function B(q-1)/A(q-1). 
--Except for assumptions A1-A3, the plant is arbitrary: 

the dynamic parameters (ai, bi) are unknown and the 
leading coefficients (b1, b2, ...) may be null i.e. the true 

plant delay is also unknown (but not greater than n). 
--As mentioned in the introduction, the identification 

method proposed in [8] involves a minimization problem 
with respect to the nonlinearity unknown parameter. The 
only global minimum search method explicitly presented by 
the author is a graphical type. For this to work an upper 
bound of the unknown parameter should be known. 
 

B. Identification Objective  
Our purpose is to design an on-line identification scheme 

that provide asymptotically the true plant dynamics model 
B(q-1)/A(q-1) and the four parameters of the nonlinear 
element F(.), i.e. D1, D2, K1, K2, L1, L2. One major difficulty 
comes from the fact that the internal sequence u(t) is not 
measurable, i.e. only the input sequence {v(t)} and the 
output sequence {y(t)} should be used in the identification 
scheme (fig. 1). 

 
 

III. BASIC FORMULAS FOR PLANT MODEL IDENTIFICATION  

A. Plant Model Parameterization  
First, notice that identifying the function F(.) amounts to 

identifying four points (Vj, F(Vj)) (j=1, ..., 4), where the 
Vj’s are arbitrarily chosen such that: 

V1 < V2 < -DM<0< DM <V3< V4         (3.1) 
Using a polynomial interpolation, one associates to the 

couples (Vj, F(Vj)) a unique 4th-order polynomial P such 
that: 

 P(0)=0   and   P(Vj ) = F(Vj )    for  j=1, ..., 4  (3.2) 
Such a polynomial can be given in the following form: 
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Then, identifying the four couples (Vj, F(Vj)) (j=1, …, 4) 

amounts to identifying the polynomial P(v) i.e. the 
coefficients dj (j=1, …, 4).  Furthermore, if the plant input 
v(t) belongs to the set {0, V1, …, V4}, for all t, then 
P(v(t))= F(v(t)), due to (3.2). Therefore, the plant (2.1a-b) 
can also be represented by the following model: 

 
 A(q-1)y(t) = B(q-1)u(t)+ A(q-1)z(t)      (3.6a) 
 u(t) = P(v(t))              (3.6b) 
 
A regressive form can now be derived for (3.6a-b), as 



 
 

 

follows: 
A(q−1)y(t) = B(q−1)P(v(t)) + A(q-1)z(t) 

        =
( ) )t(i)v(ti)Pv(tµ  

n

1i

4

1j
jij η+−−∑ ∑

= =      (3.7a) 
where  η(t) = A(q-1)z(t) and: 
  µij =  bidj     (i=1, ..., n;   j=1, ..., 4)     (3.7b) 
Equation (3.7a) can be given the following regressive 

form: 

 
)t(ΘΦ(t)y(t) *T η+=

            (3.8a) 
Φ(t)T=[−y(t-1) … −y(t-n)  v(t-1)P1(v(t-1)) ...  
v(t–n)P1(v(t-n))  … v(t-1)P4(v(t-1))  ... v(t-n)) P4(v(t-n))]

                     (3.8b) 
 Θ* = [a1 … an  µ11 ... µn1   ... ...  µ14 ... µn4]T   (3.8c) 
 
As Θ* comes in linearly, equation (3.8a) turns out to be 

an adequate parameterization to get estimates of the 
parameters ai and µij, using a least squares type algorithm. It 
is worth noticing that the substitution of P(.) to F(.) in (3.6a-
b) generates no new error. As long as v(t) belongs to {0, V1, 
…, V4}, the models (2.1a-b) and (3.6a-b) are equivalent 
and, consequently, the initial identification problem (that 
consisted in identifying the 4 couples (Vj, F(Vj)) and the 
parameters (ai, bi)) amounts to identifying the parameters ai, 
bi and dj. 

 

B. Relations between Estimated and relevant Parameters  

From estimates (t)θ̂  of *θ , one has to get estimates 

)(t)L̂(t),K̂(t),D̂(t),b̂( jjji  of (bi, Dj, Kj,Lj) for i=1, …, n  

and j=1, 2. We will first construct a procedure to go back 
from the µij’s to the bi’s and the dj’s. Then, relations to get 
(Di, Ki, Li: i=1, 2) from (dj: j=1, …, 4) will be established. 

 
Going back from (µij: i=1, …, n; j=1, …, 4) to (bi: i=1, 

…, n) and (dj: j=1, …, 4) 
Observe that (3.7b) can be rewritten as follows: 
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Notice that since M is a rank-1 matrix, the bi’s and the 
dj’s cannot be determined uniquely from the µij’s, unless 
extra conditions are imposed on the bi’s or dj’s. Uniqueness 
of the solution of (3.9) can be achieved by imposing, for 
instance, the following couple of conditions:  

 ∑
=

=
n

1i

2
i 1b   and    [ ] 0)bb(ρ n1 >L     (3.10) 

where [ ] )bb(ρ n1 L  denotes the first component of 

the vector [ ]T
n1 bb L   that satisfies: 

    [ ] j
nj1

n1 bsup)bb(ρ
≤≤

=L  

i.e the first component with a greatest absolute value. 
Based on the above observations a procedure to solve 

(3.9) is designed using singular value decomposition 
(SVD). This is described in the following proposition. 

