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Abstract— This paper examines the use of control allo- accompanied by linear quadratic regulator (LQR) gains
cation techniques for the control of multiple inputs to a designed around a linear vehicle model to arrive at a
ground vehicle to track a desired yaw rate trajectory while combination of vehicle commands
minimizing vehicle sideslip. The proposed controller uses )

quadratic programming accompanied by linear quadratic II. CONTROL ALLOCATION
regulator gains designed around a linear vehicle model to )
arrive at a combination of vehicle commands. Several failug The control allocation problem has become harder to

scenarios are examined and the results for two different solve as over-actuated vehicles become increasingly com-
quadratic programming approaches are presented along with plex with the advancement of science. The general control
a discussion of the advantages each method has to offer.  gy5cation problem is well stated in [9] as the computation
of an optimal set of effector commandshat will produce
some desired overall control effeat, In other words, given
Control allocation (CA) of over-actuated vehicles in-a desired responsg determineu such thatBu = @ subject

volves generating an optimal set of effector commands thed 4~ < < u*, whereu™ andu~ are upper and lower
match actual body torque to the desired body torque asunds placed on the effectors afdis a matrix defining
closely as possible while minimizing the control effort andhe effectiveness of the effectors. If multiple solutions
obeying the position and rate constraints of the effectrs. exist, choose one that will minimize the predetermined cost

control allocation approach is generally used when differe function. If there are no solutions, find such thatBu
combinations of effector commands can produce the sana@proximates: as well as possible.

result and when the number of effectors available exceedsTraditional CA approaches are centered around a simple

the number of states being controlled. A key feature Okast squares approach. The least squares method uses a
control allocation is that of reconfiguration. In the evenpseudo-inverse of a reference model and determines the
an effector failure is detected, the control effort is rediseffector commands as a function of the commanded, or
tributed among the remaining active effectors to minimizglesired, effects. Although this method is easily impleradnt
the tracking error. Different methods of control allocatio gnd computationally efficient, it does not consider effecto
have been developed for aerospace vehicles [3], [6], marig@mmand limitations [2].
vessels [17], and other areas where this proves to be aModel predictive control (MPC) has recently gained
valuable safety aspect. Increasing driver/passengetysaf@opularity in the vehicle control community due to ad-
is a constant motivation for related research on grounghncements that significantly reduce the computationad tim
vehicles. Research has been conducted on the control refjuired to solve this type of optimization. MPC has been
ground vehicles via state feedback using steering anglgeveloped significantly in the chemical industry where plan
differential braking, and even aerodynamic actuators agnamics allow for sufficient computational time. Recent
control inputs [15], [19]. The addition of differential kiag  advancements in MPC however, allow for a faster on-
as a control parameter has proven to be successful [ife solution by shifting some of the computational burden
maintaining vehicle stability during drastic maneuver8][1 off-line [1]. This has been proven to be an effective CA
and in rollover prevention [4]. technique for rollover prevention of ground vehicles [41 bu
This paper examines the use of quadratic programmingill possesses significant computational complexity glon
in determining an on-line solution to the control allocatio with a trade off between simplicity of on-line solution and
problem to control a ground vehicle with redundant effectomemory to store off-line computed solutions.
inputs (e.g. differential braking and steering) to trackea d
sired yaw rate trajectory while minimizing vehicle sidesli . VEHICLE
The proposed controller uses quadratic programming (QFR) Nonlinear Vehicle Model

|I. INTRODUCTION

*Graduate Student, Auburn University The vehicle model used to study the proposed controller
**Faculty, Dept. Mechanical Engineering is a 4 wheeled ground vehicle with three actuators available
***Faculty, Dept. Electrical and Computer Engineering to control the moment about the yaw axis: differential
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braking of the front and rear tires and steering angle of Vertical forces are a function of roll angle and yaw

the front tires. The free body diagram is shown below:
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Fig. 1. Free body diagram of vehicle model

wherer is the yaw rate}/ is the velocity vector acting at
the vehicle’s center of gravityj represents sideslip angle,
and ¢ is the steering angle. Subscripfs », R, L denote
front, rear, right, and left sides of the vehicle respedyive
Note that all forcest” and slip anglesy are drawn in the
positive direction such that lateral forég = —C,« where
C, represents tire cornering stiffness.

