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1. ABSTRACT  
Many robust MPC proposed in literature [4, 6] use input 
constraints that are conceptually similar to those shown in 
equation (2).  This type of input constraints can lead to 
overly conservative control because every probable 
realization of the process input must lie within the feasible 
region.  Only the input trajectory associated with the worst-
case plant/model mismatch is allowed to meet the input 
constraint.  The rest of the possible input trajectories are 
backed away from the constraint.  This ‘back-off’ does not 
accurately predict the future behavior of a constrained MPC 
system and often leads to conservative control. 

The importance of closed-loop uncertainty predictions in 
robust model-predictive control (MPC) has been discussed 
by a number of authors in recent years [1-3].   The 
proposed controllers often rely upon invariant sets and 
require that input constraints are inactive at the final 
steady-state [3, 4].  The controller discussed in this paper 
avoids this limiting assumption while maintaining robust 
output constraint handling.  This paper emphasises the 
often negative effects of probabilistic input constraints and 
proposes a method based upon multiple uncertainty regions 
to deal with these effects.  The proposed controller solves a 
second-order cone program (SOCP) at each execution in 
order to determine the set of control moves that will 
optimize the expected performance of the closed-loop 
system while maintaining the uncertain process outputs and 
inputs within their allowable bounds.  Case studies 
illustrate the performance of the new controller when 
plant/model mismatch is present. 

 
One of the main contributions of this paper is a method for 
effectively handling probabilistic input constraints.  A 
method is proposed in which the system uncertainty is split 
into several uncertainty regions.  The uncertainty associated 
with each region is smaller than the total system 
uncertainty, allowing each subset to approach the input 
constraint more quickly.  This reduces the ‘back-off’ 
caused by the probabilistic input constraints.  Case studies 
illustrate the improved dynamic performance of the multi-
region method. 

 

2. INTRODUCTION 

In recent years, the academic MPC community has 
proposed a number of MPC systems that explicitly consider 
uncertainty caused by plant/model mismatch.  The most 
promising of these controllers use a closed-loop prediction 
of uncertainty [1-7].  Closed-loop uncertainty descriptions 
differ from open-loop descriptions in that closed-loop 
descriptions consider the effect of future control actions 
and, therefore, more accurately predict the future system 
uncertainty.  Robust MPC based upon closed-loop 
uncertainty predictions have been shown to outperform 
robust MPC based on open-loop uncertainty [1, 5].  

 
The proposed robust MPC is based on a second-order cone 
program (SOCP) and is computationally less complex than 
robust MPC requiring the solution of a semidefinite 
program (SDP) [4, 7]. See [8] for a comparison of the 
complexity of interior point algorithms that solve SOCP 
and SDP. 
 
The rest of the paper is organized as follows.  In section 3, 
a brief review of robust MPC is given.  Key concepts 
include closed-loop prediction of future system uncertainty 
and the effect of probabilistic input constraints.  In section 
4, two new robust MPC systems based upon SOCP are 
presented and explored via continually stirred tank reaction 
(CSTR) case studies. 

 
This paper develops a robust model-predictive controller 
for stable systems with uncertain plant models.  The 
process is assumed to be linear time-invariant (LTI) within 
the prediction horizon. The controller deals with plant 
model uncertainty by replacing deterministic constraints, 
ymin< y < ymax and umin< u < umax, in the MPC formulation 
with probabilistic constraints of the form: 

 
3. BACKGROUND 

The uncertainty description used by a robust MPC 
determines much of the dynamic and constraint-handling 
characteristics of the controller. As discussed below, poor 
uncertainty descriptions can lead to poor control.   

 { } yyyy α−≥≤≤ 1Pr maxmin  (1) 

 { } uuuu α−≥≤≤ 1Pr maxmin  (2)  
3.1 Time-varying Uncertainty Descriptions 

These probabilistic constraints assert that the process 
output, y, and input, u, remain within their limits with 
confidence levels of 1-αy and 1-αu, respectively.   

