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Abstract − This paper studied the motion planning of 
nonholonomic systems. And a method based on bang-bang 
controls is proposed for n-dimensional chained form systems 
with two inputs in this paper. The method operates by 
switching between two kinds of inputs at time sequences to 
steer the system from initial configuration to an arbitrary 
final configuration. An algorithm is proposed to calculate time 
sequences of switching. At last, a numerical example and 
simulation results show the effectiveness of the proposed 
method. 
 

I. INTRODUCTION 
Nonholonomic mechanical system is a class of mechanical 
systems subject to either nonholonomic constraints or non-
integral constraints. In robotics, wheel mobile robot and 
mobile robot with n-trailers are typical examples of such 
systems. In the past few years, there are many research 
areas about control of such systems. Nonholonomic motion 
planning problem (NMPP) is one of these areas. This 
problem mainly concerned with obtaining open loop 
control, which steer a nonholonomic system from the initial 
configuration to final configuration over a finite time 
interval [7]. In contrast to holonomic system, the NMPP is 
difficult, because there are some motion constraints and 
these constraints are non-integral and cannot be transform 
into the generalized coordinate constraints. 
 
In recent years, the motion planning for nonholonomic 
mechanical systems has been studied widely by many 
researchers in the world, and many methods have been 
proposed for this problem, such as sinusoidal input 
(Murray and Sastry [2]), multirate digital control (Monaco 
and Normand-Cyrot [3]), polynomial input (Tilbury, 
Murray and Sastry [4]) etc. These methods often utilized 
tools from differential geometric control theory, and in 
practice, it requires that the designers have some 
knowledge about different geometric. At the same time, 
using these methods to get the result for problem, it is often 
needed to calculate the integral of configurations based on 
u(t), and it is very difficult when the dimension is higher. 
 
In this paper, a novel method based on bang-bang controls 
is proposed. It is proved that this method can steer the n-
dimensional chained form systems from an initial 
configuration to an arbitrary final configuration. And an 
algorithm to calculate the sequence of switching time is 
given. And it needn’t to calculate the integral of chained 
form with the bang-bang controls. 
This paper is organized as follows. In section 2, we 
describe the strategy of steering based on bang-bang 
controls and prove that this strategy can steer n-
dimensional chained form to an arbitrary final 

configuration. In section 3, an numerical example that 
steering a 5-dimensional chained form system from a given 
initial configuration to origin (final configuration) is 
shown. And simulation results are obtained using 
MATLAB/SIMULINK. Section 4 gives some concluding 
remarks. 
 

II. MAIN RESULTS 
 

In the following, we consider a subfamily of n-dimensional 
chained form systems with two inputs described as (1): 

1 1 2 2 3 2 1 1, , , , n nz v z v z z v z z v− 1= = = =              (1) 

In fact, many nonholonomic systems can be transformed 
into chained form via feedback transformation, such as n-
trailer vehicle etc. Murray and Sastry have given sufficient 
conditions under which real systems can be converted into 
chained canonical form [2]. 
 
The following notation are employed: Ti, (i=1,2,…,2(n-
2)+1) denotes each switching time, T0 denotes the start 
time and Tf denotes the final time, iξ , (i=1,2,…,2(n-

2)+1) denoted the i th time-intervals of switching , and Ti 
=Ti-1+ 

iξ , Zstart and Zgoal denote a pair of initial and final 

configuration. We use superscript to denote the sequence of 
switching time and subscripts to denote the vector element.  
 

In (1), V=[v1 v2] is the control input and is restricted to the 
space of bang-bang controls, in other words, the ith 
element of V, v { 1 0 1}i∈− . To steer this system using such 
a control input, we make a strategy with the following 
algorithm. 
 
Algorithm 1: 
Step 1: Let Ti =T0;  
Step 2:At t = Ti, LetV [0 ]= ± 1  and steer (1) until t = Ti+1 ; 

Step 3: At t = Ti+1, if the final configuration is arrived, 
stop steering. Otherwise, let V  and steer (1) until 

t = Ti+2; 
[ 1 0 ]= ±   

Step 4: At t = Ti+2, if the final configuration is arrived, 
stop steering. Otherwise, let Ti = Ti+2 and return to step 2. 
 
Proposition 1: Algorithm 1 can steer System (1) to an 
arbitrary configurations through 2 ( switches mostly.  2)n× −
 



The proof of Proposition 1 is constructive, and it gives the 
Algorithm 2 that calculates the sequence of switching time. 
 