Applying Newton's laws of motion to the free body
diagram (Fig.1), the nonlinear equation of motion about
the yaw axis at the center of gravity can be written as

U =7= [a(F,frcos(d) + Fyrrcos(d)
—Fytrsin(6) — Fyprrsin(d))
—b(Fyrr + Fyrr) + & (AF,,)
—i—%f(FyfR sin(d) — Fyrr sin(9)
+Fyrrcos(6) — Fyypr cos(9))]/ 1.
where I, is the moment of inertia about the yaw axis.
A good estimate of sideslip angle can be writtén=
t(m—l(%). Differentiating this w.r.t. time gives the equa-
tion of motion for sideslip:

B = (Fer + FyrR + Fny COS(5) + FyfR COS(5)
—Fyrpsin(d) — Fyyrsin(d))/mV cos(B)
—Vitan(8)/V —r

A Pacejka tire model [7] is used to model the behavio

1)

)

of the tires. This nonlinear tire model uses tire slip angle

and vertical force to approximate the lateral force acting o
the tire. Similar to vehicle sideslip, the equations foe tir
slip angle can be written:

|

Vsin(B) — rb
V cos(B) +r
Vsin(B) —rb
V cos(B) — rk

Qpp, = tan~! [

Qpp = tan~! {

1| Vsin(B) +ra
afp =tan | ———— L
Vcos(B) +r+4
afp =tan"! Vsinf) + ra r;zf —0R (3
Vcos(B) —r+

rate. For the maneuvers considered in this paper, the roll
dynamics are assumed to be slower than the input dynamics
so that the roll angle is strictly proportional to lateral
acceleration. Therefore, roll angle is approximated a8jn [
by:

WhV < 4

¢_K¢f+K¢r_Wh “)

whereW is the vehicle weighth is the distance between
the center of gravity and the roll axig,is acceleration due
to gravity, andK 4 is the total roll stiffnesses of the axle.
A more accurate roll model is used in [4] where transient
roll dynamics are not ignored. By further assuming that the
vehicle travels on flat terrain and neglecting longitudinal
weight transfer, the vertical load difference is approxieda
for each axle by taking the moment about the roll axis and
combining it with the above expression for

WeVrh
AF.y = {M + ¢K¢>f] [t
W, Vrh,
AF,, = [TT + ¢>K¢T] Jt, (5)
The vertical load at each tire is:
F.tr=F.; — AF.y
szL = sz =+ AFZf
Fer:Fzr_AFzr
Fer:Fzr+AFzr (6)

B. Linear Vehicle Model

The proposed control law is designed around a linearized
model of equations (1-2) given in state space form below.

C1

) [G ][
-l et
. 1)
Zaf 0 1 AFf
L v (7)
laff 5t ztfz 0 Ay
v
CO:Caf+Car

' Oy = aCoy — by

Cy = a*Coy + b*Cay

whereC, s andC,, are constants representing the front and
rear linearized tire cornering stiffness values (per axibe
state space model also utilizes small angle approximations
the assumption of constant vehicle velocity, and neglects
lateral and longitudinal weight transfer.

The nature of the input matri® implies that the differen-
tial braking inputs can only affect vehicle sideslip indilg
through the coupling between the two states. Because of
this, it is necessary to add a fourth virtual input This
relaxes the equality constraint on the sideslip and removes
some of the control responsibility from the steering angle
without affecting the yaw rate.
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IV. CONTROLLERDESIGN inequality constraints. The general form of the quadratic

Observe that, for a given desired derivative veatgr, = programming problem is:

[ 6 7 ]T, there is more than one possible corresponding min  2u"Qu + cTu (10)
input vectoru. One may, for example, use a least squares y
weighted pseudo-inverse to compute an input veatdo
matchi ., but such a procedure does not necessarily obey
effector constraints (e.g., position limits). The prombse\herey is the set of effector commands ancand @ are
controller uses QP-based CA to compute correspondifgeights placed respectively on the linear and quadratitspar
optimal input commands that, when possible, match thgf the cost function. These weights can be chosen to favor
desired derivative vector while obeying effector consti®i  certain effectors and/or weight the frequency content ef th