 
Proposition 3.1 Let M∈ Rnx4 be any rank-1 real matrix. 

Then its SVD decomposition has the following form: 
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where Γ∈ Rnxn,  Σ∈ R4x4 and  σ1 is the unique nonzero 
singular value of M. Furthermore, M can be uniquely 
decomposed as follows: 
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with:   
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Where [ ])000σ(ργ 1 LΓ= . 

The vector [ ]T
n1 bb L  thus obtained is the only 

solution of (3.12a) that satisfies:  

 1b
n

1i

2
i =∑

=

;  [ ] 0)bb(ρ n1 >L       (3.13) 

Proof. See [9]. 
 
Going back, from (dj: j=1, …, 4), to (Di, Ki,Lj: i=1, 2) 
From (3.5) it follows that the four couples (Vj, F(Vj)) can 

be computed from the dj’s as follows: 
F(Vj) = P(Vj) = dj .Vj    for j=1, ..., 4     (3.14) 
Furthermore, it follows from fig. 2 that: 
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Relations that give (D1, D2) are available in some cases. 
For dead-zone nonlinearities (L1=L2=0), one has:  
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For preload nonlinearities (D1=D2=0), one has:  
 Li=Hi (i=1, 2)         (3.18b) 
For symmetric preload dead-zone nonlinearities (i.e. 

D1=−D2=D, L1=−L2=L and K1≠K2): 
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IV. MODEL PARAMETER IDENTIFICATION  

A. Parameter Estimation 

Estimation algorithm : Estimates (t)θ̂  of  *θ  can be 
recursively obtained using, for instance, the following 
algorithm : 

(t)θ
(t)θ).(t)θ,ρmin((t)θ̂

(t)(t)1
(t)e(t)1)(tθ̂(t)θ

*

T

′
′′=

ΦΦ+
Φ+−=′

        (4.1a) 

1)-(tθ̂(t)-y(t)e(t) TΦ=            (4.1b) 

where the initial vector (0)θ̂ is arbitrary and the real 

constant *ρ   is any upper bound on *θ . In fact, equations 

(4.1a-b) define a gradient algorithm with parameter 
projection on the sphere centered on the origin with radius 

*ρ . Such a projection prevents (t)θ̂  from diverging, 

despite the modeling error {η(t)}. The quality of the 
estimates (t)θ̂  depends, at least partly, on the mean size of 
{η(t)}.  

The mean size of real sequences can be evaluated using 
the smallness-in-the-mean concept [6]. Accordingly, a real 
sequence {s(t)} is said to be α-small in the mean if: 

αs(t)
k
1limsup

kh

1htk
≤∑

+

+=∞→
 

For a given α, the set of all α-small in the mean 
sequences is noted S(α). Let µ be the smallest real such 
that: 

 {η(t)}∈ S(µ)               (4.1c) 

Note that µ exists because { }η(t)  is bounded. The 
properties of the estimation algorithm (4.1a-b) can now be 
stated in terms of  µ and the posterior prediction error 
defined by: 

(t)θ̂Φ(t)y(t)(t)e T
p −=           (4.1d) 

 
 Proposition 4.1. (General properties of (t)θ̂ )  

1) There exists a real constant K1, independent of µ, such 
that: 

{ }1)(tθ̂(t)θ̂ −−  ∈ {K1µ} and { } µ)S(K(t)e 1p ∈   

2) In the ideal case ({z(t)}={0}) one has: 

  { } 2l1)(tθ̂(t)θ̂ ∈−− ,    { } 2p l(t)e ∈ . 

 
The proof of this proposition can be found any many 

places; see for example [10]. It shows that the quality of the 
(asymptotic) input-output behaviour of { (t)θ̂ } depends on 
the (mean) size µ of the modelling error {η(t)}. The smaller 
µ the better the (asymptotic) model. Interestingly, the above 
properties hold whatever the input sequence {v(t)}, i.e. 
even if the latter is not sufficiently rich. However, (t)θ̂  will 

not converge to *θ  unless persistent excitation is ensured. 
An example of such sequence is proposed in subsection 5.  

 

B. Reconstruction of A(q-1), B(q-1) and F  
Given the parameter vector estimate: 

[ ]T
n414n111n1 (t)µ̂(t)µ̂(t)µ̂(t)µ̂(t)â(t)â(t)θ̂ LLLL=  

                     (4.2a) 
One immediately gets the following estimate of A(q-1): 

n
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1
t (t)qâ(t)qâ1)(qÂ −−− +++= L      (4.2b) 

Estimates )d̂,b̂( ji  of )d,(b ji  have now to be recovered 

the ijµ̂ ’s. Following closely Proposition 3.1, one first 
considers the matrix: 
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This is a natural estimate of the matrix M defined by 
(3.9). Let the singular values decomposition of (t)M̂  be 
written as follows: 
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Then, Proposition 3.1 suggests the following estimates 
for the parameters (bi, dj): 
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[ ] =
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                     (4.5b) 
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1 00(t)σΓργ(t) L=        (4.5c) 
The estimates thus obtained are the only ones that satisfy 

the condition  

1
n

1i
2
ib̂ =∑

=
 and  [ ]( ) 0(t)nb̂  ...  (t)1b̂ρ > .  