Several robust MPC systems assume that the process is 
linear time-varying [4, 9].  However, in the process 
industries many of the processes can be assumed to be 

 



time-invariant within the prediction horizon.  Because the 
time-varying uncertainty description includes plants that 
are very unlikely, a time-varying description is 
inappropriate in many situations. 
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3.2 Open-loop Uncertainty Descriptions  
 In unconstrained model-predictive control, the following 

optimization is solved at each controller execution [10].    
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Figure 1: Conceptual Design for Robust MPC 

The controller block depicts the MPC using a closed-loop 
model of the system to predict the future expected value 
and upper and lower uncertainty limits for the inputs, u, and 
outputs, y. The robust MPC does not directly calculate a 
vector of input moves as is done in nominal MPC.  Instead, 
it calculates an internal reference trajectory, r.  This 
internal reference trajectory represents the desired 
movement in the future closed-loop system and is related to 
the predictive reference filter [11]. 

where n is the output prediction horizon, m is the input 
horizon, and y, ysp, Ň ∈ ℜ n, ∆u ∈ ℜ m, W∈ℜ nxn, Q∈ℜ mxm.  
The process set point is represented by ysp.  The matrices, 
W and Q, are positive definite matrices, typically with the 
tuning parameters, w and q, on their respective diagonals.  
These tuning parameters are chosen to achieve the desired 
compromise between dynamic performance and robustness.  
Equation (3a) represents a deterministic model of the 
process.  In this paper, a linear step-weight model is used 
and the process is assumed to be open-loop stable.     

 
4.1 Closed-loop Uncertainty Prediction 
In order to create the required closed-loop prediction, a 
model of the process and a model of the future controller 
actions are needed.  In this paper, the future control actions 
are modeled by the MPC shown in equation (3). The 
Karush-Kuhn-Tucker (KKT) conditions for this 
unconstrained MPC are linear and can be written as: 

 
The result of this optimization is a vector of input moves, 
∆u, of which only the first is implemented.  At the next 
controller execution, an updated estimate of the 
disturbance, Ň, is calculated, the output prediction is 
updated, and the procedure is repeated. ( ) ( ) 0ˆ =−−∆+ NrWAuQAWA TT

M
T

M
TT

M  (4) 
 

where AM ∈ℜnxm and represents the nominal step-weight 
model of the plant.  The vector, r, represents the internal 
reference trajectory and the tuning parameters, W and Q, 
have been chosen to provide acceptable dynamic 
performance and robustness. 

In an open-loop prediction of uncertainty, the entire vector 
of ∆u is assumed to be known in the prediction of future 
output uncertainty.  This is not an accurate description of a 
closed-loop, probabilistic system.  Uncertainty in the future 
outputs leads to uncertainty in future inputs as the future 
control actions compensate for disturbances or plant/model 
mismatch.  Because open-loop predictions neglect this 
characteristic of closed-loop systems, such predictions 
often overestimate the uncertainty in future process outputs.  
Furthermore, open-loop predictions provide no estimate of 
future input uncertainty.  This poor uncertainty model can 
lead to overly conservative control when the system is 
operated near input or output constraints [1-5]. 

 
The linear process is given by the following equation where 
AP represents the true process and is not necessarily equal 
to AM. 
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To create a closed-loop model, equations (4) and (5) are 
written for each time step within the prediction horizon.  
This linear set of equations can be combined to derive the 
two closed-loop step-weight models, Ay

cl and Au
cl shown in 

equation (6).  These matrices represent the closed-loop 
relationships between the internal reference trajectory and 
the process inputs and outputs, such that: 

 
3.3 Probabilistic Input Constraints 
As discussed in the introduction, the use of probabilistic 
input constraints can lead to conservative control because 
only the input trajectory associated with the worst-case 
plant/model mismatch is allowed to meet the input 
constraint.  Section 4.6 discussed how this effect can be 
mitigated through the use of multiple uncertainty regions. rAu
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where y, r, Ň∈ ℜ n, u ∈ ℜ m, Ay
cl∈ ℜ nxn, and Au

cl ∈ ℜ mxn. 
 

 4.2 Propagation of Closed-loop Uncertainty 
Figure 1 illustrates the general control scheme proposed in 
this paper.   

Model uncertainty can be characterized using an ellipsoidal 
bound on the parameters.  If aP,i represents a possible 

 



realization of the ith row of the step-weight matrix, AP, the 
following equations hold. 
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Where āP,i is the center of the ellipsoid and ΨP,i is a positive 
definite matrix that determines the size and orientation of 
the ellipsoid.   
 
An equivalent, statistical interpretation of the system is also 
possible [13].  The vector āP,i represents the expected value 
of the ith row of AP and the variance-covariance of the ith 
row is denoted as V(aP,i).  The relationship between ΨP,i  
and V(aP,i) is given by equation (8). 
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where βα = Φ-1(α), the value of the inverse cumulative 
distribution function of the standard normal distribution 
evaluated at confidence or probability level α. 
 