The control law assumes full state feedback of yaw ratgffector commands over time.
and sideslip are available. These values can be obtainedrhe incorporation of inequality constraints ensures that
using traditional estimation [18], or measured by usinghe set of commands will always be inside the attainable
Global Positioning System and inertial sensors [5], [11]operating ranges of the effectors whether they be position
Considering the availability of such measurements alongmits, rate limits or any other limiting factor associated
with how inaccuracies due to the linearization of the veshiclyith the effectors. The input effectiveness matfixfrom
model affect the QP optimization, a more robust form ofhe linear vehicle model (7) is incorporated into the edyali
QP based control allocation presented in [10] may be moggnstraint which serves to ensure that the solution vector
appropriate. matches the desired control effect vector

The proposed controller can be thought of as being split Proper selection of the quadratic weight maté)xsig-
into two separate parts: a control law which defines a totgjificantly affects the optimization with the addition of the
control effectu that the vehicle must produce, and a controlirtual sideslip effectorv. A large quadratic penalty is
allocator that calculates an optimal combination of effect placed onv to reduce its use and leave most of the control
commands: that when applied to the vehicle will produceresponsibmty up to the real effectors.
the desired control effeat.

LQR gains designed for a modified linear vehicle model- Sign Preserving Quadratic Programming
are used to produce a desired control effeciThe modified In the event thati exists such that the solutiom must
system assumes a perfect input matBx = I;2, and lie outside the inequality constraints, the QP problem is
also includes the addition of an integrator to place mordeemed infeasible. The method of sign preserving quadratic
emphasis on yaw rate tracking and less on minimization @grogramming (SPQP) proposed in [16] guarantees feasibil-
sideslip. The resulting state space model takes the form:ity by allowing scaling of the control effort.
Sign preserving quadratic programming introduces slack

subject to Bu=u
and v <wu<ut

A —w Tmwzol 0715 iableso for each | eff hat the problem i
’ | mve, 0 variableso for each control effort so that the problem is
[ I Vi [ s modified as follows:
ér 0 1 0 er
10 B min %uTQuu +c,Tu+ %Qg(l —05)? (12)
Uﬁ u,o
0 0 o] e +4Q.(1- 0,
s.t. Bu—Yu=0
Applying the Algebraic Riccati Equation yields a gain uy Ue uf
matrix K».3 such that 0 <|og | < 1
0 o 1
U B 0
[ o } =-K | 7 ) where y=| %
Uy 0 o,

67’
wherer, is defined as the difference between actual an-épglsligﬁlvirr:zzlézﬁ t?]r;dgn?rlcl)?vgf;gcr;tlngg?v?/litiiilén% ast
desired yaw rate, angl. = r-.. The controller gaind serve pon . o .
o drive th tor of sianal a d control authority (function of states in input effectiveness
0 drive the vector o sugna{s Bore e } 0 2€10, and matrix B). The separate scaling afg and u, maintains

_ _ T . . .
[ @s u, | are the resulting sideslip and yaw rate controhroplem feasibility while preserving the sign of the total

effects the control allocator tries to match. desired control effect vector.
A dratic P . The SPQP problem incorporates the equality constraint of
- Quadratic Programming Bu—XYu = 0 just as the nominal QP problem (10) meets the

The control allocation is achieved by solving a quadratiequality constraint ofBu — u = 0. This “allocation error”
programming problem which involves the minimizationprovides a measure of how well the controller is able to
of a quadratic cost function subject to both equality andhatch the desired control effect. Due to SPQP’s ability to
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scaleu by ¥, the exclusion of: when calculating allocation ~ As mentioned earlier, the quadratic penalty placed on the
error for the SPQP method produces a larger allocation errairtual effectorv significantly affects the control action. A
for the part of the control effect being scaled. Thereforequadratic penalty o€), = 1le4 resulted in minimal use of
allocation error for the individual states are included irthe differential braking commands as the controller relies
the results section to give the reader a way to obserteavily on the virtual effector to minimize sideslip. This
which parts ofu are being scaled for the different scenariowalue provided better yaw rate tracking for the straight QP
presented. approach by placing most of the control effort in the stegrin
command and treating the differential braking as more of
V. SIMULATION a secondary/backup input. A larger penalty@f = 1e6
was also studied, in which case the differential braking
ommands were relied on significantly to minimize sideslip.

were implemented in Matlab/Simulink. A single sine wave he d|f_fere.nce n magnitude of the braking comr_nands IS
oscillation corresponding to a double lane change maneuV??OVYn in Fig. 2 with plots of the commanded braking force
was computed off-line and used as the desired yaw ra Cl different values of),,.

trajectory.