Notice that the singular values σ2(t)… σn(t)  have not 
been accounted for in the rules (4.5a-b). This has no effect 
when the ijµ̂ ’s converge to there true values, because the 

rank of matrix (t)M̂  then converges to 1. This is made 
precise in the next proposition. 

  
Proposition 4.2. Let { }(t)M̂  be the real matrix sequence 

defined by (4.3). Let  [ ](t)b̂(t)b̂ n1 L  and 

[ ](t)d̂(t)d̂ N1 L  be the vectors obtained from (t)M̂  
according to the rules (4.5a-c). If the ijµ̂ ’s converge to 

their true values µij, then the estimates ( )(t)d̂ (t),b̂ ji  will 
converge to their true values (bi, dj). 

Proof: this is a direct consequence of equation (3.9) and 
Proposition 3.1.  

 
The sequence ( )(t)b̂i  yields directly the following 

estimate for B(q-1): 
 n

n
1

1
1 (t)qb̂ + ... + (t)qb̂   )(qB̂ −−− =       (4.6a) 

Equation (3.6c) suggests for F(Vj) ( j= 1,..,4) the 
following estimate: 

 jjjt (t).Vd̂)(VF̂ =               (4.7) 

Then, according to (3.15), an estimate (v)F̂t of F(v) is 
obtained for MDv ≥ : 
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Finally, estimates ( )(t)L̂ (t),L̂ (t),D̂ (t),D̂ 2121  of (D1, D2, 
L1, L2) can then be obtained operating the rules (3.18) on 
( )2121 Ĥ ,Ĥ ,(t)K̂ ,(t)K̂ . 

 
 

V. EXCITING  INPUT SEQUENCE AND CONVERGENCE 
ANALYSIS  

A. Input Sequence   
 

The input sequence {v(t)} should be generated so that its 
values belong to the set {0, V1, …, V4} and the resulting 
regression vectors Φ(t) be persistently exciting (PE).  
Bearing this in mind, {v(t)} is chosen to be a periodic 
sequence, with period T=n(4+3), defined as follows:  

for all integer k and all t in the interval tk ≤ t <tk+1 with 
tk=kT: 
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
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4 ..., 2,j  ;j)n(2tfor   tV
2ntfor   tV
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   (5.1) 

B. Convergence analysis of parameter estimates    
 

Due to paper length limitation the proofs of forthcoming 
propositions have been removed. 
 

Proposition 5.1. The sequence {v(t)} generated by (5.1) 
provides the regression vector {Φ(t)} with the PE property.  

 
Proposition 5.2. (Convergence of )(ˆ tΘ ).  

1) In the  general case, i.e. {z(t)} arbitrary but bounded, 
there exists a real constant K2, independent of µ, such 

that: { } )µK(SΘ(t)Θ̂ 2
* ∈−  

2) In the ideal case ({z(t)}={0}), { } (t)Θ̂ *Θ−  

converge to zero. 
 
 
 

C. Simulation     
 



 
 

 

The above results have been checked using many 
simulations. The system to be identified is characterized by 
the following parameters: 

A(q-1)=1−1,5q-1+0,56q-1; B(q-1)=q-1–2q-1; K1=1; K2=2 ; 
D1=1; D2= -2; L1= 1; L2= –2 (see fig. 2) ; z(t)=0 to prove 
the convergence of estimates to the values of parameters 
(Fig. 3a  & Fig. 3b)  . 

Bearing in mind condition (3.1), the input sequence used 
is characterized by: V1=–6; V2=–3; V3=3; V4=6. The 
resulting parameter vector θ* is:   
θ*=[0,56  -1,5   1,66   -3,33   1,33   -2,66   1   -2   1   -2]T  
The estimated parameters are shown by fig. 3. It is seen 

that the estimates do converge to their true values. 
 
 

VI. CONCLUSION   
We have considered system identification based on 

Hammerstein model (fig. 1) where the nonlinear element is 
defined by a  two segments characteristic F (fig. 2). We 
have designed an identification scheme that determines 
precisely the linear dynamic parameters (ai, bi) (i=1, …, n) 
and those of the nonlinear characteristic. The class of 
nonlinear elements dealt with includes all dead-zone, all 
preload and some dead-zone/preload elements.  
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Fig. 1.  Hammerstein Model. 

Fig. 2.  Characteristic of the non linear element. 

 
Fig. 3a.  The estimates of the linear block parameters. 

Fig. 3b.  The estimates of the non linear elements parameters. 
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