In order to create a closed-loop uncertainty description, the 
model uncertainty described in equation (7) must be 
mapped to the uncertainty associated with the closed-loop 
models, Ay

cl and Au
cl shown in equation (6).  For a linear 

time-invariant (LTI) plant with a fixed controller, this 
mapping can be accomplished during the controller design 
phase with an off-line sampling technique.  For any plant 
sampled from the set defined by equation (7), a single 
realization of Ay

cl and Au
cl

 can be directly calculated by 
combining equations (4) and (5) for every sample time 
within the prediction horizon.  The uncertainty in Ay

cl and 
Au

cl
 can then be characterized by determining the variance-

covariance and expected values of the sampled realizations.  
 
4.3 MPC under Closed-loop Uncertainty  
Once these closed-loop statistics have been estimated, an 
robust MPC can be derived.  The proposed MPC optimizes 
the performance of the nominal plant while ensuring that 
the all probable trajectories of y and u remain feasible.  
This is accomplished by using nominal values of y and ∆u 
in the objective function of the optimization and adding 
closed-loop probabilistic constraints of the form seen in 
equations (1) and (2).  
 
The general form of the proposed robust MPC is shown in 
equation .  To simplify the presentation, the slack 
variables required to avoid infeasibility and stability issues 
are omitted [12].  

(9)
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{ } niyyy yi K1,1Pr maxmin =∀−≥≤≤ α  (9d) 

{ } niuuu ui K1,1Pr maxmin =∀−≥≤≤ α  (9e) 
where the various over-bars denote the expected values of 
the associated variables. 
 
The proposed MPC can be cast as a second-order cone 
program (SOCP) if equations (9d-e) are reformulated as 
conic constraints [8, 13].  Equations (9d-e) can be written 
as 
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where acl
x i represents the ith row of associated matrix. 

 
The expected value and variance-covariance of acl

y,i and 
acl

u,i are denoted ācl
y,i , ācl

u,i,  V(acl
y,i), and V(acl

u,i), 
respectively.  These values are calculated using the off-line 
sampling technique discussed in section 4.2.   From these 
data, the expected value and variance of equations (10)-
(13) can be calculated. 
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Equations (10)-(13) can then be recast in their standard 
normal form.  For example, equation (10) becomes 

( ) ( )
( )

( )
( )

ni

raVr

nray

raVr

nranra y

cl
iy

T

i
cl

iy

cl
iy

T

i
cl

iyi
cl

iy

K

(((

1                                                                   

2
1Pr

,

,max

,

,,

=∀

−≥










 +−

≤
+−+ α  

(16) 

Therefore, the probabilistic constraint can be rewritten as 
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And equation (10) becomes a second-order conic 
constraint. 
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Similar transformations are performed for the remaining 
probabilistic constraints and equation (9) is reformulated as 
a convex, SOCP that can be efficiently solved using 
interior-point algorithms such as Sedumi [14]. 
 
 

 



Figure 3: Comparison of Nominal and Robust MPC  
4.5 Robust Input Constraints 4.4 Robust Output Constraints 

Consider the following 1st-order, isothermal CSTR where 
modeling error is present.  The true plant, plant model, and 
variance-covariance of the gain, KP, time constant, τ , and 
deadtime, θ, are shown in Figure 2.  The model coefficients 
differ from the true plant coefficients by approximately two 
standard deviations and lie within the ellipsoidal 
uncertainty description used by the controller. 

As discussed in the introduction, probabilistic input 
constraints can lead to conservative control when the 
system is operated near input constraints.  This situation is 
illustrated by the following example, in which the CSTR 
shown in  is controlled by a MPC with q = 1.0 and 
w_=_0.4. 

Figure 4

Figure 4: Uncertainty Isothermal CSTR System II 

 
  

Figure 2: Uncertain Isothermal CSTR System I  
A closed-loop Monte-Carlo simulation of this LTI process 
is shown in Figure 5.  This figure represents the unit set 
point response of fifty plant realizations sampled from the 
uncertainty region defined in Figure 4.  Notice the 
relatively large distribution of u.  This distribution is 
modeled by the variance-covariance of the closed-loop 
model, Acl

u, as discussed in section 4.2. 