Three different scenarios are presented to demonstratr
reconfiguration ability: 1) nominal case, no failures exper
enced 2) front brake failure at 2.75 seconds, and 3) steering
failure at 2.75 seconds. For each of these cases the vehicl
was simulated at constant velocities of 45, 55, and 65mph
for both regular QP and SPQP algorithms. This assumes ¢
separate controller regulates fuel flow to the engine during
differential braking commands to maintain a constant speed

Failures were implemented by scaling the columns of
the input effectiveness matri8 from equation (7) cor-
responding to the failed effector. Actual implementation
would require the controller to be alerted of a failure
through an on-board vehicle diagnostic system such as the
one demonstrated in [13]. Therefore, on-line calculatibn o
input effectiveness matri8 would be necessary due to its
dependence on both failure mode and velocity.

A constant position limit of+£0.5rad~ 30deg was
placed on the steering angle of the front tires. The limits The results for each of the mentioned virtual effector
placed on the differential braking commands were calcu-

. . . weights @, = le4 and @, = 1e6 are included in Tables
lated on-line by taking75% of the vertical force on the | and IlI, respectively. For the sake of consistency and

inside tires as the approximate maximum braking forc?o better demonstrate the control action taken on by the

that can be applied W'thOUt prc_)ducmg sllppage. Reseaf';Chegraking commands, all following figures are results from
have shown that on-line estimates of vertical force an

road friction coefficient are possible through the use O?Imul_atlons run with a quadratic penalty Qf, = 1e6 on
the virtual effector.

extended Kalman-Bucy filtering and Bayesian hypothesis The advantage of the SPQP algorithm’s ability to scale

sglgctlon [14.']'. Alternatively, the underestlm ation of (doa_l the control effort is made clear by the comparatively lower
friction coefficient has been shown to provide conservatlvg

The full nonlinear vehicle model with the nonlinear
tire model (equations 1-6) and the proposed controll

Fig. 2. nominal case braking commands at 45mph using QP
Qv=le4

Differential braking force (N)

3 4
Time (seconds)
Qv=1e6
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Differential braking force (N)

-300 L L L I I
0
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imati f ; braking f lable to th aw rate tracking error it provides for speeds 43 and
sgﬁigé'rﬂaz]lons of maximum braking force avariable to 5mph. The scaling occurs only in the sideslip portion of the

control effectag and is a function of the weight placed on
the virtual effector. A higher weight orv requires a larger
scaling ofag resulting in greater sideslip allocation error
Since neither disturbances nor sensor noise were simand sideslip tracking error than the straight QP approach
lated in the experiment, the results presented here are i¢tig. 4). The effect of this scaling is apparent in the
relative comparison only and are not a measure of trudifferential braking commands shown in figure 3 which
performance (qualitative not quantitative). The root meaappear to be significantly different than those resultiognfr
squared errors of yaw rate and sideslip tracking are useélde regular QP algorithm (Fig. 2).
to compare algorithms and assess the effectiveness of theDue to the coupling in equations (1) and (2), the QP op-
controller in each scenario. Root mean squared allocatigimization produces a differential braking command which
error, although subjective in nature, is also included foopposes the steering angle command in an effort to keep
reasons stated in section I1V-B. the sideslip angle small. This leaves the yaw rate tracking
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Fig. 3. nominal case: commands at 45mph using SPQP
Steering Input vs. Time
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Fig. 6. Steering Failure: tracking at 65mph using QP

Yaw Rate vs. Time

Fig. 4. nominal case: tracking at 45mph using SPQP
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up to the steering command which has the most authorif/ch as the proposed ground vehicle model. QP based
over both states. Less braking force opposing the steerir%"\ in particular, has been shown to provide intelligent
angle requires less steering input resulting in improves yadlstrl_bunon of c_ontrol effort among 'Fhe effectors in both
rate tracking. Better sideslip tracking is also achieved duominal and failure cases. SPQP gives the best yaw rate
to the direct impact of the steering input gh For this tracking performance for thet5 and 55mph cases but
reason, better performance of the straight QP algorithm fggular QP consistently outperforms SPQP in the area of
seen in the case of a brake failure just as it is when brakir%‘.jeS“p minimization. The two types of QP examined in
input is reduced by a small quadratic penalty on the virtudfiS paper clearly offer different advantages and degrees
effector. of freedom which should be taken into account depending