Proof: In order to prove the proposition, we suppose that 
the number of switching is 2 (  and there are 

 time-intervals denoted by 

2)n× −

2 ( 2) 1n× − + iξ , (i=1,2,…,2(n-

2)+1) between T0 and Tf. 
According to Algorithm 1:  
Step 2: Using V steer System (1) until t = T1, and 

the sign of 

[0 ]= ±  1

1ξ  is the same as that of v2. We can calculate 

the configuration of System (1) at T1 presented by (2.1). 
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Step 3: Using V  steer System (1) until t = T2, 

and the sign of 

[ 1 0]= ±

2ξ  is the same as that of v1. We also can 

calculate the configuration of System (1) at T2 presented 
by (2.2). 
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Repeat Step 2 and Step 3 of Algorithm 1 till t = T2(n-2)+1. 
At last, we can calculate the configurations of System (1) at 
Ti presented by (2.i), (i = 1,2,…,2(n-2)+1). 
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If we substitute (2.k) into (2.k+1), (k =1,2,…,2(n-2)), we 

can obtain (3) : 
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In order to prove Proposition 1, we must show: 
z There is 

1 2 2 ( 2 ) 1, , , nξ ξ ξ − + =  ξ  satisfying (3). 

Now we can obtain one of ξ  using Algorithm 2. 
Algorithm 2: 
Step 1: Separate 

1 2 2 ( 2 ) 1, , , nξ ξ ξ − + =  

2 ( 2 ) 1nξ − −

ξ  into three 

vectors: 
1 3, , ,ξ ξ =   2 4, ,ξ ξ=2ξ1ξ

2 ( 2 ) 1nξ − +

, , 
2 ( 2 ), nξ −  

 =  3ξ ; 

Step 2: Specify 2ξ  by random and 2ξ  must be satisfied 
with: 2
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Step 3: Calculate 1ξ  by ξ  where ⋅-1
1 = A B
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And we know that the inverse of A exists if and only if 

2 0, ( 1,2, ( 2))i i nξ ≠ = − . 



Step 4: Calculate 3ξ  by 2
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− + −
=

= − −∑ . 

Step 5: Calculate the sequence of switching time: 
Ti =Ti-1+ iξ , (i =1,2,…,2(n-2)+1) 

According to Algorithm 2, we know that the solution of (3) 
exists if and only if the appropriate 2ξ  was chosen. And if 

all the elements of 1ξ  are unequal to zero, the number of 

switching is 2(n-2). If there are m elements of 1ξ  equal to 
zero, the number of switching is 2(n-m-2). 
 

III. EXAMPLE 
In this section, we consider a 5-dimensional chained form 
system as follows: 

1 1 2 2 3 2 1 4 3 1 5 4, , , , 1z v z v z z v z z v z z v= = = = =         (4) 
In practice, this chained form system can be transformed 
from the mobile robot with two trailers, See Figure 1. [1] 
Now our problem is how to find the control input: v t  

and  steering (4) from the initial configuration: 

Zstart=[5 5 5 5 5] to the final configuration: Zgoal=[0 0 0 0 
0]. 
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Now, we use the method above proposed. 
Step 1: Initial the interval ( 1, 2, ,i i )mξ = . And m can 
be computed with: 

2 ( 2) 1 7m n= × − + = . 

Step 2: Specify 2 , ( 1, 2,3)i iξ =  by random, and must be 
satisfied with:  
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Step 3: Calculate the matrix A and vector B: 
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where  denotes the Column 1 of the matrix A. (:,1)A
Step 4: Compute 2 1, ( 1, 2,3)i iξ − =  with: 

⋅-1ξ = A B  

where 1 3 5[ ]Tξ ξ ξ=ξ  

 

 
Fig.1 A mobile robot with two trailers 

 
Step 5: Calculate the switch time T : i
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Here, a numerical result is shown below. 
 
ξ =[-1.333 –1 –3.125 –2 –0.417 –2 –0.125] 
T = [0 1.333 2.333 5.458 7.458 7.875 9.875 10] 
v1 = [0 –1 0 –1 0 –1 0] 
v2 = [–1 0 –1 0 –1 0 –1] 
 
And the computer simulations are carried out using 
MATLAB/SIMULINK and are presented to show the 
effectiveness of the results. Fig.2 and Fig.3 show, 
respectively, the control input: v1, v2 and the trajectories of 
configuration variables in chained form systems (4). 
 
 

IV. CONCLUSION 
A novel method based on bang-bang controls is proposed 
in this paper. This method can be used in solving the 
motion planning problem for nonholonomic systems which 
can be transformed into chained form. It is proved that can 
steer an n-dimensional chained form system between an 
arbitrary pair of initial and final configuration. And a 
numerical example and simulation results show the 
effectiveness of proposed method. Future research 
directions include how to deduce the number of switching, 
how to get the time optimal switching and how to extend 
this method to multi-chained form systems. 
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Fig.2 Control Input: v1, v2 

 

 

 

 

 
Fig.3 Trajectory of configuration variables 

 [z1 z2 z3 z4 z5] in chained form system (6) 
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