
 
 

 

  
Abstract— A joint probabilistic data association based 

algorithm for multi-target tracking in clutter using the distributed 
tracking architecture has been proposed recently. The algorithm 
uses the decorrelated state estimates or equivalent pseudo 
measurements. This paper extends the previous approach to the 
multi-target tracking problem in clutter with probability of 
detection less than unity using the track-oriented multiple 
hypotheses tracking framework. We present multiple hypotheses 
distributed tracking algorithms for track initialization, gating, 
hypothesis generation, track update, computation of track 
likelihood, formation of global hypothesis, and pruning using the 
pseudo measurement formulation. 

I. INTRODUCTION 
The central tracking architecture [1], [2] has been proved 

[3] to be more accurate than the distributed tracking 
architecture [1], [2]. However, when the number of sensors 
and targets is large, the central tracking architecture is not a 
suitable approach to handle the large amount of data and 
high computational complexity. Limits on communication 
bandwidth also prohibit large amounts of data to be 
transmitted to a central tracker in such a scenario. The 
distributed tracking architecture as shown in Figure 1 has 
advantages over the centralized tracking architecture for 
real world and real time applications due to robustness 
against failure at certain local tracking nodes with a small 
loss in tracking accuracy when a large number of sensors 
are used. Data transmission and computational complexity 
issues are well handled in a distributed tracking 
architecture. 

Joint probabilistic data association (JPDA) [5] based 
algorithms for multi-target tracking in clutter using a 
distributed tracking architecture have been presented 
recently [7]. Two basic requirements of the standard 
Kalman filter (KF) used in a tracker are that the 
measurement error should be uncorrelated with the state 
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prediction error and the process noise should be 
uncorrelated with the previous state estimation error. The 
later condition is automatically satisfied if the measurement 
arrival times are time-ordered. The algorithms presented in 
[7] construct an equivalent or pseudo measurement ky  [4], 

[6] using the predicted state estimate 1|ˆ −kkx , updated state 

estimate kkx |ˆ , predicted covariance 1| −kkP , and updated 

covariance kkP |  such that the measurement error ky~  is 

uncorrelated with the predicted state estimation error 

1|
~

−kkx . This process is known as the decorrelation process. 

The advantage of this approach is that existing centralized 
tracking systems can adopt this framework easily for the 
distributed tracking problem. For each resolved track, a 
local tracker sends the corresponding pseudo measurement  

ky  and associated error covariance matrix kΣ to the 

global tracker. The covariance matrix kΣ  is a function of  

1| −kkP  and kkP | . This allows a more efficient transmission 

of data from a local tracker to a global tracker.  
We extend the approach used in [7] to the multi-target 

tracking problem in clutter with probability of detection 
less than unity using the track-oriented multiple hypotheses 
tracking (MHT) framework [2], [8]. We assume that a local 
tracker processes data from one or more sensors. Each 
sensor has a probability of detection DP less than unity and 
collects measurements in a scan or dwell. Measurements in 
a scan include detections from actual targets and false 
alarms or clutter. We assume that the number of false 
alarms per unit measurement volume obeys a Poisson 
distribution and the false alarms are uniformly distributed 
in the measurement space. For simplicity the dynamic and 
measurement models are assumed to be linear with additive 
Gaussian process noise and measurement noise, 
respectively. Nonlinear models for target dynamics or/and 
measurement models can be easily incorporated into the 
algorithms. We also assume that the dimension of the target 
state in all trackers is the same.  These assumptions are 
used in [7]. 
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Figure 1. Distributed tracking architecture involving multiple sensors and multiple local trackers. 

 
This paper presents distributed tracking algorithms for 

track initialization, gating, hypothesis generation, track 
update, computation of track likelihood, formation of 
global hypothesis, and pruning (track likelihood and 
NSCAN based) using the concept of pseudo measurement. 
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