This process is controlled near an output constraint of y≤ 
0.1.  No input constraints are present.  Figure 3 compares 
the performance of the robust MPC proposed in this section 
with a MPC that uses only a nominal model of the process.  
Both controllers are aggressively tuned with tuning 
parameters q = 1.0 and  w_=_1x10-4. 
 

 Figure 3 shows the reaction of the system to a set point 
change of -10 away from the constraint and +10 towards 
the constraint.  Notice that the robust and nominal MPC 
behave almost identically when output constraints are 
inactive (i.e. set point change of -10).  However, when the 
constraints are encountered, the nominal MPC violates the 
output constraint.  The robust MPC uses an explicit, closed-
loop model of uncertainty to observe this y-constraint 
without becoming overly conservative.  Comparable results 
could be obtained with similar formulations such as [3].  
However, such formulations are restricted to cases where 
input constraints are inactive at stead-state.  As discussed in 
the next section, this restriction does not apply to the 
proposed MPC. 
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Figure 5: Closed-loop Monte-Carlo of Uncertain CSTR 
 
With this amount of uncertainty present in the closed-loop 
system, the robust MPC must be conservative when 
operating near input constraints in order to avoid violation 
of the probabilistic input constraints seen in equation (9e).   
 
Figure 6 show the reaction of the proposed MPC to a set 
point change of 1.0 when an input constraint of u ≤ 0.8 is 
present.   
 

 



 

 

Figure 6: Nominal and Robust MPC with Probabilistic 
Input Constraints 
 
Clearly, the robust MPC is more conservative than need be.  
The probabilistic input constraints do not allowing the 
controller to quickly saturate the system.  Instead, the MPC 
is forced to make a number of relatively small input moves 
before the input constraint is met.  

Figure 7: Distribution of Multiple Uncertainty Regions 
 
Once the multiple uncertainty regions have been defined, 
the robust MPC outlined in section 4.3 can be recast as: 

 
4.6 Multiple Uncertainty Regions 
Improved robust performance can be achieved by dividing 
the uncertainty region into a number of subsets.  The 
uncertainty associated with each region is smaller than the 
total system uncertainty, allowing each subset to approach 
the input constraint more quickly.  This uncertainty 
description more closely matches the true behaviour of a 
closed-loop, probabilistic system and robust MPC built 
upon this approach outperform robust MPC that use a 
single uncertainty region when processes are operated near 
input constraints. 
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For example, consider the process shown in Figure 4.  The 
histogram for the distribution of the process gain, KP, is 
shown in Figure 7a.  This single uncertainty region can be 
divided into smaller uncertainty sets.  Figure 7b-c shows 
the distribution of KP within each subset.  Each subset has a 
different expected value of the process, AP, and different 
estimates of the variance-covariance of each row of AP.  
Naturally, each region of the plant uncertainty description 
maps to a different uncertain region with respect to the 
closed-loop matrices, Ay

cl and Au
cl, as discussed in section 

4.2. 

where the number of regions is denoted nc.  The objective 
function minimized the weighted average of the predicted 
nominal trajectories of y and ∆u as calculated by equations 
(19a-c).  Equations (19d-e) define the probabilistic 
constraints for each uncertainty region.  As discussed in 
section 4.3, these equations are reformulated to conic 
constraints using an off-line sampling technique.  Equation 
(19f) forces the first input move for each of the nc input 
trajectories to be equal.  It is this first input move that is 
actually implemented by the controller.   Note that this 
formulation can be viewed as a simplification of the 
semiinfinite solution MPC solution [13].  
 
4.7 CSTR Case Study – Robust Input Constraints 
Consider the CSTR system shown in Figure 4 in which the 
uncertainty is described by the 1-region, 3-region, and 5-
region uncertainty descriptions illustrated in Figure 7.  
Using equation (19), a MPC system is constructed for each 
uncertainty description.  Figure 8 compares the 
performance of each of these controllers for a setpoint 

 



change of 1.0 when an input constraint of u ≤ 0.8 is present.  
The controller tuning is kept the same for each controller,  

 

q = 1.0 and w_=_0.4. 

 
Figure 8: Nominal MPC and Robust MPC with Multiple 
Uncertainty Regions 
 
Figure 8 illustrates the key benefits of the proposed MPC.  
The multiple uncertainty region approach creates a robust 
controller that does not become overly conservative when 
input constraints are encountered.  Nor does this technique 
require that the system remain unconstrained at steady-state 
as is required by other robust MPC formulations [3, 4].  
 