In the event of a steering failure however, yaw rate tracken the_specific design goal. Additionally, for.basic contrql
ing is left solely up to the differential braking commandsdllocation purposes a QP based method provides fast on-line
which are then used to minimize the yaw rate error aftfommands yielding good results.
the failure occurs. Figures 5 and 6 display the controller's Better performance is achievable if the full potential
ability to maintain best possible yaw rate tracking througRf the braking commands can be exploited. Future work
reconfiguration while respecting the limitations of the reinvolves using a linear programming optimization in accor-
maining effectors. dance with the tire friction circle to calculate a more ac-

curate estimate of differential braking limits. Improvemnts
VIl. CONCLUSION AND FUTURE WORK in performance that may be obtained with additional inputs

Control allocation and its reconfiguration abilities provesuch as differential acceleration and 4 wheel steering will

to be very useful in dealing with over-actuated systemalso be investigated.
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TABLE |

RESULTS FOR QUADRATIC PENALTY OFle4 ON VIRTUAL EFFECTORY

Nominal
Vel Alg RMS » RMS 3 RMS 7 Allocation RMS 3 Allocation
(mph) (deg/s) (deg) | Bu — all |1Bu — a
45 QP 0.4112 0.0179 2.755E-07 1.249E-06
45 SPQP 0.4111 0.0180 2.755E-07 1.249E-06
55 QP 0.3185 0.0899 3.656E-07 2.389E-06
55 SPQP 0.3044 0.0915 3.644E-07 9.702E-06|
65 QP 0.2937 0.2047 5.008E-07 4.534E-06
65 SPQP 0.1853 0.2414 4.883E-07 3.081E-04]
Front brake failure
45 QP 0.4111 0.0179 2.755E-07 1.249E-06
45 SPQP 0.4111 0.0180 2.755E-07 1.250E-06
55 QP 0.3184 0.0900 3.656E-07 2.390E-06
55 SPQP 0.3043 0.0916 3.644E-07 9.703E-06|
65 QP 0.2937 0.2049 5.008E-07 4.536E-06
65 SPQP 0.1852 0.2416 4.883E-07 3.083E-04
Steering failure
45 QP 0.3124 0.2701 3.325E-07 2.539E-06
45 SPQP 0.3124 0.2699 3.325E-07 2.540E-06
55 QP 0.2618 0.3813 4.689E-07 4.617E-06
55 SPQP 0.2490 0.3815 4.669E-07 1.047E-05
65 QP 0.2605 0.5246 6.707E-07 7.870E-06
65 SPQP 0.1808 0.5424 6.585E-07 2.523E-04]
TABLE 1l

RESULTS FOR QUADRATIC PENALTY OFle6 ON VIRTUAL EFFECTORY

Nominal
Vel Alg RMS » RMS 3 RMS 7 Allocation ~ RMS /3 Allocation
(mph) (deg/s) (deg) | Bu — all |1Bu — a
45 QP 0.4318 0.0053 2.698E-07 1.091E-06
45 SPQP 0.1103 0.0218 2.734E-07 4.674E-04]
55 QP 0.3348 0.0522 3.505E-07 1.988E-06
55 SPQP 0.0843 0.1252 3.506E-07 1.119E-03
65 QP 0.3077 0.1360 4.630E-07 3.677E-06
65 SPQP 0.3223 0.3377 4.448E-07 2.709E-03
Front brake failure
45 QP 0.4284 0.0083 2.700E-07 1.128E-06
45 SPQP 0.1097 0.0221 2.738E-07 4.686E-04]
55 QP 0.3313 0.0603 3.518E-07 2.075E-06
55 SPQP 0.0843 0.1256 3.512E-07 1.121E-03
65 QP 0.3039 0.1506 4.679E-07 3.854E-06
65 SPQP 0.3230 0.3383 4.451E-07 2.712E-03
Steering failure

45 QP 0.3157 0.3198 3.294E-07 2.511E-06
45 SPQP 0.1016 0.3418 2.486E-07 8.494E-04]
55 QP 0.2645 0.4388 4.623E-07 4.542E-06
55 SPQP 0.3587 0.5726 3.188E-07 2.129E-03
65 QP 0.2628 0.5916 6.570E-07 7.695E-06
65 SPQP 1.0405 0.9854 4.616E-07 4.963E-03
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