4.8 Solution Time per Iteration 
The time required to solve a SOCP is clearly a function of 
the number of linear and conic constraints [8].  As the 
number of uncertainty regions increase, the number of 
constraints and the solution time also increase.  Figure 9 
shows the solution time of the SOCP for the case study 
discussed in section 4.7 when the number of regions, nc, 
vary from one to twenty.  The calculations are preformed 
with Sedumi’s interior-point method [14] on a Pentium 4 at 
1.8 GHz with 256-meg RAM. 

   
Figure 9: Solution Time vs. Number of Regions  
 
An open question is how to best determine the number and 
location of the uncertainty regions.  As with many other 

decisions in MPC, this choice is a compromise between 
model accuracy and computational complexity. 
5. CONCLUSIONS 
This paper proposes a robust MPC formulation based upon 
a multi-region, closed-loop uncertainty description.  The 
proposed controller extends robust MPC by avoiding the 
overly conservative control that can associated with 
probabilistic input constraints and by allowing the system 
to remain on an input constraint at steady-state. 
 
The proposed formulation uses a probabilistic, closed-loop 
description of system uncertainty that is calculated off-line.  
On-line, the MPC requires the solution of a convex second-
order cone program that can be efficiently solved with 
existing interior-point algorithms.   
 
6. REFERENCES 
 [1]  A. Bemporad, "Reducing conservativeness in predictive 

control of constrained systems with disturbances," 
Proceedings of the IEEE Conference on Decision and 
Control, pp. 1384-1389, 1998. 

 [2]  D. Mayne, "Nonlinear Model Predictive Control: 
Challenges and Opportunities," Progress in Systems and 
Control Theory, 26, pp. 23-44, 2000. 

 [3]  B. Kouvaritakis, J. A. Rossiter and J. Schuurmans, 
"Efficient robust predictive control," IEEE Transactions on 
Automatic Control, 45, pp. 1545-1549, 2000. 

 [4]  M. V. Kothare, V. Balakrishnan and M. Morari, "Robust 
Constrained Model Predictive Control using Linear Matrix 
Inequalities," Automatica, 32, pp. 1361-1379, 1996. 

 [5]  A. L. Warren and T. E. Marlin, "Improved Output 
Constraint-Handling for MPC with Disturbance 
Uncertainty," Proceedings of the American Control 
Conference, pp. 4573-4578, 2003. 

 [6]  P. O. M. Scokaert and D. Mayne, "Min-Max Feedback 
Model Predictive Control for Constrained Linear Systems," 
IEEE Transactions on Automatic Control, 43, pp. 1136-
1142, 1998. 

 [7]  Y. Lu and Y. Arkun, "Quasi-Min-Max MPC algorithms for 
LPV systems," Automatica, 36, pp. 527-540, 2000. 

 [8]  M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, 
"Applications of Second-order Cone Programming," Linear 
Algebra & Its Applications, 284, pp. 193-228, 1998. 

 [9]  A. Zheng and M. Morari, "Robust control of Constrained 
Model Predictive Control," Proceedings of the American 
Control Conference, pp. 379-383, 1993. 

[10]  C. E. Garcia and A. M. Morshedi, "Quadratic Programming 
Solution of Dynamic Matrix Control (QDMC)," Chemical 
Engineering Communications, 46, pp. 73-86, 1986. 

[11]  A. Bemporad and E. Mosca, "Fulfilling Hard Constraints in 
Uncertain Linear Systems by Reference Managing," 
Automatica, 34, pp. 451-461, 1998. 

[12]  E. Zafiriou and A. L. Marchal, "Stability of SISO Dynamic 
Matrix Control with Hard Output Constraints," AIChE 
Journal, 37, pp. 1550-1560, 1991. 

[13]  D. E. Kassmann, T. A. Badgwell and R. B. Hawkins, 
"Robust steady-state target calculation for model 
predictive control,"  AIChE Journal, 46, pp. 1007-1024, 
2000. 

[14]  J. F. Sturm, "Using SeDuMi 1.02, a MATLAB toolbox for 
optimization over symmetric cones," Optimization 
Methods and Software, 11-12, pp. 625-653, 1999. 


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrM02.3
	Page0: 4607
	Page1: 4608
	Page2: 4609
	Page3: 4610
	Page4: 4611
	Page5: 4612


